Linux Standard Base Core Specification, Generic
Part

Linux Standard Base Core Specification, Generic Part
LSB Core - Generic 5.0
Copyright © 2015 Linux Foundation

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.1; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the
licenseisincluded in the section entitled "GNU Free Documentation License".

Portions of the text may be copyrighted by the following parties:

The Regents of the University of California
Free Software Foundation

lan F. Darwin

Paul Vixie

BSDI (now Wind River)

Jean-loup Gailly and Mark Adler
Massachusetts I nstitute of Technology
AppleInc.

Easy Software Products

artofcode LLC

Till Kamppeter

Manfred Wassman

Python Software Foundation

These excerpts are being used in accordance with their respective licenses.

Linux is the registered trademark of Linus Torvaldsin the U.S. and other countries.

UNIX isaregistered trademark of The Open Group.

LSB isatrademark of the Linux Foundation in the United States and other countries.

AMD isatrademark of Advanced Micro Devices, Inc.

Intel and Itanium are registered trademarks and Intel386 is a trademark of Intel Corporation.

PowerPC is aregistered trademark and PowerPC Architecture is a trademark of the IBM Corporation.

/390 is aregistered trademark of the IBM Corporation.

OpenGL is aregistered trademark of Silicon Graphics, Inc.

PAM documentation is Copyright (C) Andrew G. Morgan 1996-9. All rights reserved. Used under the following conditions:

1. Redistributions of source code must retain the above copyright notice, and the entire
permission notice in its entirety, including the disclaimer of warranties.

2. Redistributions in binary form must reproduce the above copyright notice, thislist of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. The name of the author may not be used to endorse or promote products derived from this
software without specific prior written permission.

LSB Core- Generic 5.0

Contents

2.2 Informative References/Bibliography........ccccccovveveienenieveseseseeceeeeeee
BT = o LU 1=,
3.1 RAEVANt LIDIArES.....ccveeiieeciee ettt ettt ettt
3.2 L SB Implementation CONfOIMANCE.........cceruereereeieeeeeerere e
3.3 L.SB Application CONfOrMAaNCE........cccceeueeieeeeeeeireeereecee e eree e
4 Terms and DEfINITIONS.........ceeoveeiieecee ettt et e e e b s ereeebee e
5 Documentation CONVENLIONS........c.cceeeriireeireeeeiteeeesteeaesreesresreestesseesseeseessesssesseennes
6 Relationship To ISO/IEC 9945 POSIXcciiieeeieeiieiiesteeseesteeessreesessreesessseesessnees

7 Relationship To Other Linux Foundation Specifications..........ccooveveieveneesesieseennns
11 Executable And Linking Format (ELF).......cccovoiiieiie it

B INITOAUCLION.ccvieeieeetee it etee ettt et e e ebe e et e et e e saeeeseesbaeeebeessseebeesssesnbessareeseesaneens
9Low Level System INfOrMatioN........coevvererie et
9.1 Operating System INEIfACE.cceveeeecriececee e
9.2 MaChinE INEEITACE.ocouveeeeecee et
10 OBJECE FOMMIBL.vecveeveseeieesieieseeeeeeeeeesessesseseestesaesresee e seesenaeeeeesessessessessessessens
O @ o= o -
10.2 SECLIONS. ...cuviiveetietieteetee et ettt eee st e ste st et e s b e be st e et e sbe e b e ebeebesreesnesneesreennas
10.3 SPECIAl SECLIONS. .. eeuveueevieeeeieteeece e sre et re st sn e aes
10.4 SYmMBDOI MBPPDING.....cvereertereereeneeieseeseeeeeseeresie e seesbeseeseesbeseeseeseeseeseeeeneas
10.5 DWARF EXEENSIONS......ccveirieiireeieitieiesteeseesaeessesseesaesseestesseessesseessessennns
10.6 EXCEPLION FFAIMES.......cciveieiierieseeieeeeeeetese e ste e e ste e seesee e nee e e e esesneens
10.7 SymBOl VErSIONING.....ccueeeeevereereeniesieseeseeseeseeseeeeeeeeeesessessessesseseessesseseeses
LRl = I 010 (= o
11 DYNAMIC LINKING. . veeeueeiiieieeeieeiteeeteeetesseteesesssbeessesesseesressssesssessnsesssessssesssessseesns
11.1 Program Loading and Dynamic LinKing.........ccccceeeeveeenienesesnseseseenes
11.2 Program HEAOEScceiieveeieeeeeeee sttt sttt re e
11.3 DYNAMIC ENLMES.......eiveieiieiiesie ettt
12 C++ Class REPrESENLAiONS.........couerverterierienierieseereeeeseeeeesiese e sre e seesreseeseeseeee s
12.1 C++ Data REPreSENtatiON.cccveeeeereerisiesie e seesieseeseeeeeses e
13 SYMBDOI MBPPDING.ccveeeeeeeeerieieeneeseeseeseeeeeeeeseesesseeeeseeseesseseeseeseessenseeeneenessesneenens
13.1 SymbOl MaPPING. . .eeceeeeeerereeieerieieseereeeeeeeesessessesressessessessessessessesseseeseesens

TS I Tz T =TT

N ST S I o= A =S RRRRPR
7 R 51 (0o [0 o o o OO
14.2 Program INEEIPIELEr...........ceiveieeieeieeie ettt
14.3 INterfaceS fOr HDC.....c.viiivieeecie et
14.4 Data DEfinitioNS fOr lIDC.......ccovviiciieeee ettt
14.5 Interface DefinitionS fOr [iDC.........ccovveivieeeecee e
14.6 InterfaceS fOr [HDM........cciiiiiecee e s
14.7 Data DEfinitionNS for lHbM.......ccueecvevieeceee et
14.8 Interface DEfinitions for [iBM..........coevvieeiicce e

14.9 Interfaces for libPthread..........cccvveeeeive i
14.10 Data Definitions for libpthread............coooo oo
14.11 Interface Definitions for libpthread...........ccccoooriinniinieeeee
14.12 Interfaces for lIBQCC S.......ccviiriiiririsee s
14.13 Data Definitions for liBQCC. S.......ccviverireineereseerereeeee e

14.14 Interface Definitions for lHBGCC S...vvvvvverereerecirerece e
14.15 INterfaceS fOr [IDl........veeeeeeeee ettt e e e s e e s ereee e

© 2015 Linux Foundation 3

LSB Core- Generic 5.0

14.16 Data Definitions for [ibdl..........ceooeeeeeeiieeee e
14.17 Interface Definitions for lHBdl.........ccccveieeecieeieeccreecee e
R N1 = = o= 10 L1 o] P
14.19 Data DEfinitionS fOr [iDrt..........coveeeiieieceeccee e

14.20 Interfaces for [IBCIYPL.......covveieieecee e
14.21 Data Definitions for [HCrYPL........ccveveeveiesese e sese e
14.22 |nterface Definitions for HDCIYPL.........coeeerereieeeeeeeee e
14.23 Interfaces for [iDPam...........corrnini e
14.24 Data Definitions for [ibpam.............ccooevereneneneeeeceeee e
14.25 Interface Definitions for libpam..........c.ccoceeeeeneneninie e
YL 1 T o= T =T

SN] LY I o= =
152 INtFOAUCLION.viveerecteeete ettt sttt e b b e eareebeeresaeesreeneesresnnesrenn
15.2 INterfaceS fOr [IDZ........cccveivieciecrieiecreecte et
15.3 Data DefinitioNS for [1DZ.........c.voocveeeiiiieeieece e
15.4 Interface DefinitionsS for [iDz..........ccoeeveeiieccei e
15.5 Interfaces fOr HDNCUISES.........oocveiiieeeee ettt ettt eaee e
15.6 Data Definitions for HONCUISES.........coovvviceeeeveecieecee ettt
15.7 Interface Definitions for lIBNCUISES...........coovvveieieeeeeiccee e
15.8 Interfaces for lHDNCUISBSW.ccvevieecree ettt
15.9 Data Definitions for [IBNCUrSESW.covveveeeiiceecee ettt
15.10 Interface Definitions for liBNCUrSESW............ceevveiveeieiieeire e
15.11 Interfaces for lIBULIL...........ccuveeeeeieee e
15.12 Data Definitions for [IButil...........coeoviiiieeeecieeceecee e
15.13 Interface Definitions for HBULil............ocveeeeccvieeeece e

A O o I 1 o = 1 1= R

G I o= A== TSRO
16.1 INterfaces fOr [TDSIACKX . .ccecvereiereeriereieeeriessreeeeeteeesesreessreeessreessseessereeeeas
16.2 Interface Definitions for IDSIACKX......ccveiviieeeeiiicciecee e

VI CommandsS anNd ULHIEIES.......ccueieeeiiieiee ettt st sres st st ssrnesnre s

17 Commands AN ULHITIES........cccueeeieieie et steee e tee et e st e s s sbe e s sereee s saaeessbeeesans
17.1 Commands and ULIHITIES.........eeeieueeeeeiie et vee e s
17.2 ComMMANA BENGVIOLcccueeeietie ettt e seae e s sae e s seran e snns

VI EXECUtiON ENVIEONMIENT......ciiiiieieieie e seie e eetee e seee s et ee e sesae s s saaeessbe e s ssaessensnassabeeeans

18 File SYStEM HIEIAICHYceeicveee ettt ettt e et e s eae e s e s eeaae e s ereeessnnee s
18.1 /AEV: DEVICE FILES.....ceieeeie ettt ettt eeee ettt et e s e e e s e s sane s sereee e

18.2 /etc: Host-specific system configuration............ceeeeeveieesiesieseeseesieseeieenens
18.3 User Accounting Dataases.........cccveveererieveiniesesieneeseeseeeeessese e seeseeseens
18.4 Path For System Administration ULIItIes...........ccoerereereeierieecencreneeeeen
19 Additional ReCOMMENABLIONS..........cccviiireeeieiree et see et ereesree b e saeeeareeses
19.1 Recommendations for applications on ownership and permissions.........
20 Additional BENGVIOIS..........cccueiiieecieeiiieccreeeeeeetee ettt stee et e sreesareesbessbeenneesanes
20.1 Mandatory Optional BENAVIOIS.........cccecveeieeeeeiectir et
20.2 Optional Mandatory BENAVIOIS..........cecevieeeceiecrei et
20.3 EXECULADIE SCIIES. ... eveeeeeeeieeereeeee ettt ste sttt
21 LOCAIIZALON. ...veevecreetecteeete et et et e ettt ste et esre e e sbeebesbeebesbe et e sbeeabeebeenbesreensesaeennes
211 INFOAUCLION.cuveiiiiiecieeciee ettt ettt ettt ete e b e st e e saeesabeesbeeenneenes

21.2 RegUIAr EXPIESSIONS......cveeeuerueruerierieriesiesiesiessestesteseesseeeseesesessesesnessesaes
21.3 Pattern Matching NOtAiON.eoveieeeeereeeeeere e

VI System INitialiZation........cccooeeeeeeeeerene et s seenean
22 SYStEM INITAIIZAEION. ...eceveeeeeeeeeeee e et e e e et e e et e e s e e s st e seeseessereeesareeesanseessnes
22.1 CrON JODS.......eeeeeetieeeeeee e seeee et e e et e st e e e et esaseessebeeseabeeesasseessaeessabanesanes

22.2 INit SCHPL ACHONS.....ccveiieieiieitesteeeee ettt reene s
22.3 Comment Conventions for [Nit SCrPLS........cccvereererierierienesiese e seeseeens

22.4 Ingtallation and Removal of [Nit SCHPLS........ccovererienienerienierieree e
225 RUNLEVEIS. ...ttt ettt sttt ettt sttt e e s s

© 2015 Linux Foundation

LSB Core- Generic 5.0

22.6 FACIlity NBIMES......c.coeeueeiirieeeeeiesie e e ee e eae e se st eesaeseeseeseeseenean
22.7 SCHPEINBIMIES.....cceeeveieieesiesieseeseeie et sbesbeseeseestesaesee e enee e eneeneas
22.8 NIt SCIIPL FUNCLIONS.......eeiieeieieetet e seeeeseeee e ettt eseeeeseeeessreesseaeesseraeessreesans

IX USEIS & GIOUDS....coueeieeeieetteiieseseteeteessesaresessesssseesssasssseesssssssbersesssassesesessessssssesssssssnes

23 USEIS & GIOUDS. .. eeuveiteeiiriesieesiteesteasseesbessseesbeesbessseesbessbeessesssbeesseesasessseesanesssens
23.1 User and Group Dat@bhaSe..........ccceveerienienesienierieseeseesesesesesresse e ssessesnens
23.2 User & Group NAMES........ccovieieiieeie ettt

23.3 USEN |D RANGES.......eeiuieeeieeeeesieeiesieetesieesiesseessesseassesessseenesssesssesaeessessnens
234 RAONAIE.......coo ettt ettt e e st e e e st e e e e raa e s sbe e e s sabeessnnessanneas

X NEtWOr K SECUTITY SEIVICES......eeeeueeierieriistesiesiestesiesie e seeeeseeseeses e ssesbesaessesteseeseeseensenes
2 I o] =

24.1 Interfaces for [IBNSPIA.........ocvieiveeceeeeee et

24.2 Data Definitions for [IBNSPra..........cceceveveeieiieeeeeesese e

24.3 Interfaces for [HNSS3..........ov it

24.4 Data Definitions for [IbNSS3..........ooveeviiiiiecieceecece e

24.5 Interfaces for [INSAB........c.vv e

24.6 Data DefinitionsS for [IDSSI3........ccoveeeieieeeeeeee e

X1 Package Format and INStallation..........ccceeeererereneniese e
25 SOftWAre INSEAHAEION.veeieeeceeeetee ettt eve b st e e reesree e sresenneeaees

25300 M 10100 (8701 o o

AW o= 0 = 0 (=] w1 1=] 0117 O

25.3 Package Script RESIICHIONS.......ccvcveereeeeeseseesiesie e seeie e seeee e e eseens

25.4 PaCKAgE TOOIS.......ceueeuerierieeierie ettt sb e s sbe b e

25.5 Package Naming CONVENLIONS............coveruereerieeeieieeeeesiese s e

25.6 Package DEPENENCIES.........coueiuereirieriereeeeee e eeseeieee st see e see e eeseeseenee s

25.7 Package Architecture CONSIAErations..........c.coueeeeeeerereseseseeseesieseeseeens

A Alphabetical Listing of Interfacesby Library.......ccceeiicieececiee e

ALLTIDC ..o bbb

F 2 1] oo Y/ o) TSR
NG 1 oo | T

N 1] o o o SOV
F NN 11 o] 1o SRR

ALB TTDNCUISES. ...ttt ettt e e e et e s s e e e st e e e saaesseaseessabeessseessneeas

N 2 11 o
AL TIDNSPIA.....ee ettt a e et e e e eneas
N I T 00 S T
N LT 1 0SS TR

B GNU Free Documentation License (INfOrMatiVE)......coceeveeeeeereeieeeeeseeeeeeeeeeeee s

B.LPREAMBLE........o ot
B.2 APPLICABILITY AND DEFINITIONS..........coeoiiiiiiririninenescse s
B.3VERBATIM COPYING.......cccoreerrererreneerereereseereseereseesessesesresesneesnesesnesessesessenens
B.4 COPYING IN QUANTITY ..ot
B.5 MODIFICATIONS........oociiteieeieireseeesese s s
B.6 COMBINING DOCUMENTS........ccoooiiirertierinrenre e
B.7 COLLECTIONS OF DOCUMENTS.........cooiiiiiinininrene s
B.8 AGGREGATION WITH INDEPENDENT WORKS........ccoeie i
B.O TRANSLATIONttt erenn e
B.10 TERMINATION.......ociiiiiiiiiirininir e s
B.11 FUTURE REVISIONS OF THISLICENSE.........cccoieiiireerereeereeesreesreennenens

B.12 How to use this License for your dOCUMENLS............ccooereereeerieeienencnene e

© 2015 Linux Foundation 5

LSB Core- Generic 5.0

List of Figures

10-1 Version DEfINItION ENEIIES.ueeiieiiieieeie e seie et stee s tee et s e e s sebae s s b e s ssnanessareeeens

10-2 Version Definition AuXiliary ENEFES........ccccveiiiirereninene e
10-3VErSiON NEEAE ENMIIES.......oiccveecreiireeeee ettt steeeree et eeereebessabesaeesate e sreeenneenres
10-4 Version Needed AUXiliary ENEFES......c.coeeeereeeeeeeeeceere et
11-1 DYNAMIC SEIUCHUIE......cveeverieeeeetesteseestesieseeseeaeseeeeseeseesessestessesaessesteseesenseseensssensensensens
{07 (<o (o) VAN MY A T (8 =) 1= o)

12-2 Category 2 Virtual Tahl€......cveeeieieeceee ettt ne e e
12-3 Run-Time Type INformation PrefiX........ucviiieciceceei ettt
12-4 Run-Time Type Information For Classes with no base class...........coeeereieecenccncnnene
12-5 Run-Time Type Information for Classeswith asingle base Class...........cccooeveerenuenne.
12-6 Run-Time Type Information for classes with multiple inheritance...........cccceeveveeneeene

12-7 Run-Time Type Information for pOiNter tyPesS..........ooevererereenenereeeeeeeee e
12-8 Run-Time Type Information for pointer t0 MEMbEr tYPES........ccceveveeveeeieeeirereieeeirenns

© 2015 Linux Foundation 6

LSB Core- Generic 5.0

Foreword

This is version 5.0 of the Linux Standard Base Core Specification, Generic Part. This
specification is one of a series of volumes under the collective title Linux Sandard
Base:

« Common
+ Core

» Desktop
+ Languages
+ Imaging

Note that the Core and Desktop volumes consist of a generic volume augmented by an
architecture-specific volume.

© 2015 Linux Foundation 7

LSB Core- Generic 5.0

Status of this Document

Thisis areleased specification, version 5.0. Other documents may supersede or augment
this specification.

A list of current released Linux Standard Base (LSB) specifications is available at
http://refspecs.linuxbase.org (http://refspecs.linuxbase.org/).

If you wish to make comments regarding this document in a manner that is tracked by
the LSB project, please submit them using our public bug database at http://bugs.linux-
base.org. Please enter your feedback, carefully indicating the title of the section for
which you are submitting feedback, and the volume and version of the specification
where you found the problem, quoting the incorrect text if appropriate. If you are sug-
gesting a new feature, please indicate what the problem you are trying to solve is. That
is more important than the solution, in fact.

If you do not have or wish to create a bug database account then you can also e-mail
feedback to <lsb-discuss@lists.linuxfoundation.org> (subscribe (http:/list-
s.linuxfoundation.org/mailman/listinfo/lsb-discuss), archives (http://lists.linuxfounda-
tion.org/pipermail/lsh-discuss)), and arrangements will be made to transpose the com-
ments to our public bug database.

© 2015 Linux Foundation 8

LSB Core- Generic 5.0

Introduction

The LSB defines a binary interface for application programs that are compiled and pack-
aged for L SB-conforming implementations on many different hardware architectures. A
binary specification must include information specific to the computer processor archi-
tecture for which it is intended. To avoid the complexity of conditional descriptions, the
specification has instead been divided into generic parts which are augmented by one of
severa architecture-specific parts, depending on the target processor architecture; the
generic part will indicate when reference must be made to the architecture part, and vice
versa

This document should be used in conjunction with the documents it references. This
document enumerates the system components it includes, but descriptions of those com-
ponents may be included entirely or partly in this document, partly in other documents,
or entirely in other reference documents. For example, the section that describes system
service routines includes a list of the system routines supported in this interface, formal
declarations of the data structures they use that are visible to applications, and a pointer
to the underlying referenced specification for information about the syntax and se-
mantics of each call. Only those routines not described in standards referenced by this
document, or extensions to those standards, are described in the detail. Information ref-
erenced in thisway is as much a part of this document asis the information explicitly in-
cluded here.

The specification carries a version number of either the form x.y or x.y.z. This ver-
sion number carries the following meaning:

1. The first humber (x) is the major version number. Versions sharing the same
major version number shall be compatible in a backwards direction; that is, a
newer version shall be compatible with an older version. Any deletion of alibrary
results in a new major version number. Interfaces marked as deprecated may be
removed from the specification at amajor version change.

2. The second number (y) is the minor version number. Libraries and individual
interfaces may be added, but not removed. Interfaces may be marked as
deprecated at a minor version change. Other minor changes may be permitted at
the discretion of the L SB workgroup.

3. The third number (z), if present, is the editorial level. Only editoria changes
should be included in such versions.

Since this specification is a descriptive Application Binary Interface, and not a source
level API specification, it is not possible to make a guarantee of 100% backward com-
patibility between major releases. However, it is the intent that those parts of the binary
interface that are visible in the source level API will remain backward compatible from
version to version, except where a feature marked as "Deprecated” in one release may
be removed from afuture release. Implementors are strongly encouraged to make use of
symbol versioning to permit simultaneous support of applications conforming to differ-
ent releases of this specification.

LSB isatrademark of the Linux Foundation. Developers of applications or implementa-
tions interested in using the trademark should see the Linux Foundation Certification
Policy for details.

© 2015 Linux Foundation 9

| Introductory Elements

LSB Core- Generic 5.0

1 Scope

1.1 General

The Linux Standard Base (LSB) defines a system interface for compiled applications
and aminimal environment for support of installation scripts. Its purpose is to enable a
uniform industry standard environment for high-volume applications conforming to the
LSB.

These specifications are composed of two basic parts: a common part describing those
parts of the interface that remain constant across all implementations of the LSB, and an
architecture-specific part describing the parts of the interface that vary by processor ar-
chitecture. Together, the common part and the relevant architecture-specific part for a
single hardware architecture provide a complete interface specification for compiled ap-
plication programs on systems that share a common hardware architecture.

The LSB contains both a set of Application Program Interfaces (APIs) and Application
Binary Interfaces (ABIs). APls may appear in the source code of portable applications,
while the compiled binary of that application may use the larger set of ABIs. A con-
forming implementation provides all of the ABIs listed here. The compilation system
may replace (e.g. by macro definition) certain APIs with calls to one or more of the un-
derlying binary interfaces, and may insert calls to binary interfaces as needed.

The LSB is primarily a binary interface definition. Not all of the source level APIs
available to applications may be contained in this specification.

1.2 Module Specific Scope

This is the common part of the Core module of the Linux Standard Base (LSB), LSB
Core - Generic. This module provides the fundamenta system interfaces, libraries, and
runtime environment upon which al conforming applications and libraries depend.

LSB Core - Generic, the common part, should be used in conjunction with an architec-
ture-specific part. Whenever a section of the common part is supplemented by architec-
ture-specific information, the common part includes a reference to the architecture-spe-
cific part. Architecture-specific parts of the LSB Core Specification may also contain
additional information that is not referenced in the common part.

Interfaces described in this part of the LSB Core Specification are mandatory except
where explicitly listed otherwise. Interfaces described in the LSB Core module are sup-
plemented by other LSB modules. All other modules depend on the presence of LSB
Core.

© 2015 Linux Foundation 11

LSB Core- Generic 5.0

2 References

2.1 Normative References

The following specifications are incorporated by reference into this specification. For
dated references, only the edition cited applies. For undated references, the latest edition
of the referenced specification (including any amendments) applies.

Note: Where copies of a referenced specification are available on the World Wide Web, a
Uniform Resource Locator (URL) is given, for informative purposes only. Such URL might
at any given time resolve to a more recent copy of the specification, or be out of date (not
resolve). Reference copies of specifications at the revision level indicated may be found at
the Linux Foundation's Reference Specifications (http://refspecs.linuxbase.org) site.

Table 2-1 Normative Refer ences

Name

Title

URL

Filesystem Hierarchy
Standard

Filesystem Hierarchy
Standard (FHS) 3.0

http://ref specs.linuxbase.o
rg/fhs

1SO C (1999)

ISO/IEC 9899:1999 -
Programming Languages
-C

ISO/IEC 14882: 2003 C+
+ Language

ISO/IEC 14882: 2003
Programming languages
--C++

Itanium™ C++ ABI

Itanium™ C++ ABI

http://ref specs.linuxfound

(Revision 1.86) ation.org/cxxabi-
1.86.html
Large File Support Large File Support http://mww.UNIX-
systems.org/version2/wha

tsnew/lfs20mar.html

Libncursesw API

Libncursesw API

http://invisible-
island.net/ncurses/man/nc
urses.3x.html

Libncursesw Placeholder

Libncursesw
Specification Placeholder

http://refspecs.linux-
foundation.org/libncurses
w/libncurses.html

POSIX 1003.1-2001
(I1SO/IEC 9945-2003)

ISO/IEC 9945-1:2003 In-
formation technology --
Portable Operating Sys-
tem Interface (POSIX) --
Part 1: Base Definitions

ISO/IEC 9945-2:2003 In-
formation technology --
Portable Operating Sys-
tem Interface (POSIX) --
Part 2: System Interfaces

ISO/IEC 9945-3:2003 In-
formation technology --
Portable Operating Sys-
tem Interface (POSIX) --
Part 3: Shell and Utilities

ISO/IEC 9945-4:2003 In-
formation technology --

http://www.unix.org/versi
on3/

© 2015 Linux Foundation

12

LSB Core- Generic 5.0

2 References

Portable Operating Sys-
tem Interface (POSIX) --
Part 4: Rationale

Including Technical Cor.
1: 2004

POSIX 1003.1-2008
(ISO/IEC 9945-2009)

Portable Operating
System Interface
(POSIX®) 2008 Edition /
The Open Group
Technical Standard Base
Specifications, Issue 7

http://www.unix.org/versi
ond/

SUSv2

CAE Specification,
January 1997, System
Interfaces and Headers
(XSH),Issue 5 (ISBN: 1-
85912-181-0, C606)

http://www.opengroup.or
o/publications/catal og/un.
htm

SVID Issue 3

American Telephone and
Telegraph Company,
System V Interface
Definition, Issue 3;
Morristown, NJ, UNIX
Press, 1989. (ISBN
0201566524)

SVID Issue 4

System V Interface
Definition, Fourth Edition

http://ref specs.linuxfound
ation.org/svid4/

System VV ABI

System V Application
Binary Interface, Edition
4.1

http://www.sco.com/devel
opers/devspecs/gabi4l.pd
f

System V ABI Update

System V Application
Binary Interface -
DRAFT - 17 December
2003

http://www.sco.com/devel
opers/gabi/2003-12-
17/contents.html

X/Open Curses, Issue 7

X/Open Curses, Issue 7
(ISBN: 1-931624-83-6,
The Open Group,
November 2009)

https://www2.opengroup.
org/ogsys/catalog/C094

2.2 Informative References/Bibliography

The documents listed below provide essential background information to implementors
of this specification. These references are included for information only, and do not rep-
resent normative parts of this specification.

Table 2-2 Other References

Name Title URL
DWARF Debugging DWARF Debugging http://www.dwarfstd.org/
Information Format, Information Format, doc/DWARF4.pdf
Version 4 Version 4 (June 10, 2010)
|EC 60559/IEEE 754 |EC 60559:1989 Binary http://www.ieee.org/
Floating Point floating-point arithmetic

for microprocessor

systems
ISO/IEC TR14652 ISO/IEC Technical

Report 14652:2002

© 2015 Linux Foundation

13

LSB Core- Generic 5.0

Specification method for
cultural conventions

ITU-T V.42

International
Telecommunication
Union Recommendation
V.42 (2002): Error-
correcting procedures for
DCEsusing
asynchronous-to-
synchronous

conversionl TUV

http://www.itu.int/rec/rec
ommendation.asp?
type=folders& lang=e& pa
rent=T-REC-V .42

Li18nux Globalization
Specification

LI18NUX 2000
Globalization
Specification, Version 1.0
with Amendment 4

http://www.openi 18n.org/
docg/html/LI18NUX-
2000-amd4.htm

Linux Allocated Device
Registry

LINUX ALLOCATED
DEVICES

http://www.lanana.org/do
cddevice-list/devices-
2.6+.1xt

Linux Assigned Names

Linux Assigned Names

http://www.lanana.org/

And Numbers Authority And Numbers Authority

Mozilla's NSS SSL Mozillas NSS SSL http://www.mozilla.org/pr

Reference Reference oj ects/security/pki/nss/ref/
sdl/

NSPR Reference Mozilla's NSPR http://refspecs.linuxfound

Reference ation.org/NSPR_API_Ref

erence/NSPR_API.html

PAM Open Software http://www.opengroup.or

Foundation, Request For
Comments: 86.0,

October 1995, V. Samar
& R.Schemers (SunSoft)

g/tech/rfc/mirror-
rfc/rfc86.0.txt

RFC 1321: The MD5

IETF RFC 1321: The

http://www.ietf.org/rfc/rfc

Message-Digest MD5 Message-Digest 1321.txt

Algorithm Algorithm

RFC 1833: Binding IETF RFC 1833: Binding | http://www.ietf.org/rfc/rfc
Protocols for ONC RPC Protocols for ONC RPC 1833.txt

Version 2 Version 2

RFC 1950: ZLIB IETF RFC 1950: ZLIB http://www.ietf.org/rfc/rfc
Compressed Data Format | Compressed Data Format | 1950.txt

Specication Specification

RFC 1951: DEFLATE IETF RFC 1951: http://mwww.ietf.org/rfc/rfc
Compressed Data Format | DEFLATE Compressed 1951.txt

Specification

Data Format Specification
version 1.3

RFC 1952: GZIP File
Format Specification

IETF RFC 1952: GZIP
file format specification
version 4.3

http://www.ietf.org/rfc/rfc
1952.txt

RFC 2440: OpenPGP IETF RFC 2440: http://www.ietf.org/rfc/rfc
M essage Format OpenPGP Message 2440.txt

Format
RFC 2821:Simple Mail IETF RFC 2821: Simple http://www.ietf.org/rfc/rfc

Transfer Protocol

Mail Transfer Protocol

2821 txt

RFC 2822:Internet

|IETF RFC 2822: Internet

http://www.ietf.org/rfc/rfc

© 2015 Linux Foundation

14

LSB Core- Generic 5.0

2 References

Message Format M essage Format 2822.1xt

RFC 5531/4506 RPC & IETF RFC 5531 & 4506 http://www.ietf.org/

XDR

RFC 791:Internet IETF RFC 791 Internet http://mww.ietf.org/rfc/rfc
Protocol Protocol Specification 791.txt

RPM Package Format

RPM Package Format
V3.0

http://www.rpm.org/max-
rpm/sl-rpm-file-format-
rpm-file-format.html

zlib Manud

zlib 1.2 Manual

http://www.gzip.org/zlib/

© 2015 Linux Foundation

15

LSB Core- Generic 5.0

3 Requirements

3.1 Relevant Libraries

The libraries listed in Table 3-1 shall be available on a Linux Standard Base system,
with the specified runtime names. The libraries listed in Table 3-2 are architecture spe-
cific, but shall be available on al LSB conforming systems. Thislist may be supplemen-
ted or amended by the relevant architecture specific part of the LSB Core Specification.

Table 3-1 Standard Library Names

Library Runtime Name
libcrypt libcrypt.so.1
libdl libdl.s0.2

libgce s libgcc s.s0.1
libncurses libncurses.so.5
libncursesw libncursesw.so.5
libnsprd libnsprd.so
libnss3 libnss3.s0
libpam libpam.so.0
libpthread libpthread.so0.0
librt librt.so.1

libss3 libss 3.50
libstdexx libstdc++.50.6
libutil libutil.so.1

libz libz.s0.1

Table 3-2 Standard Library Names defined in the Architecture Specific Parts of
the L SB Core Specification

Library Runtime Name

libc See architecture specific part.
libm See architecture specific part.
proginterp See architecture specific part.

These libraries will be in an implementation-defined directory which the dynamic linker
shall search by defaullt.

3.2 LSB Implementation Conformance

A conforming implementation is necessarily architecture specific, and must provide the
interfaces specified by both the generic LSB Core specification (LSB Core - Generic)
and the relevant architecture specific part of the LSB Core Specification.

Rationale: An implementation must provide at least the interfaces specified in these spe-
cifications. It may also provide additional interfaces.

A conforming implementation shall satisfy the following requirements:

« A processor architecture represents afamily of related processors which may not have
identical feature sets. The architecture specific parts of the LSB Core Specification
that supplement this specification for a given target processor architecture describe a
minimum acceptable processor. The implementation shall provide all features of this
processor, whether in hardware or through emulation transparent to the application.

© 2015 Linux Foundation 16

LSB Core- Generic 5.0 3 Requirements

« The implementation shall be capable of executing compiled applications having the
format and using the system interfaces described in this specification.

« The implementation shall provide libraries containing the interfaces specified by this
specification, and shall provide a dynamic linking mechanism that allows these inter -
faces to be attached to applications at runtime. All the interfaces shall behave as spe-
cified in this specification.

« The map of virtua memory provided by the implementation shall conform to the re-
quirements of this specification.

« The implementation's low-level behavior with respect to function call linkage, system
traps, signals, and other such activities shall conform to the formats described in this
specification.

« Theimplementation shall provide al of the mandatory interfacesin their entirety.

» The implementation may provide one or more of the optional interfaces. Each op-
tional interface that is provided shall be provided in its entirety. The product docu-
mentation shall state which optional interfaces are provided.

» The implementation shall provide al files and utilities specified as part of this spe-
cification in the format defined here and in other documents normatively included by
reference. All commands and utilities shall behave as required by this specification.
The implementation shall also provide all mandatory components of an application's
runtime environment that are included or referenced in this specification.

« The implementation, when provided with standard data formats and values at a named
interface, shall provide the behavior defined for those values and data formats at that
interface. However, a conforming implementation may consist of components which
are separately packaged and/or sold. For example, a vendor of a conforming imple-
mentation might sell the hardware, operating system, and windowing system as separ-
ately packaged items.

+ The implementation may provide additional interfaces with different names. It may
also provide additional behavior corresponding to data values outside the standard
ranges, for standard named interfaces.

3.3 LSB Application Conformance

A conforming application containing object filesis necessarily architecture specific, and
must conform to both the generic LSB Core specification (LSB Core - Generic) and the
relevant architecture specific part of the LSB Core Specification. A conforming applica-
tion which contains no object files may be architecture neutral. Architecture neutral ap-
plications shall conform only to the requirements of the generic LSB Core specification
(LSB Core - Generic).

A conforming application shall satisfy the following requirements:

« Executable files shall be either object files in the format defined in the Object Format
section of this specification, or script files in a scripting language where the
interpreter isrequired by this specification.

+ Object files shall participate in dynamic linking as defined in the Program Loading
and Linking section of this specification.

+ Object files shall employ only the instructions, traps, and other low-level facilities
defined as being for use by applications in the Low-Level System Information section
of this specification

- If the application requires any optional interface defined in this specification in order
to be installed or to execute successfully, the requirement for that optional interface
shall be stated in the application's documentation.

« The application shall not use any interface or data format that is not required to be
provided by a conforming implementation, unless such an interface or data format is
supplied by another application through direct invocation of that application during

© 2015 Linux Foundation 17

LSB Core- Generic 5.0

execution. The other application must also be a conforming application, and the use
of such interface or data format, as well as its source (in other words, the other
conforming application), shall be identified in the documentation of the application.

+ The application shall not use any values for a named interface that are reserved for
vendor extensions.

A dtrictly conforming application shall not require or use any interface, facility, or im-
plementation-defined extension not defined in this specification in order to be installed
or to execute successfully.

© 2015 Linux Foundation 18

LSB Core- Generic 5.0

4 Terms and Definitions

For the purposes of this document, the terms given in ISO/IEC Directives, Part 2, Annex
H and the following apply.

archLSB

Some LSB specification documents have both a generic, architecture-neutral part
and an architecture-specific part. The latter describes elements whose definitions
may be unique to a particular processor architecture. The term archLSB may be
used in the generic part to refer to the corresponding section of the architecture-
specific part.

Binary Standard, ABI

The total set of interfaces that are available to be used in the compiled binary code
of a conforming application, including the run-time details such as calling
conventions, binary format, C++ name mangling, etc.

Implementation-defined

Describes a value or behavior that is not defined by this document but is selected
by an implementor. The value or behavior may vary among implementations that
conform to this document. An application should not rely on the existence of the
value or behavior. An application that relies on such a value or behavior cannot be
assured to be portable across conforming implementations. The implementor shall
document such a value or behavior so that it can be used correctly by an
application.

Shell Script

A file that is read by an interpreter (e.g., awk). The first line of the shell script
includes areference to its interpreter binary.

Source Standard, API

The total set of interfaces that are available to be used in the source code of a
conforming application. Due to trandations, the Binary Standard and the Source
Standard may contain some different interfaces.

Undefined

Describes the nature of a value or behavior not defined by this document which
results from use of an invalid program construct or invalid data input. The value or
behavior may vary among implementations that conform to this document. An
application should not rely on the existence or validity of the value or behavior. An
application that relies on any particular value or behavior cannot be assured to be
portable across conforming implementations.

Unspecified

Describes the nature of a value or behavior not specified by this document which
results from use of a valid program construct or valid data input. The value or
behavior may vary among implementations that conform to this document. An
application should not rely on the existence or validity of the value or behavior. An
application that relies on any particular value or behavior cannot be assured to be
portable across conforming implementations.

In addition, for the portions of this specification which build on IEEE Std 1003.1-2001,
the definitions given in IEEE Sd 1003.1-2001, Base Definitions, Chapter 3 apply.

© 2015 Linux Foundation 19

LSB Core- Generic 5.0

5 Documentation Conventions
Throughout this document, the foll owing typographic conventions are used:

function()

the name of afunction

command

the name of a command or utility

CONSTANT
aconstant value

parameter

a parameter

variable
avariable
Throughout this specification, several tables of interfaces are presented. Each entry in
these tables has the following format:
name

the name of the interface

(symver)
An optiona symbol version identifier, if required.

[refno]

A reference number indexing the table of referenced specifications that follows this
table.

For example,
| forkpty(GLIBC 2.0) [SUSV4]

refers to the interface named forkpty() with symbol verson GLIBC_ 2.0 that is
defined in the reference indicated by the tag SUSv4.

Note: For symbols with versions which differ between architectures, the symbol versions

are defined in the architecture specific parts of of this module specification only. In the gen-
eric part, they will appear without symbol versions.

© 2015 Linux Foundation 20

LSB Core- Generic 5.0

6 Relationship To ISO/IEC 9945 POSIX

This specification includes many interfaces described in POSIX 1003.1-2008 (1SO/IEC
9945-2009). Unless otherwise specified, such interfaces should behave exactly as de-
scribed in that specification. Any conflict between the requirements described here and
the POSIX 1003.1-2008 (1SO/IEC 9945-2009) standard is unintentional, except as ex-
plicitly noted otherwise.

Note: In addition to the differences noted in this specification, areport, ISO/IEC TR 24715-
Technical Report on the Conflicts Between the ISO/IEC 9945 (POSX) Sandard and the
Linux Sandard Base Specification (LSB), identifies the differences between edition 3.1 of
this specification and POSIX 1003.1-2001 (1SO/IEC 9945-2003) (more precisely, POSIX
2001 plus the first two corrigenda, informally known as the 2004 edition). It isthe long term
plan of the Linux Foundation to converge the LSB Core specification with the 1SO/IEC
POSIX specification.

The LSB Specification Authority is responsible for deciding the meaning of conform-
ance to normative referenced standards in the LSB context. Problem reports regarding
underlying or referenced standards in any other context will be referred to the relevant
maintenance body for that standard.

© 2015 Linux Foundation 21

LSB Core- Generic 5.0

7 Relationship To Other Linux Foundation Specifications

The LSB is the base for several other specification projects under the umbrella of the
Linux Foundation (LF). This specification is the foundation, and other specifications
build on the interfaces defined here. However, beyond those specifications listed as
Normative References, this specification has no dependencies on other LF projects.

ISO/IEC 23360 corresponds to an earlier edition of this specification (version 3.1), pub-
lished as an ISO/IEC standard in 2006 after submission by the Linux Foundation. The
ISO edition is aso the subject of the technical report ISO/IEC TR 24715 referenced in
the previous chapter.

© 2015 Linux Foundation 22

Il Executable And Linking Format (ELF)

LSB Core- Generic 5.0

8 Introduction

Executable and Linking Format (ELF) defines the object format for compiled applica-
tions. This specification supplements the information found in System V. _ABI Update
and is intended to document additions made since the publication of that document.

© 2015 Linux Foundation 24

LSB Core- Generic 5.0

9 Low Level System Information

9.1 Operating System Interface

L SB-conforming applications shall assume that stack, heap and other allocated memory
regions will be non-executable. The application must take steps to make them execut-
ableif needed.

9.2 Machine Interface

9.2.1 Data Representation

L SB-conforming applications shall use the data representation as defined in the Arcitec-
ture specific ELF documents.

9.2.1.1 Fundamental Types

In addition to the fundamental types specified in the relevant architecture specific part of
the LSB Core Specification, a 1 byte datatypeis defined here.

Table 9-1 Scalar Types

Type C C++ sizeof Align- Architec-
ment ture Rep-
(bytes) resenta-
tion
Integral Bool bool 1 1 byte

© 2015 Linux Foundation 25

LSB Core- Generic 5.0

10 Object Format

10.1 Object Files

L SB-conforming implementations shall support the Executable and Linking Format
(ELF) object file format as defined by the following documents:

« SystemV ABI
« System V ABI Update

- therelevant architecture specific ABI supplement.

« this specification

« therelevant architecture specific part of the LSB Core Specification

Conforming implementations may also support other unspecified object file formats.

10.2 Sections

10.2.1 Introduction
Asdescribed in System V_ABI, an ELF object file contains a number of sections.

10.2.2 Sections Types

The section header table is an array of E1f32_Shdr or E1f64_Shdr structures as de-
scribed in System V_ABI. The sh_type member shall be either a value from Table 10-
1, drawn from the System V ABI, or one of the additional values specified in Table 10-
2.

A section header's sh_type member specifies the sections's semantics.

10.2.2.1 ELF Section Types
The following section types are defined in the System V_ABI and the System V_ABI

Update.
Table 10-1 ELF Section Types
Name Value Description
SHT _DYNAMIC 0x6 The section holds inform-

ation for dynamic linking.
Currently, an object file
shall have only one dy-
namic section, but thisre-
striction may be relaxed
in the future. See "Dy-
namic Section’ in Chapter
5 of System V ABI Up-
date for details.

SHT DYNSYM Oxb This section holds a min-
imal set of symbols ad-
equate for dynamic link-
ing. See also
SHT_SYMTAB. Cur-
rently, an object file may
have either a section of
SHT_SYMTAB typeor a
section of SHT_DYN-
SYM type, but not both.

© 2015 Linux Foundation 26

LSB Core- Generic 5.0

10 Object Format

Thisrestriction may be
relaxed in the future.

This section contains an
array of pointersto ter-
mination functions, as de-
scribed in "Initialization
and Termination Func-
tions in Chapter 5 of Sys-
temV ABI Update. Each
pointer inthe array is
taken as a parameterless
procedure with avoid re-
turn.

The section holds a sym-
bol hash table. Currently,
an object file shall have
only one hash table, but
thisrestriction may be re-
laxed in the future. See
"Hash Table' in Chapter 5
of System V ABI Update
for detalls.

This section contains an
array of pointersto initial-
ization functions, as de-
scribed in “Initialization
and Termination Func-
tions in Chapter 5 of Sys-
tem V ABI Update. Each
pointer inthe array is
taken as a parameterless
procedure with avoid re-
turn.

A section of this type oc-
cupies no space in thefile
but otherwise resembles
SHT_PROGBITS. Al-
though this section con-
tains no bytes, the sh_off-
set member contains the
conceptual file offset.

The section holds inform-
ation that marksthefilein
some way. See "Note Sec-
tion' in Chapter 5 of Sys-
temV ABI Update for de-
tails.

This value marks the sec-
tion header as inactive; it
does not have an associ-
ated section. Other mem-
bers of the section header
have undefined values.

SHT_FINI_ARRAY Oxf
SHT_HASH X5
SHT_INIT_ARRAY Oxe
SHT_NOBITS 0x8
SHT_NOTE Ox7
SHT_NULL 0x0
SHT_PREINIT_ARRAY | 0x10

This section contains an
array of pointersto func-
tions that are invoked be-

© 2015 Linux Foundation

27

LSB Core- Generic 5.0

fore al other initidization
functions, as described in
“Initialization and Ter-
mination Functions' in
Chapter 5 of System V
ABI Update. Each pointer
inthe array istaken asa
parameterless proceure
with avoid return.

SHT_PROGBITS

Ox1

The section holds inform-
ation defined by the pro-
gram, whose format and
meaning are determined
solely by the program.

SHT_REL

0x9

The section holds reloca-
tion entries without expli-
cit addends, such as type
Elf32_Rel for the 32-bit
class of object files or
type EIf64_Rel for the 64-
bit class of object files.
An object file may have
multiple relocation sec-
tions. See "Relocation’ in
Chapter 4 of System V
ABI Update for details.

SHT_RELA

0x4

The section holds reloca-
tion entries with explicit
addends, such as type
EIf32_Relafor the 32-bit
class of object files or
type EIf64_Relafor the
64-bit class of object
files. An object file may
have multiple relocation
sections. See “Relocation’
in Chapter 4 of System V
ABI Update for details.

SHT_STRTAB

0x3

The section holds a string
table. An object file may
have multiple string table
sections. See "String
Table' in Chapter 4 of
System V ABI Update for
details.

SHT_SYMTAB

0x2

This section holds a sym-
bol table. Currently, an
object file may have
either a section of
SHT_SYMTAB typeora
section of SHT_DYN-
SYM type, but not both.
Thisrestriction may be
relaxed in the future. Typ-
icaly, SHT_SYMTAB
provides symbols for link

© 2015 Linux Foundation

28

LSB Core- Generic 5.0

10 Object Format

editing, though it may
also be used for dynamic
linking. Asacomplete
symbol table, it may con-
tain many symbols unne-
cessary for dynamic link-
ing.

10.2.2.2 Additional Section Types

The following additional section types are defined here.

Table 10-2 Additional Section Types

Name Value Description
SHT_GNU_verdef oxeffffffd This section contains the
symbol versionsthat are
provided.
SHT_GNU_verneed Oxo6ffffffe This section contains the

symbol versionsthat are
required.

SHT_GNU_versym

Ox6fffffff

This section contains the
Symbol Version Table.

10.3 Special Sections

10.3.1 Special Sections

Various sections hold program and control information. Sections in the lists below are
used by the system and have the indicated types and attributes.

10.3.1.1 ELF Special Sections
The following sections are defined in the System V ABI and the System VV ABI Update.

Table 10-3 EL F Special Sections

Name Type Attributes

.bss SHT_NOBITS SHF_ALLOC+SHF WRI
TE

.comment SHT_PROGBITS SHF MERGE+SHF ST
RINGS

.data SHT_PROGBITS SHF _ALLOC+SHF WRI
TE

.datal SHT_PROGBITS SHF ALLOC+SHF WRI
TE

.debug SHT PROGBITS 0

.dynamic SHT DYNAMIC SHF_ALLOC+SHF_WRI
TE

.dynstr SHT STRTAB SHF ALLOC

.dynsym SHT DYNSYM SHF ALLOC

fini SHT_PROGBITS SHF ALLOC+SHF EX-
ECINSTR

fini_array SHT_FINI_ARRAY SHF _ALLOC+SHF WRI
TE

.hash SHT HASH SHE ALLOC

© 2015 Linux Foundation

29

LSB Core- Generic 5.0

anit SHT_PROGBITS SHF ALLOC+SHF _EX-
ECINSTR

Jinit_array SHT_INIT_ARRAY SHF _ALLOC+SHF WR
ITE

interp SHT PROGBITS SHF ALLOC

Jine SHT PROGBITS 0

.note SHT NOTE 0

.preinit_array SHT_PREINIT_ARRAY SHF _ALLOC+SHF WRI
TE

.rodata SHT_PROGBITS SHF _ALLOC+SHF ME
RGE+SHF STRINGS

.rodatal SHT_PROGBITS SHF _ALLOC+SHF ME
RGE+SHF STRINGS

.shstrtab SHT STRTAB 0

.Strtab SHT STRTAB SHF ALLOC

.symtab SHT SYMTAB SHF ALLOC

.tbss SHT_NOBITS SHF_ALLOC+SHF WRI
TE+SHF TLS

tdata SHT PROGBITS SHF ALLOC+SHF WRI
TE+SHF TLS

text SHT _PROGBITS SHF ALLOC+SHF _EX-
ECINSTR

.bss

This section holds data that contributes to the program's memory image. The pro-
gram may treat this data as uninitialized. However, the system shall initialize this
data with zeroes when the program begins to run. The section occupies no file
space, as indicated by the section type, SHT_NOBITS.

.comment

This section holds version control information.

.data
This section holds initialized data that contribute to the program's memory image.

.datal
This section holds initialized data that contribute to the program's memory image.

.debug

This section holds information for symbolic debugging. The contents are unspe-
cified. All section names with the prefix .debug hold information for symbolic de-
bugging. The contents of these sections are unspecified.

.dynamic
This section holds dynamic linking information. The section's attributes will in-
clude the SHF_ALLOC bit. Whether the SHF_WRITE bit is set is processor spe-
cific. See Chapter 5 of System V ABI Update for more information.

.dynstr

This section holds strings needed for dynamic linking, most commonly the strings
that represent the names associated with symbol table entries. See Chapter 5 of

© 2015 Linux Foundation 30

LSB Core- Generic 5.0 10 Object Format

System V ABI Update for more information.

.dynsym
This section holds the dynamic linking symbol table, as described in “Symbol
Table' of System V ABI Update.

fini
This section holds executable instructions that contribute to the process termination
code. That is, when a program exits normally, the system arranges to execute the
code in this section.

fini_array
This section holds an array of function pointers that contributes to a single termina-
tion array for the executable or shared object containing the section.

.hash
This section holds a symbol hash table. See "Hash Table' in Chapter 5 of System V
ABI Update for more information.

Janit
This section holds executable instructions that contribute to the process initializa-
tion code. When a program starts to run, the system arranges to execute the code in
this section before calling the main program entry point (called main for C pro-
grams).

.init_array
This section holds an array of function pointers that contributesto asingle initializ-
ation array for the executable or shared object containing the section.

.interp

This section holds the path name of a program interpreter. If the file has aloadable
segment that includes relocation, the sections' attributes will include the SHF_AL -
LOC hit; otherwise, that bit will be off. See Chapter 5 of System VV ABI Update for
more information.

Jine

This section holds line number information for symbolic debugging, which de-
scribes the correspondence between the source program and the machine code. The
contents are unspecified.

.note
This section holds information in the format that "Note Section' in Chapter 5 of
System V ABI Update describes.

.preinit_array
This section holds an array of function pointers that contributes to a single pre-ini-
tialization array for the executable or shared object containing the section.

.rodata

This section holds read-only data that typically contribute to a non-writable seg-
ment in the process image. See "Program Header' in Chapter 5 of System V ABI
Update for more information.

.rodatal
This section holds read-only data that typically contribute to a non-writable seg-

© 2015 Linux Foundation 31

LSB Core- Generic 5.0

ment in the process image. See "Program Header' in Chapter 5 of System V ABI
Update for more information.

.shstrtab

This section holds section names.

.Strtab

This section holds strings, most commonly the strings that represent the names as-
sociated with symbol table entries. If the file has a loadable segment that includes
the symbol string table, the section's attributes will include the SHF_ALLOC hit;
otherwise, that bit will be off.

.Ssymtab

This section holds a symbol table, as*Symbol Table' in Chapter 4 of System V ABI
Update describes. If the file has a loadable segment that includes the symbol table,
the section's attributes will include the SHF_ALLOC bit; otherwise, that bit will be
off.

This section holds uninitialized thread-local data that contribute to the program's
memory image. By definition, the system initializes the data with zeros when the
dataisinstantiated for each new execution flow. The section occupies no file space,
as indicated by the section type, SHT_NOBITS. Implementations need not support
thread-local storage.

tdata

This section holds initialized thread-local data that contributes to the program's
memory image. A copy of its contents is instantiated by the system for each new
execution flow. Implementations need not support thread-local storage.

This section holds the “text', or executable instructions, of a program.

10.3.1.2 Additional Special Sections

Object filesin an LSB conforming application may also contain one or more of the addi-
tional special sections described below.

Table 10-4 Additional Special Sections

Name Type Attributes

.ctors SHT_PROGBITS SHF ALLOC+SHF WRI
TE

.datarel.ro SHT_PROGBITS SHF ALLOC+SHF WRI
TE

.dtors SHT_PROGBITS SHF ALLOC+SHF WRI
TE

.eh frame SHT PROGBITS SHF ALLOC

.eh frame hdr SHT PROGBITS SHF ALLOC

.gcc_except table SHT PROGBITS SHFE ALLOC

.ghu.version SHT GNU versym SHFE ALLOC

.gnu.version d SHT GNU verdef SHF ALLOC

.ghu.version r SHT GNU verneed SHF ALLOC

.got.plt SHT PROGBITS SHF ALLOC+SHF WRI

© 2015 Linux Foundation

32

LSB Core- Generic 5.0 10 Object Format

TE
jer SHT_PROGBITS SHF_ALLOC+SHF_WRI
TE
.note ABI-tag SHT NOTE SHF ALLOC
stab SHT PROGBITS 0
stabstr SHT STRTAB 0

.ctors
This section contains alist of global constructor function pointers.

.datarel.ro

This section holds initialized data that contribute to the program’'s memory image.
This section may be made read-only after relocations have been applied.

.dtors
This section contains alist of global destructor function pointers.

.eh_frame
This section contains information necessary for frame unwinding during exception
handling. See Section 10.6.1.

.eh_frame_hdr

This section contains a pointer to the .eh frame section which is accessible to the
runtime support code of a C++ application. This section may also contain a binary
search table which may be used by the runtime support code to more efficiently ac-
cessrecordsin the .eh_frame section. See Section 10.6.2.

.gcc_except_table
This section holds Language Specific Data.

.gnu.version
This section contains the Symbol Version Table. See Section 10.7.2.

.gnu.version_d
This section contains the Version Definitions. See Section 10.7.3.

.gnu.version_r

This section contains the Version Requirements. See Section 10.7.4.

.got.plt
This section holds the read-only portion of the GLobal Offset Table. This section
may be made read-only after relocations have been applied.
Jjer
This section contains information necessary for registering compiled Java classes.
The contents are compiler-specific and used by compiler initialization functions.
.note.ABI-tag
Specify ABI details. See Section 10.8.

.Stab

This section contains debugging information. The contents are not specified as part
of the LSB.

© 2015 Linux Foundation 33

LSB Core- Generic 5.0

.Stabstr

This section contains strings associated with the debugging infomation contained in
the .stab section.

10.4 Symbol Mapping
10.4.1 Introduction

Symbols in a source program are translated by the compilation system into symbols that
exist in the object file.

10.4.1.1 C Language
External C symbols shall be unchanged in an object file's symbol table.

10.5 DWARF Extensions

The LSB does not specify debugging information, however, some additional sections
contain information which is encoded using the the encoding as specified by DWARF
Debugging Information Format, Version 4 with extensions defined here.

10.5.1 DWARF Exception Header Encoding

The DWARF Exception Header Encoding is used to describe the type of data used in
the .eh_frame and .eh_frame_hdr section. The upper 4 bits indicate how the value
isto be applied. The lower 4 bits indicate the format of the data.

Table 10-5 DWARF Exception Header value format
Name Value Meaning

DW_EH_PE_absptr 0x00 TheVaueisalitera
pointer whose sizeis
determined by the
architecture.

DW_EH _PE uleb128 0x01 Unsigned valueis
encoded using the Little
Endian Base 128
(LEB128) as defined by
DWARF Debugging
Information Format,

Version 4.
DW EH PE udata2 0x02 A 2 bytes unsigned value.
DW EH PE udata4 0x03 A 4 bytes unsigned value.
DW_EH_PE_udata8 0x04 An 8 bytes unsigned
value.
DW_EH _PE deb128 0x09 Signed value is encoded

using the Little Endian
Base 128 (LEB128) as
defined by DWARF

Debugging Information
Format, Version 4.

DW EH PE sdata? Ox0A A 2 bytes signed value.
DW EH PE sdata4 0x0B A 4 bytes signed value.
DW EH PE sdata3 0x0C An 8 bytes signed value.

© 2015 Linux Foundation 34

LSB Core- Generic 5.0 10 Object Format

Table 10-6 DWARF Exception Header application

Name Value Meaning

DW_EH_PE_pcrel 0x10 Valueisrelative to the
current program counter.

DW_EH_PE_textrel 0x20 Valueisreative to the
beginning of the .text
section.

DW_EH_PE datarel 0x30 Vaueisrelativeto the

beginning of the .got or
.eh frame hdr section.

DW_EH_PE_funcrel 0x40 Valueisrelative to the
beginning of the function.

DW_EH_PE_digned 0x50 Valueisaligned to an
address unit sized
boundary.

One special encoding, Oxff (DW_EH_PE_omit), shall be used to indicate that no value
ispresent.

10.5.2 DWARF CFI Extensions

In addition to the Cal Frame Instructions defined in section 6.4.2 of DWARF
Debugging Information Format, Version 4, the following additional Call Frame Instruc-
tions may also be used.

Table 10-7 Additional DWARF Call Frame I nstructions

Name Value Meaning

DW_CFA_GNU _args siz | Ox2e The

e DW_CFA_GNU_args siz
e instruction takes an
unsigned LEB128

operand representing an
argument size. This
instruction specifies the
total of the size of the
arguments which have

been pushed onto the
stack.
DW_CFA_GNU_negativ | Ox2f The
e offset_extended DW_CFA _def cfa sf

instruction takes two
operands: an unsigned
LEB128 value
representing a register
number and an unsigned
LEB128 which represents
the magnitude of the
offset. Thisinstructionis
identical to
DW_CFA_offset_extende
d_sf except that the
operand is subtracted to
produce the offset. This
instructions is obsol eted
by

DW_ CFA offset extende

© 2015 Linux Foundation 35

LSB Core- Generic 5.0

| d_sf.

10.6 Exception Frames

When using languages that support exceptions, such as C++, additional information
must be provided to the runtime environment that describes the call frames that must be
unwound during the processing of an exception. This information is contained in the
special sections .eh_frame and .eh_framehdr.

Note: The format of the .eh_frame section is similar in format and purpose to the .de-
bug_frame section which is specified in DWARF Debugging Information Format, Version
4. Readers are advised that there are some subtle difference, and care should be taken when
comparing the two sections.

10.6.1 The .eh_frame Section

The .eh_frame section shall contain 1 or more Call Frame Information (CFl) records.
The number of records present shall be determined by size of the section as contained in
the section header. Each CFI record contains a Common Information Entry (CIE) record
followed by 1 or more Frame Description Entry (FDE) records. Both CIEs and FDEs
shall be aligned to an addressing unit sized boundary.

Table 10-8 Call Frame I nformation For mat
Common Information Entry Record
Frame Description Entry Record(s)

10.6.1.1 The Common Information Entry Format

Table 10-9 Common Information Entry Format

Length Required
Extended Length Optional
CIEID Required
Version Required
Augmentation String Required
Code Alignment Factor Required
Data Alignment Factor Required
Return Address Register Required
Augmentation Data L ength Optiona
Augmentation Data Optiona
Initial Instructions Required
Padding
Length

A 4 byte unsigned value indicating the length in bytes of the CIE structure, not
including the Length field itself. If Length contains the value Oxffffffff, then the
length is contained in the Extended Length fidld. If Length contains the value
0, then this CIE shall be considered a terminator and processing shall end.

Extended Length

A 8 byte unsigned value indicating the length in bytes of the CIE structure, not
including the Length and Extended Length fidlds themselves. This field is not
present unless the Length field contains the value Oxffffffff.

© 2015 Linux Foundation 36

LSB Core- Generic 5.0 10 Object Format

CIE ID
A 4 byte unsigned value that is used to distinguish CIE records from FDE records.
This value shall always be 0, which indicates thisrecord is a CIE.

Version
A 1 byte vaue that identifies the version number of the frame information
structure. Thisvalue shall be 1.

Augmentation String

ThisvalueisaNUL terminated string that identifies the augmentation to the CIE or
to the FDEs associated with this CI