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Chapter 1

Introduction

The AMD641 architecture2 is an extension of the x86 architecture. Any processor
implementing the AMD64 architecture specification will also provide compatibil-
ity modes for previous descendants of the Intel 8086 architecture, including 32-bit
processors such as the Intel 386, Intel Pentium, and AMD K6-2 processor. Oper-
ating systems conforming to the AMD64 ABI may provide support for executing
programs that are designed to execute in these compatibility modes. The AMD64
ABI does not apply to such programs; this document applies only programs run-
ning in the “long” mode provided by the AMD64 architecture.

Except where otherwise noted, the AMD64 architecture ABI follows the con-
ventions described in the Intel386 ABI. Rather than replicate the entire contents
of the Intel386 ABI, the AMD64 ABI indicates only those places where changes
have been made to the Intel386 ABI.

No attempt has been made to specify an ABI for languages other than C. How-
ever, it is assumed that many programming languages will wish to link with code
written in C, so that the ABI specifications documented here apply there too.3

1AMD64 has been previously called x86-64. The latter name is used in a number of places out
of historical reasons instead of AMD64.

2The architecture specification is available on the web athttp://www.x86-64.org/
documentation .

3See section 9.1 for details on C++ ABI.
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Chapter 2

Software Installation

This document does not specify how software must be installed on an AMD64
architecture machine.
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Chapter 3

Low Level System Information

3.1 Machine Interface

3.1.1 Processor Architecture

3.1.2 Data Representation

Within this specification, the termbyte refers to a 8-bit object, the termtwobyte
refers to a 16-bit object, the termfourbyte refers to a 32-bit object, the term
eightbyte refers to a 64-bit object, and the termsixteenbyterefers to a 128-bit
object.1

Fundamental Types

Figure 3.1 shows the correspondence between ISO C’s scalar types and the pro-
cessor’s.__int128 , __float128 , __m64 and__m128 types are optional.

The__float128 type uses a 15-bit exponent, a 113-bit mantissa (the high
order significant bit is implicit) and an exponent bias of 16383.2

Thelong double type uses a 15 bit exponent, a 64-bit mantissa with an ex-
plicit high order significant bit and an exponent bias of 16383.3 Although along

1The Intel386 ABI uses the termhalfword for a 16-bit object, the termword for a 32-bit
object, the termdoublewordfor a 64-bit object. But most IA-32 processor specific documentation
define aword as a 16-bit object, adoubleword as a 32-bit object, aquadword as a 64-bit object
and adouble quadwordas a 128-bit object.

2Initial implementations of the AMD64 architecture are expected to support operations on the
__float128 type only via software emulation.

3This type is the x87 double extended precision data type.
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Figure 3.1: Scalar Types
Alignment AMD64

Type C sizeof (bytes) Architecture
_Bool † 1 1 boolean
char 1 1 signed byte
signed char
unsigned char 1 1 unsigned byte
short 2 2 signed twobyte
signed short
unsigned short 2 2 unsigned twobyte
int 4 4 signed fourbyte

Integral signed int
enum†††

unsigned int 4 4 unsigned fourbyte
long 8 8 signed eightbyte
signed long
long long
signed long long
unsigned long 8 8 unsigned eightbyte
unsigned long long 8 8 unsigned eightbyte
__int128 †† 16 16 signed sixteenbyte
signed __int128 †† 16 16 signed sixteenbyte
unsigned __int128 †† 16 16 unsigned sixteenbyte

Pointer any-type * 8 8 unsigned eightbyte
any-type (*)()

Floating- float 4 4 single (IEEE-754)
point double 8 8 double (IEEE-754)

long double 16 16 80-bit extended (IEEE-754)
__float128 †† 16 16 128-bit extended (IEEE-754)

Packed __m64†† 8 8 MMX and 3DNow!
__m128†† 16 16 SSE and SSE-2

† This type is calledbool in C++.
†† These types are optional.
††† C++ and some implementations of C permit enums larger than an int. The underlying
type is bumped to an unsigned int, long int or unsigned long int, in that order.
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double requires 16 bytes of storage, only the first 10 bytes are significant. The
remaining six bytes are tail padding, and the contents of these bytes are undefined.

The __int128 type is stored in little-endian order in memory, i.e., the 64
low-order bits are stored at a a lower address than the 64 high-order bits.

A null pointer (for all types) has the value zero.
The typesize_t is defined asunsigned long .
Booleans, when stored in a memory object, are stored as single byte objects the

value of which is always 0 (false ) or 1 (true ). When stored in integer registers
(except for passing as arguments), all 8 bytes of the register are significant; any
nonzero value is consideredtrue .

Like the Intel386 architecture, the AMD64 architecture in general does not
require all data accesses to be properly aligned. Misaligned data accesses are
slower than aligned accesses but otherwise behave identically. The only exception
is that__m128 must always be aligned properly.

Aggregates and Unions

Structures and unions assume the alignment of their most strictly aligned compo-
nent. Each member is assigned to the lowest available offset with the appropriate
alignment. The size of any object is always a multiple of the object‘s alignment.

An array uses the same alignment as its elements, except that a local or global
array variable of length at least 16 bytes or a C99 variable-length array variable
always has alignment of at least 16 bytes.4

Structure and union objects can require padding to meet size and alignment
constraints. The contents of any padding is undefined.

Bit-Fields

C struct and union definitions may include bit-fields that define integral values of
a specified size.

The ABI does not permit bit-fields having the type__m64 or __m128. Pro-
grams using bit-fields of these types are not portable.

Bit-fields that are neither signed nor unsigned always have non-negative val-
ues. Although they may have type char, short, int, or long (which can have neg-

4The alignment requirement allows the use of SSE instructions when operating on the array.
The compiler cannot in general calculate the size of a variable-length array (VLA), but it is ex-
pected that most VLAs will require at least 16 bytes, so it is logical to mandate that VLAs have at
least a 16-byte alignment.
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Figure 3.2: Bit-Field Ranges

Bit-field Type Widthw Range
signed char −2w−1 to 2w−1 − 1
char 1 to 8 0 to2w − 1
unsigned char 0 to2w − 1
signed short −2w−1 to 2w−1 − 1
short 1 to 16 0 to2w − 1
unsigned short 0 to2w − 1
signed int −2w−1 to 2w−1 − 1
int 1 to 32 0 to2w − 1
unsigned int 0 to2w − 1
signed long −2w−1 to 2w−1 − 1
long 1 to 64 0 to2w − 1
unsigned long 0 to2w − 1

ative values), these bit-fields have the same range as a bit-field of the same size
with the corresponding unsigned type. Bit-fields obey the same size and alignment
rules as other structure and union members.

Also:

• bit-fields are allocated from right to left

• bit-fields must be contained in a storage unit appropriate for its declared
type

• bit-fields may share a storage unit with other struct / union members

Unnamed bit-fields’ types do not affect the alignment of a structure or union.

3.2 Function Calling Sequence

This section describes the standard function calling sequence, including stack
frame layout, register usage, parameter passing and so on.

The standard calling sequence requirements apply only to global functions.
Local functions that are not reachable from other compilation units may use dif-
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ferent conventions. Nevertheless, it is recommended that all functions use the
standard calling sequence when possible.

3.2.1 Registers and the Stack Frame

The AMD64 architecture provides 16 general purpose 64-bit registers. In addition
the architecture provides 16 SSE registers, each 128 bits wide and 8 x87 floating
point registers, each 80 bits wide. Each of the x87 floating point registers may be
referred to inMMX/3DNow! mode as a 64-bit register. All of these registers are
global to all procedures active for a given thread.

This subsection discusses usage of each register. Registers%rbp, %rbx and
%r12 through%r15 “belong” to the calling function and the called function is
required to preserve their values. In other words, a called function must preserve
these registers’ values for its caller. Remaining registers “belong” to the called
function.5 If a calling function wants to preserve such a register value across a
function call, it must save the value in its local stack frame.

The CPU shall be in x87 mode upon entry to a function. Therefore, every
function that uses theMMX registers is required to issue anemmsor femms
instruction after usingMMX registers, before returning or calling another function.
6 The direction flagDF in the%rFLAGSregister must be clear (set to “forward”
direction) on function entry and return. Other user flags have no specified role in
the standard calling sequence and arenotpreserved across calls.

The control bits of theMXCSRregister are callee-saved (preserved across
calls), while the status bits are caller-saved (not preserved). The x87 status word
register is caller-saved, whereas the x87 control word is callee-saved.

3.2.2 The Stack Frame

In addition to registers, each function has a frame on the run-time stack. This stack
grows downwards from high addresses. Figure 3.3 shows the stack organization.

The end of the input argument area shall be aligned on a 16 byte boundary.
In other words, the value(%rsp − 8) is always a multiple of16 when control is

5Note that in contrast to the Intel386 ABI,%rdi , and%rsi belong to the called function, not
the caller.

6All x87 registers are caller-saved, so callees that make use of theMMX registers may use the
fasterfemms instruction.
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Figure 3.3: Stack Frame with Base Pointer

Position Contents Frame

8n+16(%rbp) memory argument eightbyten
. . . Previous

16(%rbp) memory argument eightbyte0
8(%rbp) return address
0(%rbp) previous%rbp value

-8(%rbp) unspecified Current
. . .

0(%rsp) variable size
-128(%rsp) red zone

transferred to the function entry point. The stack pointer,%rsp , always points to
the end of the latest allocated stack frame.7

The 128-byte area beyond the location pointed to by%rsp is considered to
be reserved and shall not be modified by signal or interrupt handlers.8 Therefore,
functions may use this area for temporary data that is not needed across function
calls. In particular, leaf functions may use this area for their entire stack frame,
rather than adjusting the stack pointer in the prologue and epilogue. This area is
known as the red zone.

3.2.3 Parameter Passing

After the argument values have been computed, they are placed either in regis-
ters or pushed on the stack. The way how values are passed is described in the
following sections.

7The conventional use of%rbp as a frame pointer for the stack frame may be avoided by using
%rsp (the stack pointer) to index into the stack frame. This technique saves two instructions in
the prologue and epilogue and makes one additional general-purpose register (%rbp) available.

8Locations within 128 bytes can be addressed using one-byte displacements.
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Definitions We first define a number of classes to classify arguments. The
classes are corresponding to AMD64 register classes and defined as9:

INTEGER This class consists of integral types that fit into one of the general
purpose registers.

SSE The class consists of types that fits into a SSE register.

SSEUP The class consists of types that fit into a SSE register and can be passed
and returned in the most significant half of it.

X87, X87UP These classes consists of types that will be returned via the x87
FPU.

COMPLEX_X87 This class consists of types that will be returned via the x87
FPU.

NO_CLASS This class is used as initializer in the algorithms. It will be used for
padding and empty structures and unions.

MEMORY This class consists of types that will be passed and returned in mem-
ory via the stack.

Classification The size of each argument gets rounded up to eightbytes.10

The basic types are assigned their natural classes:

• Arguments of types (signed and unsigned)_Bool , char , short , int ,
long , long long , and pointers are in the INTEGER class.

• Arguments of typesfloat , double and__m64 are in class SSE.

• Arguments of types__float128 and__m128 are split into two halves.
The least significant ones belong to class SSE, the most significant one to
class SSEUP.

9This footnote is informative only: The IEEE 754 standard is currently under revision and
the draft proposes typesdecimal32 , decimal64 and decimal128 of 32 bit, 64 bit and
128 bit each. The exact definition of these types is not finalized. For argument passing, vari-
ables of typedecimal32 should be treated exactly as variables offloat , variables of type
decimal64 as variables of typedouble and variables of typedecimal128 as variables of
type__float128 .

10Therefore the stack will always be eightbyte aligned.
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• The 64-bit mantissa of arguments of typelong double belongs to class
X87, the 16-bit exponent plus 6 bytes of padding belongs to class X87UP.

• Arguments of type__int128 offer the same operations as INTEGERs,
yet they do not fit into one general purpose register but require two registers.
For classification purposes__int128 is treated as if it were implemented
as:

typedef struct {
long low, high;

} __int128;

with the exception that arguments of type__int128 that are stored in
memory must be aligned on a 16-byte boundary.

• Arguments ofcomplex T whereT is one of the typesfloat or double
are treated as if they are implemented as:

struct complexT {
T real;
T imag;

};

• A variable of typecomplex long double is classified as type COM-
PLEX_X87.

The classification of aggregate (structures and arrays) and union types works
as follows:

1. If the size of an object is larger than two eightbytes, or it contains unaligned
fields, it has class MEMORY.

2. If a C++ object has either a non-trivial copy constructor or a non-trivial
destructor11 it is passed by invisible reference (the object is replaced in the

11A de/constructor is trivial if it is an implicitly-declared default de/constructor and if:

• its class has no virtual functions and no virtual base classes, and

• all the direct base classes of its class have trivial de/constructors, and

• for all the nonstatic data members of its class that are of class type (or array thereof), each
such class has a trivial de/constructor.
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parameter list by a pointer that has class INTEGER).12

3. If the size of the aggregate exceeds a single eightbyte, each is classified
separately. Each eightbyte gets initialized to class NO_CLASS.

4. Each field of an object is classified recursively so that always two fields are
considered. The resulting class is calculated according to the classes of the
fields in the eightbyte:

(a) If both classes are equal, this is the resulting class.

(b) If one of the classes is NO_CLASS, the resulting class is the other
class.

(c) If one of the classes is MEMORY, the result is the MEMORY class.

(d) If one of the classes is INTEGER, the result is the INTEGER.

(e) If one of the classes is X87, X87UP, COMPLEX_X87 class, MEM-
ORY is used as class.

(f) Otherwise class SSE is used.

5. Then a post merger cleanup is done:

(a) If one of the classes is MEMORY, the whole argument is passed in
memory.

(b) If SSEUP is not preceeded by SSE, it is converted to SSE.

Passing Once arguments are classified, the registers get assigned (in left-to-right
order) for passing as follows:

1. If the class is MEMORY, pass the argument on the stack.

2. If the class is INTEGER, the next available register of the sequence%rdi ,
%rsi , %rdx , %rcx , %r8 and%r9 is used13.

12An object with either a non-trivial copy constructor or a non-trivial destructor cannot be
passed by value because such objects must have well defined addresses. Similar issues apply
when returning an object from a function.

13Note that%r11 is neither required to be preserved, nor is it used to pass arguments. Making
this register available as scratch register means that code in the PLT need not spill any registers
when computing the address to which control needs to be transferred.%rax is used to indicate the
number of SSE arguments passed to a function requiring a variable number of arguments.%r10
is used for passing a function’s static chain pointer.
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3. If the class is SSE, the next available SSE register is used, the registers are
taken in the order from%xmm0to %xmm7.

4. If the class is SSEUP, the eightbyte is passed in the upper half of the last
used SSE register.

5. If the class is X87, X87UP or COMPLEX_X87, it is passed in memory.

When a value of type_Bool is passed in a register or on the stack, the upper
63 bits of the eightbyte shall be zero.

If there are no registers available for any eightbyte of an argument, the whole
argument is passed on the stack. If registers have already been assigned for some
eightbytes of such an argument, the assignments get reverted.

Once registers are assigned, the arguments passed in memory are pushed on
the stack in reversed (right-to-left14) order.

For calls that may call functions that use varargs or stdargs (prototype-less
calls or calls to functions containing ellipsis (. . . ) in the declaration)%al 15 is used
as hidden argument to specify the number of SSE registers used. The contents of
%al do not need to match exactly the number of registers, but must be an upper
bound on the number of SSE registers used and is in the range 0–8 inclusive.

Returning of Values The returning of values is done according to the following
algorithm:

1. Classify the return type with the classification algorithm.

2. If the type has class MEMORY, then the caller provides space for the return
value and passes the address of this storage in%rdi as if it were the first
argument to the function. In effect, this address becomes a “hidden” first
argument.

On return%rax will contain the address that has been passed in by the
caller in%rdi .

3. If the class is INTEGER, the next available register of the sequence%rax ,
%rdx is used.

14Right-to-left order on the stack makes the handling of functions that take a variable number
of arguments simpler. The location of the first argument can always be computed statically, based
on the type of that argument. It would be difficult to compute the address of the first argument if
the arguments were pushed in left-to-right order.

15Note that the rest of%rax is undefined, only the contents of%al is defined.
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Figure 3.4: Register Usage

Preserved across
Register Usage function calls

%rax temporary register; with variable arguments
passes information about the number of SSE reg-
isters used; 1st return register

No

%rbx callee-saved register; optionally used as base
pointer

Yes

%rcx used to pass 4th integer argument to functions No
%rdx used to pass 3rd argument to functions; 2nd return

register
No

%rsp stack pointer Yes
%rbp callee-saved register; optionally used as frame

pointer
Yes

%rsi used to pass 2nd argument to functions No
%rdi used to pass 1st argument to functions No
%r8 used to pass 5th argument to functions No
%r9 used to pass 6th argument to functions No
%r10 temporary register, used for passing a function’s

static chain pointer
No

%r11 temporary register No
%r12-r15 callee-saved registers Yes
%xmm0–%xmm1 used to pass and return floating point argumentsNo
%xmm2–%xmm7 used to pass floating point arguments No
%xmm8–%xmm15 temporary registers No
%mmx0–%mmx7 temporary registers No
%st0 ,%st1 temporary registers; used to returnlong

double arguments
No

%st2 –%st7 temporary registers No
%fs Reserved for system (as thread specific data reg-

ister)
No

mxcsr SSE2 control and status word partial
x87 SW x87 status word No
x87 CW x87 control word Yes
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4. If the class is SSE, the next available SSE register of the sequence%xmm0,
%xmm1is used.

5. If the class is SSEUP, the eightbyte is passed in the upper half of the last
used SSE register.

6. If the class is X87, the value is returned on the X87 stack in%st0 as 80-bit
x87 number.

7. If the class is X87UP, the value is returned together with the previous X87
value in%st0 .

8. If the class is COMPLEX_X87, the real part of the value is returned in
%st0 and the imaginary part in%st1 .

As an example of the register passing conventions, consider the declarations
and the function call shown in Figure 3.5. The corresponding register allocation
is given in Figure 3.6, the stack frame offset given shows the frame before calling
the function.

Figure 3.5: Parameter Passing Example

typedef struct {
int a, b;
double d;

} structparm;
structparm s;
int e, f, g, h, i, j, k;
long double ld;
double m, n;

extern void func (int e, int f,
structparm s, int g, int h,
long double ld, double m,
double n, int i, int j, int k);

func (e, f, s, g, h, ld, m, n, i, j, k);
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Figure 3.6: Register Allocation Example

General Purpose Registers Floating Point Registers Stack Frame Offset
%rdi : e %xmm0: s.d 0: ld
%rsi : f %xmm1: m 16: j
%rdx : s.a,s.b %xmm2: n 24: k
%rcx : g
%r8: h
%r9: i

3.3 Operating System Interface

3.3.1 Exception Interface

As the AMD64 manuals describe, the processor changes mode to handleexcep-
tions, which may be synchronous, floating-point/coprocessor or asynchronous.
Synchronous and floating-point/coprocessor exceptions, being caused by instruc-
tion execution, can be explicitly generated by a process. This section, therefore,
specifies those exception types with defined behavior. The AMD64 architecture
classifies exceptions asfaults, traps, andaborts. See the Intel386 ABI for more
information about their differences.

Hardware Exception Types

The operating system defines the correspondence between hardware exceptions
and the signals specified bysignal (BA_OS) as shown in table 3.1. Contrary
to the i386 architecture, the AMD64 does not define any instructions that generate
a bounds check fault in long mode.

3.3.2 Virtual Address Space

Although the AMD64 architecture uses 64-bit pointers, implementations are only
required to handle 48-bit addresses. Therefore, conforming processes may only
use addresses from0x00000000 00000000 to 0x00007fff ffffffff 16.

160x0000ffff ffffffff is not a canonical address and cannot be used.
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Table 3.1: Hardware Exceptions and Signals

Number Exception name Signal
0 divide error fault SIGFPE
1 single step trap/fault SIGTRAP
2 non-maskable interrupt none
3 breakpoint trap SIGTRAP
4 overflow trap SIGSEGV
5 (reserved)
6 invalid opcode fault SIGILL
7 no coprocessor fault SIGFPE
8 double fault abort none
9 coprocessor overrun abort SIGSEGV

10 invalid TSS fault none
11 segment no present fault none
12 stack exception fault SIGSEGV
13 general protection fault/abort SIGSEGV
14 page fault SIGSEGV
15 (reserved)
16 coprocessor error fault SIGFPE

other (unspecified) SIGILL

Table 3.2: Floating-Point Exceptions

Code Reason
FPE_FLTDIV floating-point divide by zero
FPE_FLTOVF floating-point overflow
FPE_FLTUND floating-point underflow
FPE_FLTRES floating-point inexact result
FPE_FLTINV invalid floating-point operation
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Processes begin with three logical segments, commonly called text, data, and
stack. Use of shared libraries add other segments and a process may dynamically
create segments.

3.3.3 Page Size

Systems are permitted to use any power-of-two page size between 4KB and 64KB,
inclusive.

3.3.4 Virtual Address Assignments

Conceptually processes have the full address space available. In practice, how-
ever, several factors limit the size of a process.

• The system reserves a configuration dependent amount of virtual space.

• The system reserves a configuration dependent amount of space per process.

• A process whose size exceeds the system’s available combined physical
memory and secondary storage cannot run. Although some physical mem-
ory must be present to run any process, the system can execute processes
that are bigger than physical memory, paging them to and from secondary
storage. Nonetheless, both physical memory and secondary storage are
shared resources. System load, which can vary from one program execu-
tion to the next, affects the available amount.

Programs that dereference null pointers are erroneous and a process should
not expect 0x0 to be a valid address.

Figure 3.7: Virtual Address Configuration

0xffffffffffffffff Reserved system areaEnd of memory
. . .
. . .

0x80000000000 Dynamic segments
. . .

0 Process segments Beginning of memory
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Although applications may control their memory assignments, the typical ar-
rangement appears in figure 3.8.

Figure 3.8: Conventional Segment Arrangements

. . .
0x80000000000 Dynamic segments

Stack segment
. . .
. . .

Data segments
. . .

0x400000 Text segments
0 Unmapped

3.4 Process Initialization

3.4.1 Initial Stack and Register State

Special Registers

The AMD64 architecture defines floating point instructions. At process startup
the two floating point units, SSE2 and x87, both have all floating-point exception
status flags cleared. The status of the control words is as defined in tables 3.3 and
3.4.
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Table 3.3: x87 Floating-Point Control Word

Field Value Note
RC 0 Round to nearest
PC 11 Double extended precision
PM 1 Precision masked
UM 1 Underflow masked
OM 1 Overflow masked
ZM 1 Zero divide masked
DM 1 De-normal operand masked
IM 1 Invalid operation masked

Table 3.4: MXCSR Status Bits

Field Value Note
FZ 0 Do not flush to zero
RC 0 Round to nearest
PM 1 Precision masked
UM 1 Underflow masked
OM 1 Overflow masked
ZM 1 Zero divide masked
DM 1 De-normal operand masked
IM 1 Invalid operation masked
DAZ 0 De-normals are not zero

TherFLAGS register contains the system flags, such as the direction flag and
the carry flag. The low 16 bits (FLAGS portion) ofrFLAGS are accessible by
application software. The state of them at process initialization is shown in table
3.5.
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Table 3.5:rFLAGS Bits

Field Value Note
DF 0 Direction forward
CF 0 No carry
PF 0 Even parity
AF 0 No auxiliary carry
ZF 0 No zero result
SF 0 Unsigned result
OF 0 No overflow occurred

Stack State

This section describes the machine state thatexec (BA_OS) creates for new
processes. Various language implementations transform this initial program state
to the state required by the language standard.

For example, a C program begins executing at a function namedmain de-
clared as:

extern int main ( int argc , char *argv[ ] , char* envp[ ] );

where

argc is a non-negative argument count

argv is an array of argument strings, withargv[argc] == 0

envp is an array of environment strings, terminated by a null pointer.

Whenmain() returns its value is passed toexit() and if that has been
over-ridden and returns,_exit() (which must be immune to user interposition).

The initial state of the process stack, i.e. when_start is called is shown in
figure 3.9.
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Figure 3.9: Initial Process Stack

Purpose Start Address Length
Unspecified High Addresses
Information block, including argu-
ment strings, environment strings,
auxiliary information ...

varies

Unspecified
Null auxiliary vector entry 1 eightbyte
Auxiliary vector entries ... 2 eightbytes each
0 eightbyte
Environment pointers ... 1 eightbyte each
0 8+8*argc+%rsp eightbyte
Argument pointers 8+%rsp argc eightbytes
Argument count %rsp eightbyte
Undefined Low Addresses

Argument strings, environment strings, and the auxiliary information appear
in no specific order within the information block and they need not be compactly
allocated.

Only the registers listed below have specified values at process entry:

%rbp The content of this register is unspecified at process initialization time,
but the user code should mark the deepest stack frame by setting the frame
pointer to zero.

%rsp The stack pointer holds the address of the byte with lowest address which
is part of the stack. It is guaranteed to be 16-byte aligned at process entry.

%rdx a function pointer that the application should register withatexit (BA_OS).

It is unspecified whether the data and stack segments are initially mapped with
execute permissions or not. Applications which need to execute code on the stack
or data segments should take proper precautions, e.g., by callingmprotect() .
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3.4.2 Thread State

New threads inherit the floating-point state of the parent thread and the state is
private to the thread thereafter.

3.4.3 Auxiliary Vector

The auxiliary vector is an array of the following structures (ref. figure 3.10),
interpreted according to thea_type member.

Figure 3.10:auxv_t Type Definition

typedef struct
{

int a_type;
union {

long a_val;
void *a_ptr;
void (*a_fnc)();

} a_un;
} auxv_t;

The AMD64 ABI uses the auxiliary vector types defined in figure 3.11.
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Figure 3.11: Auxiliary Vector Types

Name Value a_un
AT_NULL 0 ignored
AT_IGNORE 1 ignored
AT_EXECFD 2 a_val
AT_PHDR 3 a_ptr
AT_PHENT 4 a_val
AT_PHNUM 5 a_val
AT_PAGESZ 6 a_val
AT_BASE 7 a_ptr
AT_FLAGS 8 a_val
AT_ENTRY 9 a_ptr
AT_NOTELF 10 a_val
AT_UID 11 a_val
AT_EUID 12 a_val
AT_GID 13 a_val
AT_EGID 14 a_val

AT_NULL The auxiliary vector has no fixed length; instead its last entry’sa_type
member has this value.

AT_IGNORE This type indicates the entry has no meaning. The corresponding
value ofa_un is undefined.

AT_EXECFD At process creation the system may pass control to an interpreter
program. When this happens, the system places either an entry of type
AT_EXECFDor one of typeAT_PHDRin the auxiliary vector. The entry
for typeAT_EXECFDuses thea_val member to contain a file descriptor
open to read the application program’s object file.

AT_PHDR The system may create the memory image of the application program
before passing control to the interpreter program. When this happens, the
a_ptr member of theAT_PHDRentry tells the interpreter where to find
the program header table in the memory image.
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AT_PHENT The a_val member of this entry holds the size, in bytes, of one
entry in the program header table to which theAT_PHDRentry points.

AT_PHNUM The a_val member of this entry holds the number of entries in
the program header table to which theAT_PHDRentry points.

AT_PAGESZ If present, this entry’sa_val member gives the system page size,
in bytes.

AT_BASE Thea_ptr member of this entry holds the base address at which the
interpreter program was loaded into memory. See “Program Header” in the
System V ABI for more information about the base address.

AT_FLAGS If present, thea_val member of this entry holds one-bit flags. Bits
with undefined semantics are set to zero.

AT_ENTRY Thea_ptr member of this entry holds the entry point of the appli-
cation program to which the interpreter program should transfer control.

AT_NOTELF Thea_val member of this entry is non-zero if the program is in
another format than ELF.

AT_UID Thea_val member of this entry holds the real user id of the process.

AT_EUID The a_val member of this entry holds the effective user id of the
process.

AT_GID Thea_val member of this entry holds the real group id of the process.

AT_EGID Thea_val member of this entry holds the effective group id of the
process.

3.5 Coding Examples

This section discusses example code sequences for fundamental operations such
as calling functions, accessing static objects, and transferring control from one
part of a program to another. Unlike previous material, this material is not norma-
tive.
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3.5.1 Architectural Constraints

The AMD64 architecture usually does not allow an instruction to encode arbitrary
64-bit constants as immediate operand. Most instructions accept 32-bit immedi-
ates that are sign extended to the 64-bit ones. Additionally the 32-bit operations
with register destinations implicitly perform zero extension making loads of 64-bit
immediates with upper half set to 0 even cheaper.

Additionally the branch instructions accept 32-bit immediate operands that are
sign extended and used to adjust the instruction pointer. Similarly an instruction
pointer relative addressing mode exists for data accesses with equivalent limita-
tions.

In order to improve performance and reduce code size, it is desirable to use
different code models depending on the requirements.

Code models define constraints for symbolic values that allow the compiler to
generate better code. Basically code models differ in addressing (absolute versus
position independent), code size, data size and address range. We define only a
small number of code models that are of general interest:

Small code model The virtual address of code executed is known at link time.
Additionally all symbols are known to be located in the virtual addresses in
the range from0 to 231 − 224 − 1 or from0x00000000 to 0x7effffff17.

This allows the compiler to encode symbolic references with offsets in the
range from−(231) to 224 or from0x80000000 to 0x01000000 directly in the
sign extended immediate operands, with offsets in the range from0 to 231−
224 or from 0x00000000 to 0x7f000000 in the zero extended immediate
operands and use instruction pointer relative addressing for the symbols
with offsets in the range−(224) to 224 or 0xff000000 to 0x01000000.

This is the fastest code model and we expect it to be suitable for the vast
majority of programs.

Kernel code model The kernel of an operating system is usually rather small but
runs in the negative half of the address space. So we define all symbols to
be in the range from264 − 231 to 264 − 224 or from0xffffffff80000000
to 0xffffffffff000000.

17 The number24 is chosen arbitrarily. It allows for all memory of objects of size up to224

or 16M bytes to be addressed directly because the base address of such objects is constrained to
be less than231 − 224 or 0x7f000000. Without such constraint only the base address would be
accessible directly, but not any offsetted variant of it.
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This code model has advantages similar to those of the small model, but
allows encoding of zero extended symbolic references only for offsets from
231 to 231 + 224 or from 0x80000000 to 0x81000000. The range offsets
for sign extended reference changes to0 to 231 + 224 or 0x00000000 to
0x81000000.

Medium code model In the medium model, the data section is split into two
parts — the data section still limited in the same way as in the small code
model and the large data section having no limits except for available ad-
dressing space. The program layout must be set in a way so that large data
sections (.ldata , .lrodata , .lbss ) come after the text and data sec-
tions.

This model requires the compiler to usemovabs instructions to access
large static data and to load addresses into registers, but keeps the advan-
tages of the small code model for manipulation of addresses in the small
data and text sections (specially needed for branches).

By default only data larger than 65535 bytes will be placed in the large data
section.

Large code model The large code model makes no assumptions about addresses
and sizes of sections.

The compiler is required to use themovabs instruction, as in the medium
code model, even for dealing with addresses inside the text section. Addi-
tionally, indirect branches are needed when branching to addresses whose
offset from the current instruction pointer is unknown.

It is possible to avoid the limitation on the text section in the small and
medium models by breaking up the program into multiple shared libraries,
so this model is strictly only required if the text of a single function becomes
larger than what the medium model allows.

Small position independent code model (PIC)Unlike the previous models, the
virtual addresses of instructions and data are not known until dynamic link
time. So all addresses have to be relative to the instruction pointer.

Additionally the maximum distance between a symbol and the end of an
instruction is limited to231−224−1 or 0x7effffff , allowing the compiler
to use instruction pointer relative branches and addressing modes supported
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by the hardware for every symbol with an offset in the range−(224) to 224

or 0xff000000 to 0x01000000.

Medium position independent code model (PIC)This model is like the previ-
ous model, but similarly to the medium static model adds large data sections
at the end of object files.

In the medium PIC model, the instruction pointer relative addressing can
not be used directly for accessing large static data, since the offset can ex-
ceed the limitations on the size of the displacement field in the instruction.
Instead an unwind sequence consisting ofmovabs , lea andadd needs to
be used.

Large position independent code model (PIC)This model is like the previous
model, but makes no assumptions about the distance of symbols.

The large PIC model implies the same limitation as the medium PIC model
regarding addressing of static data. Additionally, references to the global
offset table and to the procedure linkage table and branch destinations need
to be calculated in a similar way. Further the size of the text segment is
allowed to be up to 16EB in size, hence similar restrictions apply to all
address references into the text segments, including branches.

3.5.2 Conventions

In this document some special assembler symbols are used in the coding examples
and discussion. They are:

• name@GOT: specifies the offset to the GOT entry for the symbolname
from the base of the GOT.

• name@GOTPLT: specifies the offset to the GOT entry for the symbolname
from the base of the GOT, implying that there is a corresponding PLT entry.

• name@GOTOFF: specifies the offset to the location of the symbolname
from the base of the GOT.

• name@GOTPCREL: specifies the offset to the GOT entry for the symbol
name from the current code location.

• name@PLT: specifies the offset to the PLT entry of symbolname from the
current code location.
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• name@PLTOFF: specifies the offset to the PLT entry of symbolname from
the base of the GOT.

• _GLOBAL_OFFSET_TABLE_: specifies the offset to the base of the GOT
from the current code location.

3.5.3 Position-Independent Function Prologue

In the small code model all addresses (including GOT entries) are accessible via
the IP-relative addressing provided by the AMD64 architecture. Hence there is no
need for an explicit GOT pointer and therefore no function prologue for setting it
up is necessary.

In the medium and large code models a register has to be allocated to hold
the address of the GOT in position-independent objects, because the AMD64 ISA
does not support an immediate displacement larger than 32 bits.

As %r15 is preserved across function calls, it is initialized in the function
prolog to hold the GOT address18 for non-leaf functions which call other functions
through the PLT. Other functions are free to use any other register. Throughout
this document,%r15 will be used in examples.

Figure 3.12: Position-Independent Function Prolog Code
medium model:

leaq _GLOBAL_OFFSET_TABLE_(%rip),%r15 # GOTPC32 reloc

large model:

pushq %r15 # save %r15
leaq 1f(%rip),%r11 # absolute %rip

1: movabs $_GLOBAL_OFFSET_TABLE_,%r15 # offset to the GOT (R_X86_64_GOTPC64)
leaq (%r11,%r15),%r15 # absolute address of the GOT

For the medium model the GOT pointer is directly loaded, for the large model
the absolute value of%rip is added to the relative offset to the base of the GOT

18If, at code generation-time, it is determined that either no other functions are called (leaf
functions), the called functions addresses can be resolved and are within 2GB, or no global data
objects are referred to, it is not necessary to store the GOT address in%r15 and the prolog code
that initializes it may be omitted.

35

AMD64 ABI Draft 0.98 – September 27, 2006 – 9:24



in order to obtain its absolute address (see figure 3.12).

3.5.4 Data Objects

This section describes only objects with static storage. Stack-resident objects are
excluded since programs always compute their virtual address relative to the stack
or frame pointers.

Because only themovabs instruction uses 64-bit addresses directly, depend-
ing on the code model either%rip -relative addressing or building addresses in
registers and accessing the memory through the register has to be used.

For absolute addresses%rip -relative encoding can be used in the small model.
In the medium model themovabs instruction has to be used for accessing ad-
dresses.

Position-independent code cannot contain absolute address. To access a global
symbol the address of the symbol has to be loaded from the Global Offset Table.
The address of the entry in the GOT can be obtained with a%rip -relative instruc-
tion in the small model.
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Small models

Figure 3.13: Absolute Load and Store (Small Model)

extern int src[65536]; .extern src
extern int dst[65536]; .extern dst
extern int *ptr; .extern ptr
static int lsrc[65536]; .local lsrc

.comm lsrc,262144,4
static int ldst[65536]; .local ldst

.comm ldst,262144,4
static int *lptr; .local lptr

.comm lptr,8,8

.text
dst[0] = src[0]; movl src(%rip), %eax

movl %eax, dst(%rip)

ptr = dst[0]; movq $dst, ptr(%rip)

*ptr = src[0]; movq ptr(%rip),%rax
movl src(%rip),%edx
movl %edx, (%rax)

ldst[0] = lsrc[0]; movl lsrc(%rip), %eax
movl %eax, ldst(%rip)

lptr = ldst; movq $dst, lptr(%rip)

*lptr = lsrc[0]; movq lptr(%rip),%rax
movl lsrc(%rip),%edx
movl %edx, (%rax)
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Figure 3.14: Position-Independent Load and Store (Small PIC Model)

extern int src[65536]; .extern src
extern int dst[65536]; .extern dst
extern int *ptr; .extern ptr
static int lsrc[65536]; .local lsrc

.comm lsrc,262144,4
static int ldst[65536]; .local ldst

.comm ldst,262144,4
static int *lptr; .local lptr

.comm lptr,8,8

.text
dst[0] = src[0]; movq src@GOTPCREL(%rip), %rax

movl (%rax), %edx
movq dst@GOTPCREL(%rip), %rax
movl %edx, (%rax)

ptr = dst; movq ptr@GOTPCREL(%rip), %rax
movq dst@GOTPCREL(%rip), %rdx
movq %rdx, (%rax)

*ptr = src[0]; movq ptr@GOTPCREL(%rip),%rax
movq (%rax), %rdx
movq src@GOTPCREL(%rip), %rax
movl (%rax), %eax
movl %eax, (%rdx)

ldst[0] = lsrc[0]; movl lsrc(%rip), %eax
movl %eax, ldst(%rip)

lptr = ldst; lea ldst(%rip),%rdx
movq %rdx, lptr(%rip)

*lptr = lsrc[0]; movq lptr(%rip),%rax
movl lsrc(%rip),%edx
movl %edx, (%rax)
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Medium models

Figure 3.15: Absolute Load and Store (Medium Model)

extern int src[65536]; .extern src
extern int dst[65536]; .extern dst
extern int *ptr; .extern ptr
static int lsrc[65536]; .local lsrc

.comm lsrc,262144,4 19

static int ldst[65536]; .local ldst
.comm ldst,262144,4

static int *lptr; .local lptr
.comm lptr,8,8
.text

dst[0] = src[0]; movabsl src, %eax
movabsl %eax, dst

ptr = dst; movabsq $dst,%rdx
movq %rdx, ptr

*ptr = src[0]; movq ptr(%rip),%rdx
movabsl src,%eax
movl %eax, (%rdx)

ldst[0] = lsrc[0]; movabsl lsrc, %eax
movabsl %eax, ldst

lptr = ldst; movabsq $ldst,%rdx
movabsq %rdx, lptr

*lptr = lsrc[0]; movq lptr(%rip),%rdx
movabsl lsrc,%eax
movl %eax, (%rdx)
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Figure 3.16: Position-Independent Load and Store (Medium PIC Model)

extern int src[65536]; .extern src
extern int dst[65536]; .extern dst
extern int *ptr; .extern ptr
static int lsrc[65536]; .local lsrc

.comm lsrc,262144,4
static int ldst[65536]; .local ldst

.comm ldst,262144,4
static int *lptr; .local lptr

.comm lptr,8,8

.text
dst[0] = src[0]; movq src@GOTPCREL(%rip), %rax

movl (%rax), %edx
movq dst@GOTPCREL(%rip), %rax
movl %edx, (%rax)

ptr = dst; movq ptr@GOTPCREL(%rip), %rax
movq dst@GOTPCREL(%rip), %rdx
movq %rdx, (%rax)

*ptr = src[0]; movq ptr@GOTPCREL(%rip),%rax
movq (%rax), %rdx
movq src@GOTPCREL(%rip), %rax
movl (%rax), %eax
movl %eax, (%rdx)
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Figure 3.17: Position-Independent Load and Store (Medium PIC Model), contin-
ued

ldst[0] = lsrc[0]; movabsq lsrc@GOTOFF64, %rax
movl (%rax,%r15), %eax
movabsq ldst@GOTOFF64, %rdx
movl %eax, (%rdx,%r15)

lptr = ldst; movabsq ldst@GOTOFF64, %rax
addq %r15, %rax
movq %rax, lptr(%rip)

*lptr = lsrc[0]; movabsq lsrc@GOTOFF64, %rax
movl (%rax,%r15),%eax
movq lptr(%rip),%rdx
movl %eax, (%rdx)

Large Models

Again, in order to access data at any position in the 64-bit addressing space, it is
necessary to calculate the address explicitly20, not unlike the medium code model.

20 If, at code generation-time, it is determined that a referred to global data object address is
resolved within 2GB, the%rip-relative addressing mode can be used instead. See example
in figure 3.19.
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Figure 3.18: Absolute Global Data Load and Store

static int src; Lsrc: .long
static int dst; Ldst: .long
extern int *ptr; .extern ptr
dst = src; movabs $Lsrc,%rax ; R_X86_64_64

movabs $Ldst,%rdx ; R_X86_64_64
movl (%rax),%ecx
movl %ecx,(%rdx)

ptr = &dst; movabs $ptr,%rax ; R_X86_64_64
movabs $Ldst,%rdx ; R_X86_64_64
movq %rdx,(%rax)

*ptr = src; movabs $Lsrc,%rax ; R_X86_64_64
movabs $ptr,%rdx ; R_X86_64_64
movl (%rax),%ecx
movq (%rdx),%rdx
movl %ecx,(%rdx)

Figure 3.19: Faster Absolute Global Data Load and Store

*ptr = src; movabs $ptr,%rdx ; R_X86_64_64
movl Lsrc(%rip),%ecx
movq (%rdx),%rdx
movl %ecx,(%rdx)

For position-independent code access to both static and external global data
assumes that the GOT address is stored in a dedicated register. In these examples
we assume it is in%r15 21 (see Function Prologue):

21If, at code generation-time, it is determined that a referred to global data object address is
resolved within 2GB, the%rip-relative addressing mode can be used instead. See example
in figure 3.21.
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Figure 3.20: Position-Independent Global Data Load and Store

static int src; Lsrc: .long
static int dst; Ldst: .long
extern int *ptr; .extern ptr

dst = src; movabs $Lsrc@GOTOFF,%rax ; R_X86_64_GOTOFF64
movabs $Ldst@GOTOFF,%rdx ; R_X86_64_GOTOFF64
movl (%rax,%r15),%ecx
movl %ecx,(%rdx,%r15)

ptr = &dst; movabs $ptr@GOT,%rax ; R_X86_64_GOT64
movabs $Ldst@GOTOFF,%rdx ; R_X86_64_GOTOFF64
movq (%rax,%r15),%rax
leaq (%rdx,%r15),%rcx
movq %rcx,(%rax)

*ptr = src; movabs $Lsrc@GOTOFF,%rax ; R_X86_64_GOTOFF64
movabs $ptr@GOT,%rdx ; R_X86_64_GOT64
movl (%rax,%r15),%ecx
movq (%rdx,%r15),%rdx
movl %ecx,(%rdx)

Figure 3.21: Faster Position-Independent Global Data Load and Store

*ptr = src; movabs $ptr@GOT,%rdx ; R_X86_64_GOT64
movl Lsrc(%rip),%ecx
movq (%rdx,%r15),%rdx
movl %ecx,(%rdx)
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3.5.5 Function Calls

Small and Medium Models

Figure 3.22: Position-Independent Direct Function Call (Small and Medium
Model)

extern void function (); .globl function
function (); call function@PLT

Figure 3.23: Position-Independent Indirect Function Call

extern void (*ptr) (); .globl ptr, name
extern void name ();
ptr = name; movq ptr@GOTPCREL(%rip), %rax

movq name@GOTPCREL(%rip), %rdx
movq %rdx, (%rax)

(*ptr)(); movq ptr@GOTPCREL(%rip), %rax
call *(%rax)

Large models

It cannot be assumed that a function is within 2GB in general. Therefore, it is
necessary to explicitly calculate the desired address reaching the whole 64-bit
address space.

44

AMD64 ABI Draft 0.98 – September 27, 2006 – 9:24



Figure 3.24: Absolute Direct and Indirect Function Call
static void (*ptr) (void); Lptr: .quad
extern void foo (void); .globl foo
static void bar (void); Lbar: ...
foo (); movabs $foo,%r11 ; R_X86_64_64

call *%r11
bar (); movabs $Lbar,%r11 ; R_X86_64_64

call *%r11
ptr = foo; movabs $Lptr,%rax ; R_X86_64_64

movabs $foo,%r11 ; R_X86_64_64
movq %r11,(%rax)

ptr = bar; movabs $Lbar,%r11 ; R_X86_64_64
movq %r11,(%rax)

(*ptr) (); movabs $Lptr,%r11 ; R_X86_64_64
call *(%r11)

And in the case of position-independent objects22:

Figure 3.25: Position-Independent Direct and Indirect Function Call
static void (*ptr) (void); Lptr: .quad
extern void foo (void); .globl foo
static void bar (void); Lbar: ...
foo (); movabs $foo@GOT,%r11 ; R_x86_64_GOTPLT64

call *(%r11,%r15)
bar (); movabs $Lbar@GOTOFF,%r11 ; R_X86_64_GOTOFF64

leaq (%r11,%r15),%r11
call *%r11

ptr = foo; movabs $Lptr@GOTOFF,%rax ; R_X86_64_GOTOFF64
movabs $foo@PLTOFF,%r11 ; R_X86_64_PLTOFF64
leaq (%r11,%r15),%r11
movq %r11,(%rax,%r15)

ptr = bar; movabs $Lbar@GOTOFF,%r11 ; R_X86_64_GOTOFF64
leaq (%r11,%r15),%r11
movq %r11,(%rax,%r15)

(*ptr) (); movabs $Lptr@GOTOFF,%r11 ; R_X86_64_GOTOFF64
call *(%r11,%r15)

22See subsection “Implementation advice” for some optimizations.
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Implementation advice

If, at code generation-time, certain conditions are determined, it’s possible to
generate faster or smaller code sequences as the large model normally requires.
When:

(absolute) target of function call is within 2GB , a direct call or%rip -relative
addressing might be used:

bar (); call Lbar
ptr = bar; movabs $Lptr,%rax ; R_X86_64_64

leaq $Lbar(%rip),%r11
movq %r11,(%rax)

(PIC) the base of GOT is within 2GB an indirect call to the GOT entry might
be implemented like so:

foo (); call *(foo@GOT) ; R_X86_64_GOTPCREL

(PIC) the base of PLT is within 2GB , the PLT entry may be referred to rela-
tively to %rip :

ptr = foo; movabs $Lptr@GOTOFF,%rax ; R_X86_64_GOTOFF64
leaq $foo@PLT(%rip),%r11 ; R_X86_64_PLT32
movq %r11,(%rax,%r15)

(PIC) target of function call is within 2GB and is either not global or bound lo-
cally, a direct call to the symbol may be used or it may be referred to rela-
tively to %rip :

bar (); call Lbar
ptr = bar; movabs $Lptr@GOTOFF,%rax ; R_X86_64_GOTOFF64

leaq $Lbar(%rip),%r11
movq %r11,(%rax,%r15)

3.5.6 Branching

Small and Medium Models

As all labels are within 2GB no special care has to be taken when implementing
branches. The full AMD64 ISA is usable.

Large Models

Because functions can be theoretically up to 16EB long, the maximum 32-bit
displacement of conditional and unconditional branches in the AMD64 ISA are
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not enough to address the branch target. Therefore, a branch target address is
calculated explicitly23. For absolute objects:

Figure 3.26: Absolute Branching Code
if (!a) testl %eax,%eax
{ jnz 1f

movabs $2f,%r11 ; R_X86_64_64
jmpq *%r11

... 1: ...
} 2:
goto Label; movabs $Label,%r11 ; R_X86_64_64

jmpq *%r11
... ...
Label: Label:

Figure 3.27: Implicit Calculation of Target Address
if (!a) testl %eax,%eax
{ jz 2f

... 1: ...
} 2:
goto Label; jmp Label
... ...
Label: Label:

For position-independent objects:

23If, at code generation-time, it is determined that the target addresses are within 2GB, alterna-
tively, branch target addresses may be calculated implicitly (see figure 3.27)
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Figure 3.28: Position-Independent Branching Code
if (!a) testl %eax,%eax
{ jnz 1f

movabs $2f@GOTOFF,%r11 ; R_X86_64_GOTOFF64
leaq (%r11,%r15),%r11
jmpq *%r11

1: ...
... 2:

}
goto Label; movabs $Label@GOTOFF,%r11 ; R_X86_64_GOTOFF64

leaq (%r11,%r15),%r11
jmpq *%r11

...

... Label:
Label:

For absolute objects, the implementation of theswitch statement is:

Figure 3.29: Absolute Switch Code
switch (a) cmpl $0,%eax
{ jl .Ldefault

cmpl $2,%eax
jg .Ldefault
movabs $.Ltable,%r11 ; R_X86_64_64
jmpq *(%r11,%eax,8)
.section .lrodata,"aLM",@progbits,8

.align 8
.Ltable: .quad .Lcase0 ; R_X86_64_64

.quad .Ldefault ; R_X86_64_64

.quad .Lcase2 ; R_X86_64_64

.previous
default: .Ldefault:

... ...
case 0: .Lcase0:
... ...
case 2: .Lcase2:
... ...

}

When building position-independent objects, theswitch statement imple-
mentation changes to:
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Figure 3.30: Position-Independent Switch Code
switch (a) cmpl $0,%eax
{ jl .Ldefault

cmpl $2,%eax
jg .Ldefault
movabs $.Ltable@GOTOFF,%r11 ; R_X86_64_GOTOFF64
leaq (%r11,%r15),%r11
movq *(%r11,%eax,8),%r11
leaq (%r11,%r15),%r11
jmpq *%r11
.section .lrodata,"aLM",@progbits,8
.align 8

.Ltable: .quad .Lcase0@GOTOFF ; R_X86_64_GOTOFF64
.quad .Ldefault@GOTOFF ; R_X86_64_GOTOFF64
.quad .Lcase2@GOTOFF ; R_X86_64_GOTOFF64
.previous

default: .Ldefault:
... ...
case 0: .Lcase0:
... ...
case 2: .Lcase2:
... ...

}

24

3.5.7 Variable Argument Lists

Some otherwise portable C programs depend on the argument passing scheme,
implicitly assuming that all arguments are passed on the stack, and arguments
appear in increasing order on the stack. Programs that make these assumptions
never have been portable, but they have worked on many implementations. How-
ever, they do not work on the AMD64 architecture because some arguments are
passed in registers. Portable C programs must use the header file<stdarg.h>
in order to handle variable argument lists.

When a function taking variable-arguments is called,%rax must be set to the
total number of floating point parameters passed to the function in SSE registers.25

24The jump-table is emitted in a different section so as to occupy cache lines without instruction
bytes, thus avoiding exclusive cache subsystems to thrash.

25This implies that the only legal values for%rax when calling a function with variable-
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Figure 3.31: Parameter Passing Example with Variable-Argument List

int a, b;
long double ld;
double m, n;

extern void func (int a, double m,...);

func (a, m, b, ld, n);

Figure 3.32: Register Allocation Example for Variable-Argument List

General Purpose Registers Floating Point Registers Stack Frame Offset
%rdi : a %xmm0: m 0: ld
%rsi : b %xmm1: n
%rax : 2

The Register Save Area

The prologue of a function taking a variable argument list and known to call the
macrova_start is expected to save the argument registers to theregister save
area. Each argument register has a fixed offset in the register save area as defined
in the figure 3.33.

Only registers that might be used to pass arguments need to be saved. Other
registers are not accessed and can be used for other purposes. If a function is
known to never accept arguments passed in registers26, the register save area may
be omitted entirely.

The prologue should use%rax to avoid unnecessarily saving XMM registers.
This is especially important for integer only programs to prevent the initialization
of the XMM unit.

argument lists are 0 to 8 (inclusive).
26This fact may be determined either by exploring types used by theva_arg macro, or by the

fact that the named arguments already are exhausted the argument registers entirely.
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Figure 3.33: Register Save Area

Register Offset
%rdi 0
%rsi 8
%rdx 16
%rcx 24
%r8 32
%r9 40
%xmm0 48
%xmm1 64
. . .
%xmm15 288

The va_list Type

Theva_list type is an array containing a single element of one structure con-
taining the necessary information to implement theva_arg macro. The C defi-
nition of va_list type is given in figure 3.34.

Figure 3.34:va_list Type Declaration

typedef struct {
unsigned int gp_offset;
unsigned int fp_offset;
void *overflow_arg_area;
void *reg_save_area;

} va_list[1];

The va_start Macro

Theva_start macro initializes the structure as follows:

reg_save_areaThe element points to the start of the register save area.
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overflow_arg_area This pointer is used to fetch arguments passed on the stack.
It is initialized with the address of the first argument passed on the stack, if
any, and then always updated to point to the start of the next argument on
the stack.

gp_offset The element holds the offset in bytes fromreg_save_area to the
place where the next available general purpose argument register is saved.
In case all argument registers have been exhausted, it is set to the value 48
(6 ∗ 8).

fp_offset The element holds the offset in bytes fromreg_save_area to the
place where the next available floating point argument register is saved. In
case all argument registers have been exhausted, it is set to the value 304
(6 ∗ 8 + 16 ∗ 16).

The va_arg Macro

The algorithm for the genericva_arg(l, type) implementation is defined as
follows:

1. Determine whethertype may be passed in the registers. If not go to step
7.

2. Computenum_gp to hold the number of general purpose registers needed
to passtype andnum_fp to hold the number of floating point registers
needed.

3. Verify whether arguments fit into registers. In the case:

l->gp_offset > 48− num_gp ∗ 8

or
l->fp_offset > 304− num_fp ∗ 16

go to step 7.

4. Fetchtype from l->reg_save_area with an offset ofl->gp_offset
and/orl->fp_offset . This may require copying to a temporary loca-
tion in case the parameter is passed in different register classes or requires
an alignment greater than 8 for general purpose registers and 16 for XMM
registers.
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5. Set:
l->gp_offset = l->gp_offset + num_gp ∗ 8

l->fp_offset = l->fp_offset + num_fp ∗ 16.

6. Return the fetchedtype .

7. Align l->overflow_arg_area upwards to a 16 byte boundary if align-
ment needed bytype exceeds 8 byte boundary.

8. Fetchtype from l->overflow_arg_area .

9. Setl->overflow_arg_area to:

l->overflow_arg_area + sizeof (type )

10. Align l->overflow_arg_area upwards to an 8 byte boundary.

11. Return the fetchedtype .

The va_arg macro is usually implemented as a compiler builtin and ex-
panded in simplified forms for each particular type. Figure 3.35 is a sample im-
plementation of theva_arg macro.

Figure 3.35: Sample Implementation ofva_arg(l, int)

movl l->gp_offset , %eax
cmpl $48,%eax Is register available?
jae stack If not, use stack
leal $8(%rax ), %edx Next available register
addq l->reg_save_area , %rax Address of saved register
movl %edx, l->gp_offset Updategp_offset
jmp fetch

stack: movq l->overflow_arg_area , %rax Address of stack slot
leaq 8(%rax ), %rdx Next available stack slot
movq %rdx ,l->overflow_arg_area Update

fetch: movl (%rax ), %eax Load argument
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3.6 DWARF Definition

This section27 defines the Debug With Arbitrary Record Format (DWARF) debug-
ging format for the AMD64 processor family. The AMD64 ABI does not define a
debug format. However, all systems that do implement DWARF on AMD64 shall
use the following definitions.

DWARF is a specification developed for symbolic, source-level debugging.
The debugging information format does not favor the design of any compiler or
debugger. For more information on DWARF, seeDWARF Debugging Informa-
tion Format, revision: Version 2.0.0, July 27, 1993, UNIX International, Program
Languages SIG.

3.6.1 DWARF Release Number

The DWARF definition requires some machine-specific definitions. The register
number mapping needs to be specified for the AMD64 registers. In addition, the
DWARF Version 2 specification requires processor-specific address class codes to
be defined.

3.6.2 DWARF Register Number Mapping

Table 3.3628 outlines the register number mapping for the AMD64 processor fam-
ily.29

3.7 Stack Unwind Algorithm

The stack frames are not self descriptive and where stack unwinding is desirable
(such as for exception handling) additional unwind information needs to be gen-
erated. The information is stored in an allocatable section.eh_frame whose
format is identical to.debug_frame defined by the DWARF debug informa-
tion standard, seeDWARF Debugging Information Format, with the following
extensions:

27This section is structured in a way similar to the PowerPC psABI
28The table defines Return Address to have a register number, even though the address is stored

in 0(%rsp ) and not in a physical register.
29This document does not define mappings for privileged registers.
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Figure 3.36: DWARF Register Number Mapping

Register Name Number Abbreviation
General Purpose Register RAX 0 %rax
General Purpose Register RDX 1 %rdx
General Purpose Register RCX 2 %rcx
General Purpose Register RBX 3 %rbx
General Purpose Register RSI 4 %rsi
General Purpose Register RDI 5 %rdi
Frame Pointer Register RBP 6 %rbp
Stack Pointer Register RSP 7 %rsp
Extended Integer Registers 8-15 8-15 %r8–%r15
Return Address RA 16
SSE Registers 0–7 17-24 %xmm0–%xmm7
Extended SSE Registers 8–15 25-32 %xmm8–%xmm15
Floating Point Registers 0–7 33-40 %st0 –%st7
MMX Registers 0–7 41-48 %mm0–%mm7
Flag Register 49 %rFLAGS
Segment Register ES 50 %es
Segment Register CS 51 %cs
Segment Register SS 52 %ss
Segment Register DS 53 %ds
Segment Register FS 54 %fs
Segment Register GS 55 %gs
Reserved 56-57
FS Base address 58 %fs.base
GS Base address 59 %gs.base
Reserved 60-61
Task Register 62 %tr
LDT Register 63 %ldtr
128-bit Media Control and Status 64 %mxcsr
x87 Control Word 65 %fcw
x87 Status Word 66 %fsw
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Position independenceIn order to avoid load time relocations for position inde-
pendent code, the FDE CIE offset pointer should be stored relative to the
start of CIE table entry. Frames using this extension of the DWARF stan-
dard must set the CIE identifier tag to 1.

Outgoing arguments area deltaTo maintain the size of the temporarily allo-
cated outgoing arguments area present on the end of the stack (when us-
ing push instructions), operationGNU_ARGS_SIZE(0x2e ) can be used.
This operation takes a singleuleb128 argument specifying the current
size. This information is used to adjust the stack frame when jumping into
the exception handler of the function after unwinding the stack frame. Ad-
ditionally the CIE Augmentation shall contain an exact specification of the
encoding used. It is recommended to use a PC relative encoding whenever
possible and adjust the size according to the code model used.

CIE Augmentations: The augmentation field is formated according to the aug-
mentation field formating string stored in the CIE header.

The string may contain the following characters:

z Indicates that auleb128 is present determining the size of the augmen-
tation section.

L Indicates the encoding (and thus presence) of an LSDA pointer in the
FDE augmentation.

The data filed consist of single byte specifying the way pointers are
encoded. It is a mask of the values specified by the table 3.37.

The default DWARF2 pointer encoding (direct 4-byte absolute point-
ers) is represented by value 0.

R Indicates a non-default pointer encoding for FDE code pointers. The
formating is represented by a single byte in the same way as in the ‘L’
command.

P Indicates the presence and an encoding of a language personality routine
in the CIE augmentation. The encoding is represented by a single byte
in the same way as in the ’L’ command followed by a pointer to the
personality function encoded by the specified encoding.

When the augmentation is present, the first command must always be ‘z ’ to
allow easy skipping of the information.
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Figure 3.37: Pointer Encoding Specification Byte

Mask Meaning
0x1 Values are stored asuleb128 or sleb128 type (according to flag 0x8)
0x2 Values are stored as 2 bytes wide integers (udata2 or sdata2 )
0x3 Values are stored as 4 bytes wide integers (udata4 or sdata2 )
0x4 Values are stored as 8 bytes wide integers (udata8 or sdata2 )
0x8 Values are signed

0x10 Values are PC relative
0x20 Values are text section relative
0x30 Values are data section relative
0x40 Values are relative to the start of function

In order to simplify manipulation of the unwind tables, the runtime library
provide higher level API to stack unwinding mechanism, for details see section
6.2.
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Chapter 4

Object Files

4.1 ELF Header

4.1.1 Machine Information

For file identification ine_ident , the AMD64 architecture requires the follow-
ing values.

Table 4.1: AMD64 Identification

Position Value
e_ident[EI_CLASS] ELFCLASS64
e_ident[EI_DATA] ELFDATA2LSB

Processor identification resides in the ELF headerse_machine member and
must have the valueEM_X86_64.1

4.1.2 Number of Program Headers

The e_phnum member contains the number of entries in the program header
table. The product ofe_phentsize and e_phnum gives the table’s size in
bytes. If a file has no program header table,e_phnum holds the value zero.

1The value of this identifier is 62.

58

AMD64 ABI Draft 0.98 – September 27, 2006 – 9:24



If the number of program headers is greater than or equal toPN_XNUM(0xffff),
this member has the valuePN_XNUM(0xffff). The actual number of program
header table entries is contained in thesh_info field of the section header at
index 0. Otherwise, thesh_info member of the initial entry contains the value
zero.

4.2 Sections

4.2.1 Section Flags

In order to allow linking object files of different code models, it is necessary to
provide for a way to differentiate those sections which may hold more than 2GB
from those which may not. This is accomplished by defining a processor-specific
section attribute flag forsh_flag (see table 4.2).

Table 4.2: AMD64 Specific Section Header Flag,sh_flags

Name Value
SHF_X86_64_LARGE 0x10000000

SHF_X86_64_LARGE If an object file section doesnot have this flag set, then
it may not hold more than 2GB and can be freely referred to in objects using
smaller code models. Otherwise, only objects using larger code models can
refer to them. For example, a medium code model object can refer to data
in a section that sets this flag besides being able to refer to data in a section
that does not set it; likewise, a small code model object can refer only to
code in a section that does not set this flag.
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4.2.2 Section types

Table 4.3: Section Header Types

sh_type name Value
SHT_X86_64_UNWIND 0x70000001

SHT_X86_64_UNWIND This section contains unwind function table entries for
stack unwinding. The contents are described in Section 4.2.4 of this docu-
ment.

4.2.3 Special Sections

Table 4.4: Special sections

Name Type Attributes
.got SHT_PROGBITS SHF_ALLOC+SHF_WRITE
.plt SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR
.eh_frame SHT_X86_64_UNWIND SHF_ALLOC

.got This section holds the global offset table.

.plt This section holds the procedure linkage table.

.eh_frame This section holds the unwind function table. The contents are de-
scribed in Section 4.2.4 of this document.

The additional sections defined in table 4.5 are used by a system supporting
the large code model.
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Table 4.5: Additional Special Sections for the Large Code Model

Name Type Attributes
.lbss SHT_NOBITS SHF_ALLOC+SHF_WRITE+SHF_X86_64_LARGE
.ldata SHT_PROGBITS SHF_ALLOC+SHF_WRITE+SHF_X86_64_LARGE
.ldata1 SHT_PROGBITS SHF_ALLOC+SHF_WRITE+SHF_X86_64_LARGE
.lgot SHT_PROGBITS SHF_ALLOC+SHF_WRITE+SHF_X86_64_LARGE
.lplt SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR+SHF_X86_64_LARGE
.lrodata SHT_PROGBITS SHF_ALLOC+SHF_X86_64_LARGE
.lrodata1 SHT_PROGBITS SHF_ALLOC+SHF_X86_64_LARGE
.ltext SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR+SHF_X86_64_LARGE

In order to enable static linking of objects using different code models, the
following section ordering is suggested:

.plt .init .fini .text .got .rodata .rodata1 .data .data1 .bss
These sections can have a combined size of up to 2GB.

.lplt .ltext .lgot .lrodata .lrodata1 .ldata .ldata1 .lbss
These sections plus the above can have a combined size of up to 16EB.

4.2.4 EH_FRAME sections

The call frame information needed for unwinding the stack is output into one or
more ELF sections of typeSHT_X86_64_UNWIND. In the simplest case there
will be one such section per object file and it will be named.eh_frame . An
.eh_frame section consists of one or more subsections. Each subsection con-
tains a CIE (Common Information Entry) followed by varying number of FDEs
(Frame Descriptor Entry). A FDE corresponds to an explicit or compiler gener-
ated function in a compilation unit, all FDEs can access the CIE that begins their
subsection for data. If the code for a function is not one contiguous block, there
will be a separate FDE for each contiguous sub-piece.

If an object file contains C++ template instantiations there shall be a separate
CIE immediately preceding each FDE corresponding to an instantiation.
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Using the preferred encoding specified below, the.eh_frame section can be
entirely resolved at link time and thus can become part of the text segment.

EH_PEencoding below refers to the pointer encoding as specified in the en-
hanced LSB Chapter 7 forEh_Frame_Hdr .
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Table 4.6: Common Information Entry (CIE)

Field Length (byte) Description
Length 4 Length of the CIE (not including this 4-

byte field)
CIE id 4 Value 0 for .eh_frame (used to distin-

guish CIEs and FDEs when scanning the
section)

Version 1 Value One (1)
CIE Augmenta-
tion String

string Null-terminated string with legal values
being "" or ’z’ optionally followed by sin-
gle occurrances of ’P’, ’L’, or ’R’ in any
order. The presence of character(s) in the
string dictates the content of field 8, the
Augmentation Section. Each character has
one or two associated operands in the AS
(see table 4.7 for which ones). Operand
order depends on position in the string (’z’
must be first).

Code Align Fac-
tor

uleb128 To be multiplied with the "Advance Lo-
cation" instructions in the Call Frame In-
structions

Data Align Fac-
tor

sleb128 To be multiplied with all offsets in the Call
Frame Instructions

Ret Address Reg 1/uleb128 A "virtual" register representation of the
return address. In Dwarf V2, this is a byte,
otherwise it is uleb128. It is a byte in gcc
3.3.x

Optional CIE
Augmentation
Section

varying Present if Augmentation String in Aug-
mentation Section field 4 is not 0. See table
4.7 for the content.

Optional Call
Frame Instruc-
tions

varying
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Table 4.7: CIE Augmentation Section Content

Char Operands Length (byte) Description
z size uleb128 Length of the remainder of the Augmen-

tation Section
P personality_enc1 Encoding specifier - preferred value is a

pc-relative, signed 4-byte
personality
routine

(encoded) Encoded pointer to personality routine
(actually to the PLT entry for the per-
sonality routine)

R code_enc 1 Non-default encoding for the
code-pointers (FDE members
initial_location and
address_range and the operand for
DW_CFA_set_loc ) - preferred value
is pc-relative, signed 4-byte

L lsda_enc 1 FDE augmentation bodies may contain
LSDA pointers. If so they are encoded
as specified here - preferred value is pc-
relative, signed 4-byte possibly indirect
thru a GOT entry
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Table 4.8: Frame Descriptor Entry (FDE)

Field Length (byte) Description
Length 4 Length of the FDE (not including this 4-

byte field)
CIE pointer 4 Distance from this field to the nearest pre-

ceding CIE (the value is subtracted from
the current address). This value can never
be zero and thus can be used to distin-
guish CIE’s and FDE’s when scanning the
.eh_frame section

Initial Location var Reference to the function code correspond-
ing to this FDE. If ’R’ is missing from
the CIE Augmentation String, the field is
an 8-byte absolute pointer. Otherwise, the
correspondingEH_PEencoding in the CIE
Augmentation Section is used to interpret
the reference

Address Range var Size of the function code corresponding to
this FDE. If ’R’ is missing from the CIE
Augmentation String, the field is an 8-byte
unsigned number. Otherwise, the size is
determined by the correspondingEH_PE
encoding in the CIE Augmentation Section
(the value is always absolute)

Optional FDE
Augmentation
Section

var Present if CIE Augmentation String is non-
empty. See table 4.9 for the content.

Optional Call
Frame Instruc-
tions

var
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Table 4.9: FDE Augmentation Section Content

Char Operands Length (byte) Description
z length uleb128 Length of the remainder of the Augmen-

tation Section
L LSDA var LSDA pointer, encoded in the format

specified by the corresponding operand
in the CIE’s augmentation body. (only
present if length > 0).

The existence and size of the optional call frame instruction area must be com-
puted based on the overall size and the offset reached while scanning the preceding
fields of the CIE or FDE.

The overall size of a.eh_frame section is given in the ELF section header.
The only way to determine the number of entries is to scan the section until the
end, counting entries as they are encountered.

4.3 Symbol Table

The discussion of "Function Addresses" in Section 5.2 defines some special values
for symbol table fields.

4.4 Relocation

4.4.1 Relocation Types

Figure 4.4.1 shows the allowed relocatable fields.
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Figure 4.1: Relocatable Fields

7 word8 0

15 word16 0

31 word32 0

63 word64 0

word8 This specifies a 8-bit field occupying 1 byte.
word16 This specifies a 16-bit field occupying 2 bytes with arbitrary

byte alignment. These values use the same byte order as
other word values in the AMD64 architecture.

word32 This specifies a 32-bit field occupying 4 bytes with arbitrary
byte alignment. These values use the same byte order as
other word values in the AMD64 architecture.

word64 This specifies a 64-bit field occupying 8 bytes with arbitrary
byte alignment. These values use the same byte order as
other word values in the AMD64 architecture.

The following notations are used for specifying relocations in table 4.10:

A Represents the addend used to compute the value of the relocatable field.

B Represents the base address at which a shared object has been loaded into mem-
ory during execution. Generally, a shared object is built with a 0 base virtual
address, but the execution address will be different.

G Represents the offset into the global offset table at which the relocation entry’s
symbol will reside during execution.
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GOT Represents the address of the global offset table.

L Represents the place (section offset or address) of the Procedure Linkage Table
entry for a symbol.

P Represents the place (section offset or address) of the storage unit being relo-
cated (computed usingr_offset ).

S Represents the value of the symbol whose index resides in the relocation entry.

Z Represents the size of the symbol whose index resides in the relocation entry.

The AMD64 ABI architectures uses onlyElf64_Rela relocation entries
with explicit addends. Ther_addend member serves as the relocation addend.
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Table 4.10: Relocation Types

Name Value Field Calculation
R_X86_64_NONE 0 none none
R_X86_64_64 1 word64 S + A
R_X86_64_PC32 2 word32 S + A - P
R_X86_64_GOT32 3 word32 G + A
R_X86_64_PLT32 4 word32 L + A - P
R_X86_64_COPY 5 none none
R_X86_64_GLOB_DAT 6 word64 S
R_X86_64_JUMP_SLOT 7 word64 S
R_X86_64_RELATIVE 8 word64 B + A
R_X86_64_GOTPCREL 9 word32 G + GOT + A - P
R_X86_64_32 10 word32 S + A
R_X86_64_32S 11 word32 S + A
R_X86_64_16 12 word16 S + A
R_X86_64_PC16 13 word16 S + A - P
R_X86_64_8 14 word8 S + A
R_X86_64_PC8 15 word8 S + A - P
R_X86_64_DPTMOD64 16 word64
R_X86_64_DTPOFF64 17 word64
R_X86_64_TPOFF64 18 word64
R_X86_64_TLSGD 19 word32
R_X86_64_TLSLD 20 word32
R_X86_64_DTPOFF32 21 word32
R_X86_64_GOTTPOFF 22 word32
R_X86_64_TPOFF32 23 word32
R_X86_64_PC64 24 word64 S + A - P
R_X86_64_GOTOFF64 25 word64 S + A - GOT
R_X86_64_GOTPC32 26 word32 GOT + A - P
R_X86_64_SIZE32 32 word32 Z + A
R_X86_64_SIZE64 33 word64 Z + A

The special semantics for most of these relocation types are identical to those

69

AMD64 ABI Draft 0.98 – September 27, 2006 – 9:24



used for the Intel386 ABI.2 3

TheR_X86_64_GOTPCRELrelocation has different semantics from theR_X86_64_GOT32
or equivalent i386R_I386_GOTPCrelocation. In particular, because the AMD64
architecture has an addressing mode relative to the instruction pointer, it is possi-
ble to load an address from the GOT using a single instruction. The calculation
done by theR_X86_64_GOTPCRELrelocation gives the difference between the
location in the GOT where the symbol’s address is given and the location where
the relocation is applied.

The R_X86_64_32 and R_X86_64_32S relocations truncate the com-
puted value to 32-bits. The linker must verify that the generated value for the
R_X86_64_32 (R_X86_64_32S ) relocation zero-extends (sign-extends) to the
original 64-bit value.

A program or object file using R_X86_64_8 , R_X86_64_16 ,
R_X86_64_PC16 or R_X86_64_PC8 relocations is not conformant to
this ABI, these relocations are only added for documentation purposes. The
R_X86_64_16 , andR_X86_64_8 relocations truncate the computed value to
16-bits resp. 8-bits.

The relocations R_X86_64_DPTMOD64, R_X86_64_DTPOFF64,
R_X86_64_TPOFF64 , R_X86_64_TLSGD , R_X86_64_TLSLD ,
R_X86_64_DTPOFF32, R_X86_64_GOTTPOFFandR_X86_64_TPOFF32
are listed for completeness. They are part of the Thread-Local Storage ABI
extensions and are documented in the document called “ELF Handling for
Thread-Local Storage”4.

4.4.2 Large Models

In order to extend both the PLT and the GOT beyond 2GB, it is necessary to add
appropriate relocation types to handle full 64-bit addressing. See figure 4.11.

2Even though the AMD64 architecture supports IP-relative addressing modes, a GOT is still
required since the offset from a particular instruction to a particular data item cannot be known by
the static linker.

3Note that the AMD64 architecture assumes that offsets into GOT are 32-bit values, not 64-bit
values. This choice means that a maximum of232/8 = 229 entries can be placed in the GOT.
However, that should be more than enough for most programs. In the event that it is not enough,
the linker could create multiple GOTs. Because 32-bit offsets are used, loads of global data do
not require loading the offset into a displacement register; the base plus immediate displacement
addressing form can be used.

4This document is currently available viahttp://people.redhat.com/drepper/
tls.pdf
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Table 4.11: Large Model Relocation Types
Name Value Field Calculation
R_X86_64_GOT64 27 word64 G + A
R_X86_64_GOTPCREL64 28 word64 G + GOT - P + A
R_X86_64_GOTPC64 29 word64 GOT - P + A
R_X86_64_GOTPLT64 30 word64 G + A
R_X86_64_PLTOFF64 31 word64 L - GOT + A

71

AMD64 ABI Draft 0.98 – September 27, 2006 – 9:24



Chapter 5

Program Loading and Dynamic
Linking

5.1 Program Loading

Program loading is a process of mapping file segments to virtual memory seg-
ments. For efficient mapping executable and shared object files must have seg-
ments whose file offsets and virtual addresses are congruent modulo the page
size.

To save space the file page holding the last page of the text segment may
also contain the first page of the data segment. The last data page may contain file
information not relevant to the running process. Logically, the system enforces the
memory permissions as if each segment were complete and separate; segments’
addresses are adjusted to ensure each logical page in the address space has a single
set of permissions. In the example above, the region of the file holding the end
of text and the beginning of data will be mapped twice: at one virtual address for
text and at a different virtual address for data.

The end of the data segment requires special handling for uninitialized data,
which the system defines to begin with zero values. Thus if a file’s last data page
includes information not in the logical memory page, the extraneous data must be
set to zero, not the unknown contents of the executable file. “Impurities” in the
other three pages are not logically part of the process image; whether the system
expunges them is unspecified.

One aspect of segment loading differs between executable files and shared
objects. Executable file segments typically contain absolute code (see section 3.5
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“Coding Examples”). For the process to execute correctly, the segments must
reside at the virtual addresses used to build the executable file. Thus the system
uses thep_vaddr values unchanged as virtual addresses.

On the other hand, shared object segments typically contain position-independent
code. This lets a segments virtual address change from one process to another,
without invalidating execution behavior. Though the system chooses virtual ad-
dresses for individual processes, it maintains the segments’ relative positions. Be-
cause position-independent code uses relative addressing between segments, the
difference between virtual addresses in memory must match the difference be-
tween virtual addresses in the file.

5.1.1 Program header

The following AMD64 program header types are defined:

Table 5.1: Program Header Types

Name Value
PT_GNU_EH_FRAME0x6474e550
PT_SUNW_UNWIND 0x6474e550

PT_GNU_EH_FRAME and PT_SUNW_UNWIND The segment contains the
stack unwind tables. See Section 4.2.4 of this document.1

5.2 Dynamic Linking

Dynamic Section

Dynamic section entries give information to the dynamic linker. Some of this
information is processor-specific, including the interpretation of some entries in
the dynamic structure.

1 The value for these program headers have been placed in thePT_LOOSandPT_HIOS (os
specific range) in order to adapt to the existing GNU implementation. New OS’s wanting to agree
on these program header should also add it into their OS specific range.
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Global Offset Table (GOT)

Position-independent code cannot, in general, contain absolute virtual addresses.
Global offset tables hold absolute addresses in private data, thus making the ad-
dresses available without compromising the position-independence and shareabil-
ity of a program’s text. A program references its global offset table using position-
independent addressing and extracts absolute values, thus redirecting position-
independent references to absolute locations.

If a program requires direct access to the absolute address of a symbol, that
symbol will have a global offset table entry. Because the executable file and shared
objects have separate global offset tables, a symbol’s address may appear in sev-
eral tables. The dynamic linker processes all the global offset table relocations
before giving control to any code in the process image, thus ensuring the absolute
addresses are available during execution.

The tables first entry (number zero) is reserved to hold the address of the dy-
namic structure, referenced with the symbol_DYNAMIC. This allows a program,
such as the dynamic linker, to find its own dynamic structure without having yet
processed its relocation entries. This is especially important for the dynamic
linker, because it must initialize itself without relying on other programs to re-
locate its memory image. On the AMD64 architecture, entries one and two in the
global offset table also are reserved.

The global offset table contains 64-bit addresses.
For the large models the GOT is allowed to be up to 16EB in size.

Figure 5.1: Global Offset Table

extern Elf64_Addr _GLOBAL_OFFSET_TABLE_ [];

The symbol_GLOBAL_OFFSET_TABLE_may reside in the middle of the
.got section, allowing both negative and non-negative offsets into the array of
addresses.

Function Addresses

References to the address of a function from an executable file and the shared
objects associated with it might not resolve to the same value. References from
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within shared objects will normally be resolved by the dynamic linker to the vir-
tual address of the function itself. References from within the executable file to
a function defined in a shared object will normally be resolved by the link editor
to the address of the procedure linkage table entry for that function within the
executable file.

To allow comparisons of function addresses to work as expected, if an exe-
cutable file references a function defined in a shared object, the link editor will
place the address of the procedure linkage table entry for that function in its as-
sociated symbol table entry. This will result in symbol table entries with section
index ofSHN_UNDEFbut a type ofSTT_FUNCand a non-zerost_value . A
reference to the address of a function from within a shared library will be satisfied
by such a definition in the executable.

Some relocations are associated with procedure linkage table entries. These
entries are used for direct function calls rather than for references to function
addresses. These relocations do not use the special symbol value described above.
Otherwise a very tight endless loop would be created.

Procedure Linkage Table

Much as the global offset table redirects position-independent address calculations
to absolute locations, the procedure linkage table redirects position-independent
function calls to absolute locations. The link editor cannot resolve execution trans-
fers (such as function calls) from one executable or shared object to another. Con-
sequently, the link editor arranges to have the program transfer control to entries
in the procedure linkage table. On the AMD64 architecture, procedure linkage ta-
bles reside in shared text, but they use addresses in the private global offset table.
The dynamic linker determines the destinations’ absolute addresses and modifies
the global offset table’s memory image accordingly. The dynamic linker thus can
redirect the entries without compromising the position-independence and share-
ability of the program’s text. Executable files and shared object files have separate
procedure linkage tables. Unlike Intel386 ABI, this ABI uses the same procedure
linkage table for both programs and shared objects (see figure 5.2).
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Figure 5.2: Procedure Linkage Table (small and medium models)

.PLT0: pushq GOT+8(%rip) # GOT[1]
jmp *GOT+16(%rip) # GOT[2]
nop
nop
nop
nop

.PLT1: jmp *name1@GOTPCREL(%rip) # 16 bytes from .PLT0
pushq $index1
jmp .PLT0

.PLT2: jmp *name2@GOTPCREL(%rip) # 16 bytes from .PLT1
pushq $index2
jmp .PLT0

.PLT3: ...

Following the steps below, the dynamic linker and the program “cooperate”
to resolve symbolic references through the procedure linkage table and the global
offset table.

1. When first creating the memory image of the program, the dynamic linker
sets the second and the third entries in the global offset table to special
values. Steps below explain more about these values.

2. Each shared object file in the process image has its own procedure linkage
table, and control transfers to a procedure linkage table entry only from
within the same object file.

3. For illustration, assume the program callsname1, which transfers control
to the label.PLT1 .

4. The first instruction jumps to the address in the global offset table entry for
name1. Initially the global offset table holds the address of the following
pushq instruction, not the real address ofname1.

5. Now the program pushes a relocation index (index) on the stack. The reloca-
tion index is a 32-bit, non-negative index into the relocation table addressed
by theDT_JMPRELdynamic section entry. The designated relocation en-
try will have typeR_X86_64_JUMP_SLOT, and its offset will specify the
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global offset table entry used in the previousjmp instruction. The reloca-
tion entry contains a symbol table index that will reference the appropriate
symbol,name1 in the example.

6. After pushing the relocation index, the program then jumps to.PLT0 , the
first entry in the procedure linkage table. Thepushq instruction places the
value of the second global offset table entry (GOT+8) on the stack, thus giv-
ing the dynamic linker one word of identifying information. The program
then jumps to the address in the third global offset table entry (GOT+16),
which transfers control to the dynamic linker.

7. When the dynamic linker receives control, it unwinds the stack, looks at
the designated relocation entry, finds the symbol’s value, stores the “real”
address forname1 in its global offset table entry, and transfers control to
the desired destination.

8. Subsequent executions of the procedure linkage table entry will transfer
directly toname1, without calling the dynamic linker a second time. That
is, thejmp instruction at.PLT1 will transfer toname1, instead of “falling
through” to thepushq instruction.

The LD_BIND_NOWenvironment variable can change the dynamic linking
behavior. If its value is non-null, the dynamic linker evaluates procedure linkage
table entries before transferring control to the program. That is, the dynamic linker
processes relocation entries of typeR_X86_64_JUMP_SLOT during process
initialization. Otherwise, the dynamic linker evaluates procedure linkage table
entries lazily, delaying symbol resolution and relocation until the first execution
of a table entry.

Large Models

In the small and medium code models the size of both the PLT and the GOT is
limited by the maximum 32-bit displacement size. Consequently, the base of the
PLT and the top of the GOT can be at most 2GB apart.

Therefore, in order to support the available addressing space of 16EB, it is nec-
essary to extend both the PLT and the GOT. Moreover, the PLT needs to support
the GOT being over 2GB away and the GOT can be over 2GB in size.2

2If it is determined that the base of the PLT is within 2GB of the top of the GOT, it is also
allowed to use the same PLT layout for a large code model object as that of the small and medium
code models.
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The PLT is extended as shown in figure 5.3 with the assumption that the GOT
address is in%r15 3.

Figure 5.3: Final Large Code Model PLT

.PLT0: pushq 8(%r15) # GOT[1]
jmpq *16(%r15) # GOT[2]
rep
rep
rep
nop
rep
rep
rep
nop

.PLT1: movabs $name1@GOT,%r11 # 16 bytes from .PLT0
jmp *(%r11,%r15)

.PLT1a: pushq $index1 # "call" dynamic linker
jmp .PLT0

.PLT2: ... # 21 bytes from .PLT1

.PLTx: movabs $namex@GOT,%r11 # 102261125th entry
jmp *(%r11,%r15)

.PLTxa: pushq $indexx
pushq 8(%r15) # repeat .PLT0 code
jmpq *16(%r15)

.PLTy: ... # 27 bytes from .PLTx

This way, for the first 102261125 entries, each PLT entry besides.PLT0 uses
only 21 bytes. Afterwards, the PLT entry code changes by repeating that of .PLT0,
when each PLT entry is 27 bytes long. Notice that any alignment consideration is
dropped in order to keep the PLT size down.

Each extended PLT entry is thus 5 to 11 bytes larger than the small and
medium code model PLT entries.

The functionality of entry .PLT0 remains unchanged from the small and medium
code models.

Note that the symbol index is still limited to 32 bits, which would allow for up
to 4G global and external functions.

Typically, UNIX compilers support two types of PLT, generally through the
options-fpic and -fPIC . When building position-independent objects using

3See Function Prologue.
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the large code model, only-fPIC is allowed. Using the option-fpic with the
large code model remains reserved for future use.

5.2.1 Program Interpreter

There is one valid program interpreter for programs conforming to the AMD64
ABI:

/lib/ld64.so.1
However, Linux puts this in

/lib64/ld-linux-x86-64.so.2

5.2.2 Initialization and Termination Functions

The implementation is responsible for executing the initialization functions spec-
ified by DT_INIT , DT_INIT_ARRAY, andDT_PREINIT_ARRAY entries in
the executable file and shared object files for a process, and the termination (or
finalization) functions specified byDT_FINI andDT_FINI_ARRAY, as speci-
fied by theSystem V ABI. The user program plays no further part in executing the
initialization and termination functions specified by these dynamic tags.
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Chapter 6

Libraries

A further review of the Intel386 ABI is needed.

6.1 C Library

6.1.1 Global Data Symbols

The symbols_fp_hw , __flt_rounds and__huge_val are not provided by
the AMD64 ABI.

6.1.2 Floating Point Environment Functions

ISO C 99 defines the floating point environment functions from<fenv.h> .
Since AMD64 has two floating point units with separate control words, the pro-
gramming environment has to keep the control values in sync. On the other hand
this means that routines accessing the control words only need to access one unit,
and the SSE unit is the unit that should be accessed in these cases. The function
fegetround therefore only needs to report the rounding value of the SSE unit
and can ignore the x87 unit.
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6.2 Unwind Library Interface

This section defines the Unwind Library interface1, expected to be provided by
any AMD64 psABI-compliant system. This is the interface on which the C++
ABI exception-handling facilities are built. We assume as a basis the Call Frame
Information tables described in the DWARF Debugging Information Format doc-
ument.

This section is meant to specify a language-independent interface that can be
used to provide higher level exception-handling facilities such as those defined by
C++.

The unwind library interface consists of at least the following routines:
_Unwind_RaiseException ,
_Unwind_Resume ,
_Unwind_DeleteException ,
_Unwind_GetGR ,
_Unwind_SetGR ,
_Unwind_GetIP ,
_Unwind_SetIP ,
_Unwind_GetRegionStart ,
_Unwind_GetLanguageSpecificData ,
_Unwind_ForcedUnwind ,
_Unwind_GetCFA

In addition, two data types are defined (_Unwind_Context and_Unwind_Exception
) to interface a calling runtime (such as the C++ runtime) and the above rou-
tine. All routines and interfaces behave as if definedextern "C" . In particular,
the names are not mangled. All names defined as part of this interface have a
"_Unwind_" prefix.

Lastly, a language and vendor specific personality routine will be stored by
the compiler in the unwind descriptor for the stack frames requiring exception
processing. The personality routine is called by the unwinder to handle language-
specific tasks such as identifying the frame handling a particular exception.

1The overall structure and the external interface is derived from the IA-64 UNIX System V
ABI
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6.2.1 Exception Handler Framework

Reasons for Unwinding

There are two major reasons for unwinding the stack:

• exceptions, as defined by languages that support them (such as C++)

• “forced” unwinding (such as caused bylongjmp or thread termination)

The interface described here tries to keep both similar. There is a major dif-
ference, however.

• In the case where an exception is thrown, the stack is unwound while the
exception propagates, but it is expected that the personality routine for each
stack frame knows whether it wants to catch the exception or pass it through.
This choice is thus delegated to the personality routine, which is expected to
act properly for any type of exception, whether “native” or “foreign”. Some
guidelines for “acting properly” are given below.

• During “forced unwinding”, on the other hand, an external agent is driving
the unwinding. For instance, this can be thelongjmp routine. This exter-
nal agent, not each personality routine, knows when to stop unwinding. The
fact that a personality routine is not given a choice about whether unwinding
will proceed is indicated by the_UA_FORCE_UNWINDflag.

To accommodate these differences, two different routines are proposed._Unwind_RaiseException
performs exception-style unwinding, under control of the personality routines.

_Unwind_ForcedUnwind , on the other hand, performs unwinding, but gives
an external agent the opportunity to intercept calls to the personality routine. This
is done using a proxy personality routine, that intercepts calls to the personality
routine, letting the external agent override the defaults of the stack frame’s per-
sonality routine.

As a consequence, it is not necessary for each personality routine to know
about any of the possible external agents that may cause an unwind. For instance,
the C++ personality routine need deal only with C++ exceptions (and possibly
disguising foreign exceptions), but it does not need to know anything specific
about unwinding done on behalf oflongjmp or pthreads cancellation.
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The Unwind Process

The standard ABI exception handling/unwind process begins with the raising of an
exception, in one of the forms mentioned above. This call specifies an exception
object and an exception class.

The runtime framework then starts a two-phase process:

• In thesearchphase, the framework repeatedly calls the personality routine,
with the_UA_SEARCH_PHASEflag as described below, first for the cur-
rent %rip and register state, and then unwinding a frame to a new%rip
at each step, until the personality routine reports either success (a handler
found in the queried frame) or failure (no handler) in all frames. It does not
actually restore the unwound state, and the personality routine must access
the state through the API.

• If the search phase reports a failure, e.g. because no handler was found, it
will call terminate() rather than commence phase 2.

If the search phase reports success, the framework restarts in thecleanup
phase. Again, it repeatedly calls the personality routine, with the_UA_CLEANUP_PHASE
flag as described below, first for the current%rip and register state, and

then unwinding a frame to a new%rip at each step, until it gets to the
frame with an identified handler. At that point, it restores the register state,
and control is transferred to the user landing pad code.

Each of these two phases uses both the unwind library and the personality
routines, since the validity of a given handler and the mechanism for transferring
control to it are language-dependent, but the method of locating and restoring
previous stack frames is language-independent.

A two-phase exception-handling model is not strictly necessary to implement
C++ language semantics, but it does provide some benefits. For example, the first
phase allows an exception-handling mechanism todismissan exception before
stack unwinding begins, which allowspresumptiveexception handling (correcting
the exceptional condition and resuming execution at the point where it was raised).
While C++ does not support presumptive exception handling, other languages do,
and the two-phase model allows C++ to coexist with those languages on the stack.

Note that even with a two-phase model, we may execute each of the two phases
more than once for a single exception, as if the exception was being thrown more
than once. For instance, since it is not possible to determine if a given catch clause
will re-throw or not without executing it, the exception propagation effectively
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stops at each catch clause, and if it needs to restart, restarts at phase 1. This
process is not needed for destructors (cleanup code), so the phase 1 can safely
process all destructor-only frames at once and stop at the next enclosing catch
clause.

For example, if the first two frames unwound contain only cleanup code, and
the third frame contains a C++ catch clause, the personality routine in phase 1,
does not indicate that it found a handler for the first two frames. It must do so for
the third frame, because it is unknown how the exception will propagate out of
this third frame, e.g. by re-throwing the exception or throwing a new one in C++.

The API specified by the AMD64 psABI for implementing this framework is
described in the following sections.

6.2.2 Data Structures

Reason Codes

The unwind interface uses reason codes in several contexts to identify the reasons
for failures or other actions, defined as follows:

typedef enum {
_URC_NO_REASON = 0,
_URC_FOREIGN_EXCEPTION_CAUGHT = 1,
_URC_FATAL_PHASE2_ERROR = 2,
_URC_FATAL_PHASE1_ERROR = 3,
_URC_NORMAL_STOP = 4,
_URC_END_OF_STACK = 5,
_URC_HANDLER_FOUND = 6,
_URC_INSTALL_CONTEXT = 7,
_URC_CONTINUE_UNWIND = 8

} _Unwind_Reason_Code;
The interpretations of these codes are described below.

Exception Header

The unwind interface uses a pointer to an exception header object as its repre-
sentation of an exception being thrown. In general, the full representation of an
exception object is language- and implementation-specific, but is prefixed by a
header understood by the unwind interface, defined as follows:
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typedef void (*_Unwind_Exception_Cleanup_Fn)
(_Unwind_Reason_Code reason,

struct _Unwind_Exception *exc);
struct _Unwind_Exception {

uint64 exception_class;
_Unwind_Exception_Cleanup_Fn exception_cleanup;
uint64 private_1;
uint64 private_2;

};

An _Unwind_Exception object must be eightbyte aligned. The first two
fields are set by user code prior to raising the exception, and the latter two should
never be touched except by the runtime.

The exception_class field is a language- and implementation-specific
identifier of the kind of exception. It allows a personality routine to distinguish
between native and foreign exceptions, for example. By convention, the high 4
bytes indicate the vendor (for instance AMD\0), and the low 4 bytes indicate the
language. For the C++ ABI described in this document, the low four bytes are
C++\0.

Theexception_cleanup routine is called whenever an exception object
needs to be destroyed by a different runtime than the runtime which created the
exception object, for instance if a Java exception is caught by a C++ catch handler.
In such a case, a reason code (see above) indicates why the exception object needs
to be deleted:

_URC_FOREIGN_EXCEPTION_CAUGHT = 1This indicates that a different
runtime caught this exception. Nested foreign exceptions, or re-throwing a
foreign exception, result in undefined behavior.

_URC_FATAL_PHASE1_ERROR = 3The personality routine encountered an
error during phase 1, other than the specific error codes defined.

_URC_FATAL_PHASE2_ERROR = 2The personality routine encountered an
error during phase 2, for instance a stack corruption.

Normally, all errors should be reported during phase 1 by returning from
_Unwind_RaiseException . However, landing pad code could cause stack
corruption between phase 1 and phase 2. For a C++ exception, the runtime should
call terminate() in that case.
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The private unwinder state (private_1 andprivate_2 ) in an exception
object should be neither read by nor written to by personality routines or other
parts of the language-specific runtime. It is used by the specific implementation
of the unwinder on the host to store internal information, for instance to remember
the final handler frame between unwinding phases.

In addition to the above information, a typical runtime such as the C++ run-
time will add language-specific information used to process the exception. This
is expected to be a contiguous area of memory after the_Unwind_Exception
object, but this is not required as long as the matching personality routines know
how to deal with it, and theexception_cleanup routine de-allocates it prop-
erly.

Unwind Context

The _Unwind_Context type is an opaque type used to refer to a system-
specific data structure used by the system unwinder. This context is created and
destroyed by the system, and passed to the personality routine during unwinding.

struct _Unwind_Context

6.2.3 Throwing an Exception

_Unwind_RaiseException

_Unwind_Reason_Code _Unwind_RaiseException
( struct _Unwind_Exception *exception_object );

Raise an exception, passing along the given exception object, which should
have itsexception_class andexception_cleanup fields set. The ex-
ception object has been allocated by the language-specific runtime, and has a
language-specific format, except that it must contain an_Unwind_Exception
struct (see Exception Header above)._Unwind_RaiseException does not
return, unless an error condition is found (such as no handler for the exception,
bad stack format, etc.). In such a case, an_Unwind_Reason_Code value is
returned.

Possibilities are:

_URC_END_OF_STACKThe unwinder encountered the end of the stack during
phase 1, without finding a handler. The unwind runtime will not have modi-
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fied the stack. The C++ runtime will normally calluncaught_exception()
in this case.

_URC_FATAL_PHASE1_ERRORThe unwinder encountered an unexpected er-
ror during phase 1, e.g. stack corruption. The unwind runtime will not have
modified the stack. The C++ runtime will normally callterminate() in
this case.

If the unwinder encounters an unexpected error during phase 2, it should re-
turn _URC_FATAL_PHASE2_ERRORto its caller. In C++, this will usually be
__cxa_throw , which will call terminate() .

The unwind runtime will likely have modified the stack (e.g. popped frames
from it) or register context, or landing pad code may have corrupted them. As a
result, the the caller of_Unwind_RaiseException can make no assumptions
about the state of its stack or registers.

_Unwind_ForcedUnwind

typedef _Unwind_Reason_Code (*_Unwind_Stop_Fn)
(int version,

_Unwind_Action actions,
uint64 exceptionClass,
struct _Unwind_Exception *exceptionObject,
struct _Unwind_Context *context,
void *stop_parameter );

_Unwind_Reason_Code_Unwind_ForcedUnwind
( struct _Unwind_Exception *exception_object,

_Unwind_Stop_Fn stop,
void *stop_parameter );

Raise an exception for forced unwinding, passing along the given exception
object, which should have itsexception_class andexception_cleanup
fields set. The exception object has been allocated by the language-specific run-
time, and has a language-specific format, except that it must contain an_Unwind_Exception
struct (see Exception Header above).

Forced unwinding is a single-phase process (phase 2 of the normal exception-
handling process). Thestop andstop_parameter parameters control the
termination of the unwind process, instead of the usual personality routine query.
The stop function parameter is called for each unwind frame, with the pa-
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rameters described for the usual personality routine below, plus an additional
stop_parameter .

When thestop function identifies the destination frame, it transfers control
(according to its own, unspecified, conventions) to the user code as appropriate
without returning, normally after calling_Unwind_DeleteException . If
not, it should return an_Unwind_Reason_Code value as follows:

_URC_NO_REASONThis is not the destination frame. The unwind runtime will
call the frame’s personality routine with the_UA_FORCE_UNWINDand
_UA_CLEANUP_PHASEflags set in actions, and then unwind to the next
frame and call the stop function again.

_URC_END_OF_STACKIn order to allow_Unwind_ForcedUnwind to per-
form special processing when it reaches the end of the stack, the unwind
runtime will call it after the last frame is rejected, with aNULLstack pointer
in the context, and the stop function must catch this condition (i.e. by notic-
ing the NULL stack pointer). It may return this reason code if it cannot
handle end-of-stack.

_URC_FATAL_PHASE2_ERRORThe stop function may return this code for
other fatal conditions, e.g. stack corruption.

If the stop function returns any reason code other than_URC_NO_REASON,
the stack state is indeterminate from the point of view of the caller of
_Unwind_ForcedUnwind . Rather than attempt to return, therefore, the un-
wind library should return_URC_FATAL_PHASE2_ERRORto its caller.

Example: longjmp_unwind()
The expected implementation oflongjmp_unwind() is as follows. The

setjmp() routine will have saved the state to be restored in its custom-
ary place, including the frame pointer. Thelongjmp_unwind() routine
will call _Unwind_ForcedUnwind with a stop function that compares the
frame pointer in the context record with the saved frame pointer. If equal,
it will restore thesetjmp() state as customary, and otherwise it will return
_URC_NO_REASONor _URC_END_OF_STACK.

If a future requirement for two-phase forced unwinding were identified, an al-
ternate routine could be defined to request it, and an actions parameter flag defined
to support it.
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_Unwind_Resume

void _Unwind_Resume
(struct _Unwind_Exception *exception_object);

Resume propagation of an existing exception e.g. after executing cleanup code
in a partially unwound stack. A call to this routine is inserted at the end of a
landing pad that performed cleanup, but did not resume normal execution. It
causes unwinding to proceed further.

_Unwind_Resume should not be used to implement re-throwing. To the
unwinding runtime, the catch code that re-throws was a handler, and the previous
unwinding session was terminated before entering it. Re-throwing is implemented
by calling_Unwind_RaiseException again with the same exception object.

This is the only routine in the unwind library which is expected to be called
directly by generated code: it will be called at the end of a landing pad in a
"landing-pad" model.

6.2.4 Exception Object Management

_Unwind_DeleteException

void _Unwind_DeleteException
(struct _Unwind_Exception *exception_object);

Deletes the given exception object. If a given runtime resumes normal execu-
tion after catching a foreign exception, it will not know how to delete that excep-
tion. Such an exception will be deleted by calling_Unwind_DeleteException .
This is a convenience function that calls the function pointed to by theexception_cleanup
field of the exception header.

6.2.5 Context Management

These functions are used for communicating information about the unwind con-
text (i.e. the unwind descriptors and the user register state) between the unwind
library and the personality routine and landing pad. They include routines to read
or set the context record images of registers in the stack frame corresponding to a
given unwind context, and to identify the location of the current unwind descrip-
tors and unwind frame.
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_Unwind_GetGR

uint64 _Unwind_GetGR
(struct _Unwind_Context *context, int index);

This function returns the 64-bit value of the given general register. The register
is identified by its index as given in 3.36.

During the two phases of unwinding, no registers have a guaranteed value.

_Unwind_SetGR

void _Unwind_SetGR
(struct _Unwind_Context *context,

int index,
uint64 new_value);

This function sets the 64-bit value of the given register, identified by its index
as for_Unwind_GetGR .

The behavior is guaranteed only if the function is called during phase 2 of
unwinding, and applied to an unwind context representing a handler frame, for
which the personality routine will return_URC_INSTALL_CONTEXT. In that
case, only registers%rdi , %rsi , %rdx , %rcx should be used. These scratch
registers are reserved for passing arguments between the personality routine and
the landing pads.

_Unwind_GetIP

uint64 _Unwind_GetIP
(struct _Unwind_Context *context);

This function returns the 64-bit value of the instruction pointer (IP).
During unwinding, the value is guaranteed to be the address of the instruction

immediately following the call site in the function identified by the unwind con-
text. This value may be outside of the procedure fragment for a function call that
is known to not return (such as_Unwind_Resume ).

_Unwind_SetIP

void _Unwind_SetIP
(struct _Unwind_Context *context,

uint64 new_value);
This function sets the value of the instruction pointer (IP) for the routine iden-

tified by the unwind context.
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The behavior is guaranteed only when this function is called for an unwind
context representing a handler frame, for which the personality routine will return
_URC_INSTALL_CONTEXT. In this case, control will be transferred to the given
address, which should be the address of a landing pad.

_Unwind_GetLanguageSpecificData

uint64 _Unwind_GetLanguageSpecificData
(struct _Unwind_Context *context);
This routine returns the address of the language-specific data area for the cur-

rent stack frame.
This routine is not strictly required: it could be accessed through_Unwind_GetIP

using the documented format of the DWARF Call Frame Information Tables, but
since this work has been done for finding the personality routine in the first place,
it makes sense to cache the result in the context. We could also pass it as an
argument to the personality routine.

_Unwind_GetRegionStart

uint64 _Unwind_GetRegionStart
(struct _Unwind_Context *context);

This routine returns the address of the beginning of the procedure or code
fragment described by the current unwind descriptor block.

This information is required to access any data stored relative to the beginning
of the procedure fragment. For instance, a call site table might be stored relative
to the beginning of the procedure fragment that contains the calls. During un-
winding, the function returns the start of the procedure fragment containing the
call site in the current stack frame.

_Unwind_GetCFA

uint64 _Unwind_GetCFA
(struct _Unwind_Context *context);

This function returns the 64-bit Canonical Frame Address which is defined as
the value of%rsp at the call site in the previous frame. This value is guaranteed
to be correct any time the context has been passed to a personality routine or a
stop function.
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6.2.6 Personality Routine

_Unwind_Reason_Code (*__personality_routine)
(int version,

_Unwind_Action actions,
uint64 exceptionClass,
struct _Unwind_Exception *exceptionObject,
struct _Unwind_Context *context);

The personality routine is the function in the C++ (or other language) run-
time library which serves as an interface between the system unwind library and
language-specific exception handling semantics. It is specific to the code fragment
described by an unwind info block, and it is always referenced via the pointer in
the unwind info block, and hence it has no psABI-specified name.

Parameters

The personality routine parameters are as follows:

version Version number of the unwinding runtime, used to detect a mis-match
between the unwinder conventions and the personality routine, or to provide
backward compatibility. For the conventions described in this document,
version will be 1.

actions Indicates what processing the personality routine is expected to per-
form, as a bit mask. The possible actions are described below.

exceptionClass An 8-byte identifier specifying the type of the thrown ex-
ception. By convention, the high 4 bytes indicate the vendor (for instance
AMD\0), and the low 4 bytes indicate the language. For the C++ ABI
described in this document, the low four bytes are C++\0. This is not a
null-terminated string. Some implementations may use no null bytes.

exceptionObject The pointer to a memory location recording the necessary
information for processing the exception according to the semantics of a
given language (see the Exception Header section above).

context Unwinder state information for use by the personality routine. This is
an opaque handle used by the personality routine in particular to access the
frame’s registers (see the Unwind Context section above).
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return value The return value from the personality routine indicates how further
unwind should happen, as well as possible error conditions. See the follow-
ing section.

Personality Routine Actions

The actions argument to the personality routine is a bitwise OR of one or more of
the following constants:
typedef int _Unwind_Action;
const _Unwind_Action _UA_SEARCH_PHASE = 1;
const _Unwind_Action _UA_CLEANUP_PHASE = 2;
const _Unwind_Action _UA_HANDLER_FRAME = 4;
const _Unwind_Action _UA_FORCE_UNWIND = 8;

_UA_SEARCH_PHASEIndicates that the personality routine should check if the
current frame contains a handler, and if so return_URC_HANDLER_FOUND,
or otherwise return_URC_CONTINUE_UNWIND. _UA_SEARCH_PHASE
cannot be set at the same time as_UA_CLEANUP_PHASE.

_UA_CLEANUP_PHASEIndicates that the personality routine should perform
cleanup for the current frame. The personality routine can perform this
cleanup itself, by calling nested procedures, and return_URC_CONTINUE_UNWIND.
Alternatively, it can setup the registers (including the IP) for transferring
control to a "landing pad", and return_URC_INSTALL_CONTEXT.

_UA_HANDLER_FRAMEDuring phase 2, indicates to the personality routine
that the current frame is the one which was flagged as the handler frame
during phase 1. The personality routine is not allowed to change its mind
between phase 1 and phase 2, i.e. it must handle the exception in this frame
in phase 2.

_UA_FORCE_UNWINDDuring phase 2, indicates that no language is allowed
to "catch" the exception. This flag is set while unwinding the stack for
longjmp or during thread cancellation. User-defined code in a catch clause
may still be executed, but the catch clause must resume unwinding with a
call to_Unwind_Resume when finished.
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Transferring Control to a Landing Pad

If the personality routine determines that it should transfer control to a landing
pad (in phase 2), it may set up registers (including IP) with suitable values for
entering the landing pad (e.g. with landing pad parameters), by calling the context
management routines above. It then returns_URC_INSTALL_CONTEXT.

Prior to executing code in the landing pad, the unwind library restores registers
not altered by the personality routine, using the context record, to their state in that
frame before the call that threw the exception, as follows. All registers specified
as callee-saved by the base ABI are restored, as well as scratch registers%rdi ,
%rsi , %rdx , %rcx (see below). Except for those exceptions, scratch (or caller-
saved) registers are not preserved, and their contents are undefined on transfer.

The landing pad can either resume normal execution (as, for instance, at the
end of a C++ catch), or resume unwinding by calling_Unwind_Resume and
passing it theexceptionObject argument received by the personality routine.
_Unwind_Resume will never return.

_Unwind_Resume should be called if and only if the personality routine
did not return_Unwind_HANDLER_FOUNDduring phase 1. As a result, the
unwinder can allocate resources (for instance memory) and keep track of them in
the exception object reserved words. It should then free these resources before
transferring control to the last (handler) landing pad. It does not need to free the
resources before entering non-handler landing-pads, since_Unwind_Resume
will ultimately be called.

The landing pad may receive arguments from the runtime, typically passed
in registers set using_Unwind_SetGR by the personality routine. For a landing
pad that can call to_Unwind_Resume , one argument must be theexceptionObject
pointer, which must be preserved to be passed to_Unwind_Resume .

The landing pad may receive other arguments, for instance a switch value
indicating the type of the exception. Four scratch registers are reserved for this
use (%rdi , %rsi , %rdx , %rcx ).

Rules for Correct Inter-Language Operation

The following rules must be observed for correct operation between languages
and/or run times from different vendors:

An exception which has an unknown class must not be altered by the personal-
ity routine. The semantics of foreign exception processing depend on the language
of the stack frame being unwound. This covers in particular how exceptions from

94

AMD64 ABI Draft 0.98 – September 27, 2006 – 9:24



a foreign language are mapped to the native language in that frame.
If a runtime resumes normal execution, and the caught exception was created

by another runtime, it should call_Unwind_DeleteException . This is true
even if it understands the exception object format (such as would be the case
between different C++ run times).

A runtime is not allowed to catch an exception if the_UA_FORCE_UNWIND
flag was passed to the personality routine.

Example: Foreign Exceptions in C++. In C++, foreign exceptions can be
caught by acatch(...) statement. They can also be caught as if they were of a
__foreign_exception class, defined in<exception> . The__foreign_exception
may have subclasses, such as__java_exception and__ada_exception ,
if the runtime is capable of identifying some of the foreign languages.

The behavior is undefined in the following cases:

• A __foreign_exception catch argument is accessed in any way (in-
cluding taking its address).

• A __foreign_exception is active at the same time as another excep-
tion (either there is a nested exception while catching the foreign exception,
or the foreign exception was itself nested).

• uncaught_exception() , set_terminate() , set_unexpected() ,
terminate() , or unexpected() is called at a time a foreign excep-
tion exists (for example, callingset_terminate() during unwinding
of a foreign exception).

All these cases might involve accessing C++ specific content of the thrown
exception, for instance to chain active exceptions.

Otherwise, a catch block catching a foreign exception is allowed:

• to resume normal execution, thereby stopping propagation of the foreign
exception and deleting it, or

• to re-throw the foreign exception. In that case, the original exception object
must be unaltered by the C++ runtime.

A catch-all block may be executed during forced unwinding. For instance, a
longjmp may execute code in acatch(...) during stack unwinding. However,
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if this happens, unwinding will proceed at the end of the catch-all block, whether
or not there is an explicit re-throw.

Setting the low 4 bytes of exception class to C++\0 is reserved for use by C++
run-times compatible with the common C++ ABI.

6.3 Unwinding Through Assembler Code

For successful unwinding on AMD64 every function must provide a valid de-
bug information in the DWARF Debugging Information Format. In high level
languages (e.g. C/C++, Fortran, Ada, ...) this information is generated by the
compiler itself. However for hand-written assembly routines the debug info must
be provided by the author of the code. To ease this task some new assembler
directives are added:

.cfi_startproc is used at the beginning of each function that should have
an entry in.eh_frame . It initializes some internal data structures and
emits architecture dependent initial CFI instructions. Each.cfi_startproc
directive has to be closed by.cfi_endproc .

.cfi_endproc is used at the end of a function where it closes its unwind en-
try previously opened by.cfi_startproc and emits it to.eh_frame .

.cfi_def_cfa REGISTER, OFFSET defines a rule for computing CFA
as: take address from REGISTER and add OFFSET to it.

.cfi_def_cfa_register REGISTER modifies a rule for computing CFA.
From now on REGISTER will be used instead of the old one. The offset
remains the same.

.cfi_def_cfa_offset OFFSET modifies a rule for computing CFA. The
register remains the same, but OFFSET is new. Note that this is the absolute
offset that will be added to a defined register to compute the CFA address.

.cfi_adjust_cfa_offset OFFSET is similar to.cfi_def_cfa_offset
but OFFSET is a relative value that is added or subtracted from the previous
offset.

.cfi_offset REGISTER, OFFSET saves the previous value of REGIS-
TER at offset OFFSET from CFA.
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.cfi_rel_offset REGISTER, OFFSET saves the previous value of REG-
ISTER at offset OFFSET from the current CFA register. This is transformed
to .cfi_offset using the known displacement of the CFA register from
the CFA. This is often easier to use, because the number will match the code
it is annotating.

.cfi_escape EXPRESSION[, ...] allows the user to add arbitrary bytes
to the unwind info. One might use this to add OS-specific CFI opcodes, or
generic CFI opcodes that the assembler does not support.
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Figure 6.1: Examples for Unwinding in Assembler

# - function with local variable allocated on the stack
.type func_locvars,@function

func_locvars:
.cfi_startproc
# allocate space for local vars
sub $0x1234, %rsp
.cfi_adjust_cfa_offset 0x1234
# body
...
# release space of local vars and return
add $0x1234, %rsp
.cfi_adjust_cfa_offset -0x1234
ret
.cfi_endproc

# - function that moves frame pointer to another register
# and then allocates space for local variables

.type func_otherreg,@function
func_otherreg:

.cfi_startproc
# save frame pointer to r12
movq %rsp, %r12
.cfi_def_cfa_register r12
# allocate space for local vars
# (no .cfi_{def,adjust}_cfa_offset needed here,
# because CFA is computed from r12!)
sub $100,%rsp
# body
...
# restore frame pointer from r12
movq %r12, %rsp
.cfi_def_cfa_register rsp
ret
.cfi_endproc
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Chapter 7

Development Environment

During compilation of C or C++ code at least the symbols in table 7.1 are defined
by the pre-processor.

Table 7.1: Predefined Pre-Processor Symbols

__amd64
__amd64__
__x86_64
__x86_64__
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Chapter 8

Execution Environment

Not done yet.
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Chapter 9

Conventions

1

1This chapter is used to document some features special to the AMD64 ABI. The different
sections might be moved to another place or removed completely.
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9.1 C++

For the C++ ABI we will use the IA-64 C++ ABI and instantiate it appropriately.
The current draft of that ABI is available at:
http://www.codesourcery.com/cxx-abi/
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9.2 Fortran

A formal Fortran ABI does not exist. Most Fortran compilers are designed for
very specific high performance computing applications, so Fortran compilers use
different passing conventions and memory layouts optimized for their specific
purpose. For example, Fortran applications that must run on distributed memory
machines need a different data representation for array descriptors (also known as
dope vectors, or fat pointers) than applications running on symmetric multipro-
cessor shared memory machines. A normative ABI for Fortran is therefore not
desirable. However, for interoperability of different Fortran compilers, as well as
for interoperability with other languages, this section provides some some guide-
lines for data types representation, and argument passing. The guidelines in this
section are derived from the GNU Fortran 77 (G77) compiler, and are also fol-
lowed by the GNU Fortran 95 (gfortran ) compiler (restricted to Fortran 77
features). Other Fortran compilers already available for AMD64 at the time of
this writing may use different conventions, so compatibility is not guaranteed.

When this text uses the termFortran procedure, the text applies to both For-
tranFUNCTIONandSUBROUTINEsubprograms as well as for alternateENTRY
points, unless specifically stated otherwise.

Everything not explicitely defined in this ABI is left to the implementation.

9.2.1 Names

External names in Fortran are names of entities visible to all subprograms at link
time. This includes names ofCOMMONblocks and Fortran procedures. To avoid
name space conflicts with linked-in libraries, all external names have to be man-
gled. And to avoid name space conflicts of mangled external names with local
names, all local names must also be mangled. The mangling scheme is straight-
forward as follows:

• all names that do not have any underscores in it should haveoneunderscore
appended

• all external names containing one or more underscores in it (whereever)
should havetwounderscores appended2.

• all external names should be mapped to lower case, following the traditional
UNIX model for Fortran compilers

2Historically, this is to be compatible with f2c.
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For examples see figure 9.1:

Figure 9.1: Example mapping of names

Fortran external name Linker name
FOO foo_
foo foo_
Foo foo_
foo_ foo___
f_oo f_oo__

The entry point of the main program unit is calledMAIN__. The symbol name
for the blank common block is__BLNK__. the external name of the unnamed
BLOCK DATAroutine is__BLOCK_DATA__.

9.2.2 Representation of Fortran Types

For historical reasons, GNU Fortran 77 maps Fortran programs to the C ABI, so
the data representation can be explained best by providing the mapping of Fortran
types to C types used by G77 on AMD643 as in figure 9.2. The “TYPE*N” no-
tation specifies that variables or aggregate members of typeTYPEshall occupyN
bytes of storage.

Figure 9.2: Mapping of Fortran to C types

Fortran Data kind Equivalent C type
INTEGER*4 Default integer signed int
INTEGER*8 Double precision integer signed long
REAL*4 Single precision FP number float
REAL*8 Double precision FP number double
COMPLEX*4 Single precision complex FP number complex float
COMPLEX*8 Double precision complex FP numbercomplex double
LOGICAL Boolean logical type signed int
CHARACTER Text string char[] + length

3G77 provides a headerg2c.h with the equivalent C type definitions for all supported Fortran
scalar types.
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The values for typeLOGICALare.TRUE. implemented as 1 and.FALSE.
implemented as 0.

Data objects with aCHARACTERtype4 are represented as an array of char-
acters of the C char type (not guaranteed to be “\0” terminated) with a separate
length counter to distinguish betweenCHARACTERdata objects with a length pa-
rameter, and aggregate types ofCHARACTERdata objects, possibly also with a
length parameter.

Layout of other aggregate types is implementation defined. GNU Fortran puts
all arrays in contiguous memory in column-major order. GNU Fortran 95 builds
an equivalent C struct for derived types without reordering the type fields. Other
compilers may use other representations as needed. The representation and use of
Fortran 90/95 array descriptors is implementation defined. Note that array indices
start at 1 by default.

Fortran 90/95 allow different kinds of each basic type using thekind type
parameter of a type. Kind type parameter values are implementation defined.

Layout of he commonly used Cray pointers is implementation defined.

9.2.3 Argument Passing

For each given Fortran 77 procedure, an equivalent C prototype can be derived.
Once this equivalent C prototype is known, the C ABI conventions should be
applied to determine how arguments are passed to the Fortran procedure.

G77 passes all (user defined) formal arguments of a procedure by reference.
Specifically, pointers to the location in memory of a variable, array, array element,
a temporary location that holds the result of evaluating an expression or a tempo-
rary or permanent location that holds the value of a constant (xf. g77 manual)
are passed as actual arguments. Artificial compiler generated arguments may be
passed by value or by reference as they are inherently compiler and hence imple-
mentation specific.

Data objects with aCHARACTERtype are passed as a pointer to the charac-
ter string and its length, so that eachCHARACTERformal argument in a Fortran
procedure results in two actual arguments in the equivalent C prototype. The first
argument occupies the position in the formal argument list of the Fortran proce-
dure. This argument is a pointer to the array of characters that make up the string,
passed by the caller. The second argument is appended to the end of the user-
specified formal argument list. This argument is of the default integer type and

4This includes sub-strings.
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its value is the length of the array of characters, that is the length, passed as the
first argument. This length is passed by value. When more than oneCHARACTER
argument is present in an argument list, the length arguments are appended in the
order the original arguments appear. The above discussion also applies to sub-
strings.

This ABI does not define the passing of optional arguments. They are allowed
only in Fortran 90/95 and their passing is implementation defined.

This ABI does not define array functions (function returning arrays). They are
allowed only in Fortran 90/95 and requires the definition of array descriptors.

Note that Fortran 90/95 procedure arguments with theINTENT(IN) attribute
should also passed by reference if the procedure is to be linked with code written in
Fortran 77. Fortran 77 does not and can not support theINTENT attribute because
it has no concept of explicit interfaces. It is therefore not possible to declare the
callee’s arguments asINTENT(IN) . A Fortran 77 compiler must assume that all
procedure arguments areINTENT(INOUT) in the Fortran 90/95 sense.

9.2.4 Functions

The calling of statement functions is implementation defined (as they are defined
only locally, the compiler has the freedom to apply any calling convention it likes).

Subroutines with alternate returns (e.g. "SUBROUTINE X(*,*)" called as
"CALL X(*10,*20)") are implemented as functions returning anINTEGERof the
default kind. The value of this returned integer is whatever integer is specified
in the "RETURN" statement for the subroutine5, or 0 for aRETURNstatement
without an argument. It is up to the caller to jump to the corresponding alternate
return label. The actual alternate-return arguments are omitted from the calling
sequence.

An example:

SUBROUTINE SHOW_ALTERNATE_RETURN (N)
INTEGER N
CALL ALTERNATE_RETURN_EXAMPLE (N, *10, *20, *30)
WRITE (*,*) ’OK - Normal Return’
RETURN

10 WRITE (*,*) ’1st alternate return’
RETURN

20 WRITE (*,*) ’2nd alternate return’

5 This integer indicates the position of an alternate return from the subroutine in the formal
argument list
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RETURN
30 WRITE (*,*) ’2nd alternate return’

RETURN
END

SUBROUTINE ALTERNATE_RETURN_EXAMPLE (N, *, *, *)
INTEGER N
IF (N .EQ. 0 ) RETURN ! Implicit "RETURN 0"
IF ( N .EQ. 1 ) RETURN 1
IF ( N .EQ. 2 ) RETURN 2
RETURN 3

END

Here theSUBROUTINE ALTERNATE_RETURN_EXAMPLEis implemented
as a function returning anINTEGER*4 with value 0 if N is 0, 1 if N is 1, 2 if N
is 2 and 3 for all other values of N. This return value is used by the caller as if the
actual call were replaced by this sequence:

INTEGER X
X = CALL ALTERNATE_RETURN_EXAMPLE (N)
GOTO (10, 20, 30), X

All in all the effect is that the index of the returned to label (starting from 1)
will be contained in%rax after the call.

AlternateENTRYpoints of aSUBROUTINEor FUNCTIONshould be treated
as separate subprograms, as mandated by the Fortran standard. I.e. arguments
passed to an alternateENTRYshould be passed as if the alternateENTRYis a sep-
arateSUBROUTINEor FUNCTION. If a FUNCTIONhas alternateENTRYpoints,
the result of each of the alternateENTRYpoints must be returned as if the alternate
ENTRYis a separateFUNCTIONwith the result type of the alternateENTRY. The
external naming of alternateENTRYpoints follows 9.2.1.

9.2.5 COMMON blocks

In absence of anyEQUIVALENCEdeclaration involving variables inCOMMON
blocks the layout of aCOMMONblock is exactly the same as the layout of the
equivalent C structure (with types of variables substituted according to section
9.2.2), including the alignment requirements.

This ABI defines the layout under presence ofEQUIVALENCEstatements
only in some cases:

• the layout of theCOMMONblock must not change if one ignores theEQUIVALENCE,
which amongst other things means:
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• If two arrays are equivalenced, the larger array must be named in theCOMMON
block, and there must be complete inclusion, in particular the other array
may not extend the size of the equivalenced segment. It may also not change
the alignment requirement.

• If an array element and a scalar are equivalenced, the array must be named
in theCOMMONblock and it must not be smaller than the scalar. The type of
the scalar must not require bigger alignment than the array.

• if two scalars are equivalenced they must have the same size and alignment
requirements.

Other cases are implementation defined.
Because the Fortran standard allows the blankCOMMONblock to have different

sizes in different subprograms, it may be impossible to determine if it is small
enough to fit in the.bss section. When compiling for the medium or large code
models the blankCOMMONblock should therefore always be put in the.lbss
section.

9.2.6 Intrinsics

This sections lists the set of intrinsics which has to be supported at minimum by
a conforming compiler. They are separated by origin. They follow regular calling
and naming conventions.

The signature of intrinsics uses the syntaxreturn−type(argtype1, argtype2, ...),
where the individual types can be the following characters:V (as in void) des-
ignates aSUBROUTINE, L a LOGICAL, I an INTEGER, R a REAL, andC a
CHARACTER. HenceI(R,L) designates aFUNCTIONreturning anINTEGER
and taking aREALand aLOGICAL. If an argument is an array, this is indicated
using a trailing number, e.g.I13 is an INTEGERarray with 13 elements. If a
CHARACTERargument or return value has a fixed length, this is indicated using
an asterisk and a trailing number, for exampleC*16 is aCHARACTER(len=16) .
If a CHARACTERargument of arbitrary length must be passed, the trailing number
is replaced withN, for exampleC*N .
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Table 9.1: Mil intrinsics

Name Signature Meaning
BTest L(I,I) Test bit
IAnd I(I,I) Boolean AND
IOr I(I,I) Boolean OR
IEOr I(I,I) Boolean XOR
Not I(I) Boolean NOT
IBClr I(I,I) Clear a bit
IBits I(I,I,I) Extract a bit subfield of a variable
IBSet I(I,I) Set a bit
IShft I(I,I) Logical bit shift
IShftC I(I,I,I) Circular bit shift
MvBits V(I,I,I,I,I) Move a bit field

BTest (I, Pos) Returns.TRUE. if bit Pos in I is set, returns.FALSE. oth-
erwise.

IAnd (I, J) Returns value resulting from a boolean AND on each pair of bits
in I andJ .

IOr (I, J) Returns value resulting from a boolean OR on each pair of bits in
I andJ .

IEOr (I, J) Returns value resulting from a boolean XOR on each pair of bits
in I andJ .

Not (I) Returns value resulting from a boolean NOT on each bit inI .

IBClr (I, Pos) Returns the value ofI with bit Pos cleared (set to zero).

IBits (I, Pos, Len) Extracts a subfield starting from bit positionPos and
with a length (towards the most significant bit) ofLen bits from I . The
result is right-justified and the remaining bits are zeroed.

IBSet (I, Pos) Returns the value ofI with the bit in positionPos set to one.
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IShft (I, Shift) All bits of I are shiftedShift places.Shift.GT.0 in-
dicates a left shift,Shift.EQ.0 indicates no shift, andShift.LT.0
indicates a right shift. Bits shifted out from the least (when shifting right)
or most (when shifting left) significant position are lost. Bits shifted in at
the opposite end are not set (i.e. zero).

IShftC (I, Shift, Size) The rightmostSize bits of the argumentI are
shifted circularlyShift places. The unshifted bits of the result are the
same as the unshifted bits of I.

MvBits (From, FromPos, Len, To, ToPos) MoveLen bits ofFrom from
bit positionsFromPos throughFromPos+Len-1 to bit positionsToPos
throughToPos+Len-1 of To. The bit portions ofTo that are not affected
by the movement of bits are unchanged.
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Table 9.2: F77 intrinsics

Name Meaning
Abs Absolute value
ACos Arc cosine
AInt Truncate to whole number
ANInt Round to nearest whole number
ASin Arc sine
ATan Arc Tangent
ATan2 Arc Tangent
Char Character from code
Cmplx ConstructCOMPLEX(KIND=1) value
Conjg Complex conjugate
Cos Cosine
CosH Hyperbolic cosine
Dble Convert to double precision
DiM Difference magnitude (non-negative subtract)
DProd Double-precision product
Exp Exponential
IChar Code for character
Index Locate aCHARACTERsubstring
Int Convert toINTEGERvalue truncated to whole number
Len Length of character entity
LGe Lexically greater than or equal
LGt Lexically greater than
LLe Lexically less than or equal
LLt Lexically less than
Log Natural logarithm
Log10 Common logarithm
Max Maximum value
Min Minimum value
Mod Remainder
NInt Convert toINTEGERvalue rounded to nearest whole number
Real Convert value to typeREAL(KIND=1)
Sin Sine
SinH Hyperbolic sine
SqRt Square root
Tan Tangent
TanH Hyperbolic tangent 111
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Refer to the Fortran 77 language standard for signature and definition of the
F77 intrinsics listed in table 9.2. These intrinsics can have a prefix as per the
standard hence the table is not exhaustive.

Table 9.3: F90 intrinsics

Name Meaning
AChar ASCII character from code
Bit_Size Number of bits in arguments type
CPU_Time Get current CPU time
IAChar ASCII code for character
Len_Trim Get last non-blank character in string
System_Clock Get current system clock value

Refer to the Fortran 90 language standard for signature and definition of the
F90 intrinsics listed in table 9.3.

Table 9.4: Math intrinsics

Name Signature Meaning
BesJ0 R(R) Bessel function
BesJ1 R(R) Bessel function
BesJN R(I,R) Bessel function
BesY0 R(R) Bessel function
BesY1 R(R) Bessel function
BesYN R(I,R) Bessel function
ErF R(R) Error function
ErFC R(R) Complementary error function
IRand I(I) Random number
Rand R(I) Random number
SRand V(I) Random seed

BesJ0 (X) Calculates the Bessel function of the first kind of order 0 of X. Returns
aREALof the same kind asX.
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BesJ1 (X) Calculates the Bessel function of the first kind of order 1 of X. Returns
aREALof the same kind asX.

BesJN (N, X) Calculates the Bessel function of the first kind of order N of X.
Returns aREALof the same kind asX.

BesY0 (X) Calculates the Bessel function of the second kind of order 0 of X.
Returns aREALof the same kind asX.

BesY1 (X) Calculates the Bessel function of the second kind of order 1 of X.
Returns aREALof the same kind asX.

BesYN (N, X) Calculates the Bessel function of the second kind of order N of X.
Returns aREALof the same kind asX.

ErF (X) Calculates the error function of X. Returns aREALof the same kind
asX.

ErFC (X) Calculates the complementary error function of X, i.e.1 - ERF(X) .
Returns aREALof the same kind asX.

IRand (Flag) Flag is optional. Returns a uniform quasi-random number up to
a system-dependent limit. IfFlag .EQ. 0 or Flag is not passed, the
next number in sequence is returned. IfFlag .EQ. 1 , the generator is
restarted. IfFlag has any other value, the generator is restarted with the
value ofFlag as the new seed.

Rand (Flag) Flag is optional. Returns a uniform quasi-random number between
0 and 1. IfFlag .EQ. 0 or Flag is not passed, the next number in
sequence is returned. IfFlag .EQ. 1 , the generator is restarted. IfFlag
has any other value, the generator is restarted with the value ofFlag as the
new seed.

SRand (Seed) Reinitializes the random number generator forIRand andRand
with the seed inSeed.
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Table 9.5: Unix intrinsics

Name Signature Meaning
Abort V() Abort the program
Access I(C,C) Check file accessibility
DTime V(R2,R) Get elapsed time since last call
ETime V(R2,R) Get elapsed time for process
Flush V(I) Flush buffered output
FNum I(I) Get file descriptor from Fortran unit number
FStat V(I,I13,I) Get file information
GError V(C*N) Get error message for last error
GetArg V(I,C*N) Obtain command-line argument
GetCWD V(C*N,I) Get current working directory
GetEnv V(C*N,C*N) Get environment variable
GetGId I() Get process group ID
GetPId I() Get process ID
GetUId I() Get process user ID
GetLog V(C*N) Get login name
HostNm V(C*N,I) Get host name
IArgC I() Obtain count of command-line arguments
IDate V(I3) Get local date info
IErrNo I() Get error number for last error
ITime V(I3) Get local time of day
LStat V(C*N,I13,I) Get file information
PError V(C*N) Print error message for last error
Rename V(C*N,C*N,I) Rename file
Sleep V(I) Sleep for a specified time
System V(C*N,I) Invoke shell (system) command

Abort () Prints a message and potentially causes a core dump.

Access (Name, Mode) Checks fileNamefor accessibility in the mode specified
by Mode. Returns0 if the file is accessible in that mode, otherwise an er-
ror code. Namemust be aNULL-terminated string ofCHARACTER(i.e.
a C-style string). Trailing blanks inNameare ignored.Mode must be a
concatenation of any of the following characters:r meaning test for read
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permission,w meaning test for write permission,x meaning test for exe-
cute/search permission, or a space meaning test for existence of the file.

DTime (TArray, Result) When called for the first time, returns the num-
ber of seconds of runtime since the start of the program inResult , the
user component of this runtime inTArray(1) , and the system time in
TArray(2) . Subsequent invocations values based on accumulations since
the previous invocation.

ETime (TArray, Result) Returns the number of seconds of runtime since
the start of the program inResult , the user component of this runtime
in TArray(1) , and the system time inTArray(2) . Subsequent invoca-
tions values based on accumulations since the previous invocation.

Flush (Unit) Flushes the Fortran I/O unit with IDUnit . The unit must be
open for output. If the optionalUnit argument is omitted, all open units
are flushed.

FNum (Unit) Returns the UNIX(tm) file descriptor number corresponding to the
Fortran I/O unitUnit . The unit must be open.

FStat (Unit, SArray, Status) Obtains data about the file open on For-
tran I/O unitUnit and places it in the arraySArray . The values in this
array are as follows:

1. Device ID

2. Inode number

3. File mode

4. Number of links

5. Owner’s UID

6. Owner’s GID

7. ID of device containing directory entry for file

8. File size (bytes)

9. Last access time

10. Last modification time

11. Last file status change time
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12. Preferred I/O block size (-1 if not available)

13. Number of blocks allocated (-1 if not available)

If an element is not available, or not relevant on the host system, it is re-
turned as 0 except when indicated otherwise in the above list. If the optional
Status argument is supplied, it contains 0 on success or a nonzero error
code upon return.

Gerror (Message) Returns the system error message corresponding to the last
system error (errno in C). The message is returned inMessage . If Message
is longer than the error message, it is padded with blanks after the message.
If Message is not long enough to hold the error message, the error message
is truncated to the length ofMessage .

GetArg (Pos, Value) Returns inValue the command-line argument in posi-
tion Pos. If there are fever thanPos command-line arguments,Value
is filled with blanks. IfPos is 0, the name of the program is returned. If
Value is longer than the command-line argument, it is padded with blanks
after the argument. IfValue is not long enough to hold the command-line
argument, the argument is truncated to the length ofValue .

GetCWD (Name, Status) Returns inName the current working directory. If
the optionalStatus argument is supplied, it contains 0 on success or a
nonzero error code upon return.

GetEnv (Name, Value) Returns inValue the environment variable identified
with Name. If Namehas not been set,Value is filled with blanks. Anull
character marks the end of the name inName. Trailing blanks inNameare
ignored. If Value is longer than the environment variable, it is padded
with blanks after the variable. IfValue is not long enough to hold the
environment variable, the variable is truncated to the length ofValue .

GetGId () Returns the group ID for the current process.

GetPId () Returns the process ID for the current process.

GetUId () Returns the user ID for the current process.

GetLog (Login) Returns the login name for the process inLogin , or a blank
string if the host system does not supportgetlogin(3) . If Login is
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longer than the login name, it is padded with blanks after the login name.
If Login is not long enough to hold the login name, the login name is
truncated to the length of ofLogin .

HotNm (Name, Status) Returns inNamesystem’s host name. If the optional
Status argument is supplied, it contains 0 on success or a nonzero error
code upon return. IfNameis longer than the host name, it is padded with
blanks after the host name. IfName is not long enough to hold the host
name, the host name is truncated to the length of ofName.

IArgC () Returns the number of command-line arguments. The program name
itself is not included in this number.

IDate (TArray) Returns the current local date day, month, year in elements 1,
2, and 3 ofTarray , respectively. The year has four significant digits.

IErrno () Returns the last system error number (errno in C).

ITime (TArray) Returns the current local time hour, minutes, and seconds in
elements 1, 2, and 3 ofTArray , respectively.

LStat (File, SArray, Status) Obtains data about a file namedFile and
places places it in the arraySArray . The values in this array are as follows:

1. Device ID

2. Inode number

3. File mode

4. Number of links

5. Owner’s UID

6. Owner’s GID

7. ID of device containing directory entry for file

8. File size (bytes)

9. Last access time

10. Last modification time

11. Last file status change time

12. Preferred I/O block size (-1 if not available)
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13. Number of blocks allocated (-1 if not available)

If an element is not available, or not relevant on the host system, it is re-
turned as 0 except when indicated otherwise in the above list. If the optional
Status argument is supplied, it contains 0 on success or a nonzero error
code upon return.

PError (MsgPrefix) Prints a newline-terminated error message corresponding
to the last system error. This is prefixed by the stringMsgPrefix , a colon
and a space. The error message is printed on the Cstderr stream.

Rename (Path1, Path2, Status) Renames the file namedPath1 toPath2 .
A null character marks the end of the names. Trailing blanks are ignored.
If the optionalStatus argument is supplied, it contains 0 on success or a
nonzero error code upon return.

Sleep (Seconds) Causes the program to pause forSeconds seconds.

System (Command, Status) Passes the string inCommandto a shell though
system(3) . If the optional argumentStatus is present, it contains the
value returned bysystem(3) .

118

AMD64 ABI Draft 0.98 – September 27, 2006 – 9:24



Appendix A

Linux Conventions

This chapter describes some details that are only relevant to GNU/Linux systems
and the Linux kernel.

A.1 Execution of 32-bit Programs

The AMD64 processors are able to execute 64-bit AMD64 and also 32-bit ia32
programs. Libraries conforming to the Intel386 ABI will live in the normal places
like /lib , /usr/lib and /usr/bin . Libraries following the AMD64, will
uselib64 subdirectories for the libraries, e.g/lib64 and/usr/lib64 . Pro-
grams conforming to Intel386 ABI and to the AMD64 ABI will share directories
like /usr/bin . In particular, there will be no/bin64 directory.

A.2 AMD64 Linux Kernel Conventions

The section is informative only.

A.2.1 Calling Conventions

The Linux AMD64 kernel uses internally the same calling conventions as user-
level applications (see section 3.2.3 for details). User-level applications that like
to call system calls should use the functions from the C library. The interface
between the C library and the Linux kernel is the same as for the user-level appli-
cations with the following differences:
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1. User-level applications use as integer registers for passing the sequence
%rdi , %rsi , %rdx , %rcx , %r8 and%r9. The kernel interface uses%rdi ,
%rsi , %rdx , %r10, %r8 and%r9.

2. A system-call is done via thesyscall instruction. The kernel destroys
registers%rcx and%r11.

3. The number of the syscall has to be passed in register%rax .

4. System-calls are limited to six arguments, no argument is passed directly on
the stack.

5. Returning from thesyscall , register%rax contains the result of the
system-call. A value in the range between -4095 and -1 indicates an error,
it is -errno .

6. Only values of class INTEGER or class MEMORY are passed to the kernel.

A.2.2 Stack Layout

The Linux kernel does not honor the red zone (see 3.2.2 and therefore this area is
not allowed to be used by kernel code. Kernel code should be compiled by GCC
with the option-mno-red-zone .

A.2.3 Required Processor Features

Any program or kernel can expect that a AMD64 processor implements the fea-
tures mentioned in table A.1. In general a program has to check itself whether
those features are available but for AMD64 systems, these should always be avail-
able. Table A.1 uses the names for the processor features as documented in the
processor manual.

A.2.4 Miscellaneous Remarks

Linux Kernel code is not allowed to change the x87 and SSE units. If those are
changed by kernel code, they have to be restored properly before sleeping or leav-
ing the kernel. On preemptive kernels also more precautions may be needed.
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Table A.1: Required Processor Features

Feature Comment
Features need for programs

fpu Necessary forlong double , MMX
tsc User-visible
cx8 User-visible
cmov User-visible
mmx User-visible
sse User-visible, required forfloat
sse2 User-visible, required fordouble
fxsr Required for SSE/SSE2
syscall For calling the kernel

Features need in the kernel
pae This kind of page tables is used
pse PAE needs PSE.
msr At least needed to enter long mode
pge Kernel optimization
pat Kernel optimization
clflush Kernel optimization

121

AMD64 ABI Draft 0.98 – September 27, 2006 – 9:24



Index

.cfi_adjust_cfa_offset , 93

.cfi_def_cfa , 93

.cfi_def_cfa_offset , 93

.cfi_def_cfa_register , 93

.cfi_endproc , 93

.cfi_escape , 94

.cfi_offset , 93

.cfi_rel_offset , 94

.cfi_startproc , 93

.eh_frame , 93
%rax , 46
_UA_CLEANUP_PHASE, 80
_UA_FORCE_UNWIND, 79
_UA_SEARCH_PHASE, 80
_Unwind_Context , 78
_Unwind_DeleteException , 78
_Unwind_Exception , 78
_Unwind_ForcedUnwind , 78, 79
_Unwind_GetCFA , 78
_Unwind_GetGR , 78
_Unwind_GetIP , 78
_Unwind_GetLanguageSpecificData ,

78
_Unwind_GetRegionStart , 78
_Unwind_RaiseException , 78,

79
_Unwind_Resume , 78
_Unwind_SetGR , 78
_Unwind_SetIP , 78
__float128 , 7

auxiliary vector, 26

boolean, 9
byte, 7

C++, 99
Call Frame Information tables, 78
code models, 29

double quadword, 7
doubleword, 7
DT_FINI , 76
DT_FINI_ARRAY, 76
DT_INIT , 76
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DWARF Debugging Information For-

mat, 78, 93

eightbyte, 7
exceptions, 19
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Kernel code model, 29

Large code model, 30
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Large position independent code model,
31

longjmp , 79

Medium code model, 30
Medium position independent code model,

31

PIC, 30, 31
Procedure Linkage Table, 65
procedure linkage table, 72–74
program interpreter, 76

quadword, 7

R_X86_64_JUMP_SLOT, 73, 74
red zone, 12, 117
register save area, 47

signal , 19
sixteenbyte, 7
size_t , 9
Small code model, 29
Small position independent code model,

30

terminate() , 80
Thread-Local Storage, 67
twobyte, 7

Unwind Library interface, 78

va_arg , 49
va_list , 48
va_start , 48

word, 7
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