Linux Standard Base Core Specification 3.1

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Portions of the text are copyrighted by the following parties:

  • The Regents of the University of California

  • Free Software Foundation

  • Ian F. Darwin

  • Paul Vixie

  • BSDI (now Wind River)

  • Andrew G Morgan

  • Jean-loup Gailly and Mark Adler

  • Massachusetts Institute of Technology

These excerpts are being used in accordance with their respective licenses.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

UNIX is a registered trademark of The Open Group.

LSB is a trademark of the Free Standards Group in the United States and other countries.

AMD is a trademark of Advanced Micro Devices, Inc.

Intel and Itanium are registered trademarks and Intel386 is a trademark of Intel Corporation.

PowerPC is a registered trademark and PowerPC Architecture is a trademark of the IBM Corporation.

S/390 is a registered trademark of the IBM Corporation.

OpenGL is a registered trademark of Silicon Graphics, Inc.


Table of Contents
Foreword
Introduction
I. Introductory Elements
1. Scope
1.1. General
1.2. Module Specific Scope
2. References
2.1. Normative References
2.2. Informative References/Bibliography
3. Requirements
3.1. Relevant Libraries
3.2. LSB Implementation Conformance
3.3. LSB Application Conformance
4. Definitions
5. Terminology
6. Documentation Conventions
7. Relationship To ISO/IEC 9945 POSIX
8. Relationship To Other Free Standards Group Specifications
II. Executable And Linking Format (ELF)
9. Introduction
10. Low Level System Information
10.1. Operating System Interface
10.2. Machine Interface
11. Object Format
11.1. Object Files
11.2. Sections
11.3. Special Sections
11.4. Symbol Mapping
11.5. DWARF Extensions
11.6. Exception Frames
11.7. Symbol Versioning
11.8. ABI note tag
12. Dynamic Linking
12.1. Program Loading and Dynamic Linking
12.2. Program Header
12.3. Dynamic Entries
III. Base Libraries
13. Base Libraries
13.1. Introduction
13.2. Program Interpreter
13.3. Interfaces for libc
13.4. Data Definitions for libc
13.5. Interface Definitions for libc
13.6. Interfaces for libm
13.7. Data Definitions for libm
13.8. Interface Definitions for libm
13.9. Interfaces for libpthread
13.10. Data Definitions for libpthread
13.11. Interface Definitions for libpthread
13.12. Interfaces for libgcc_s
13.13. Data Definitions for libgcc_s
13.14. Interfaces for libdl
13.15. Data Definitions for libdl
13.16. Interface Definitions for libdl
13.17. Interfaces for librt
13.18. Interfaces for libcrypt
13.19. Interfaces for libpam
13.20. Data Definitions for libpam
13.21. Interface Definitions for libpam
IV. Utility Libraries
14. Utility Libraries
14.1. Introduction
14.2. Interfaces for libz
14.3. Data Definitions for libz
14.4. Interface Definitions for libz
14.5. Interfaces for libncurses
14.6. Data Definitions for libncurses
14.7. Interfaces for libutil
14.8. Interface Definitions for libutil
V. Commands and Utilities
15. Commands and Utilities
15.1. Commands and Utilities
15.2. Command Behavior
VI. Execution Environment
16. File System Hierarchy
16.1. /dev: Device Files
16.2. /etc: Host-specific system configuration
16.3. User Accounting Databases
16.4. Path For System Administration Utilities
17. Additional Recommendations
17.1. Recommendations for applications on ownership and permissions
18. Additional Behaviors
18.1. Mandatory Optional Behaviors
19. Localization
19.1. Introduction
19.2. Regular Expressions
19.3. Pattern Matching Notation
VII. System Initialization
20. System Initialization
20.1. Cron Jobs
20.2. Init Script Actions
20.3. Comment Conventions for Init Scripts
20.4. Installation and Removal of Init Scripts
20.5. Run Levels
20.6. Facility Names
20.7. Script Names
20.8. Init Script Functions
VIII. Users & Groups
21. Users & Groups
21.1. User and Group Database
21.2. User & Group Names
21.3. User ID Ranges
21.4. Rationale
IX. Package Format and Installation
22. Software Installation
22.1. Introduction
22.2. Package File Format
22.3. Package Script Restrictions
22.4. Package Tools
22.5. Package Naming
22.6. Package Dependencies
22.7. Package Architecture Considerations
A. Alphabetical Listing of Interfaces
A.1. libc
A.2. libcrypt
A.3. libdl
A.4. libm
A.5. libncurses
A.6. libpam
A.7. libpthread
A.8. librt
A.9. libutil
A.10. libz
B. Future Directions (Informative)
B.1. Introduction
B.2. Commands And Utilities
lsbinstall -- installation tool for various types of data
C. GNU Free Documentation License (Informative)
C.1. PREAMBLE
C.2. APPLICABILITY AND DEFINITIONS
C.3. VERBATIM COPYING
C.4. COPYING IN QUANTITY
C.5. MODIFICATIONS
C.6. COMBINING DOCUMENTS
C.7. COLLECTIONS OF DOCUMENTS
C.8. AGGREGATION WITH INDEPENDENT WORKS
C.9. TRANSLATION
C.10. TERMINATION
C.11. FUTURE REVISIONS OF THIS LICENSE
C.12. How to use this License for your documents
List of Figures
11-1. Version Definition Entries
11-2. Version Definition Auxiliary Entries
11-3. Version Needed Entries
11-4. Version Needed Auxiliary Entries
12-1. Dynamic Structure
List of Tables
2-1. Normative References
2-2. Other References
3-1. Standard Library Names
3-2. Standard Library Names defined in the Architecture Specific Parts of ISO/IEC 23360
10-1. Scalar Types
11-1. ELF Section Types
11-2. Additional Section Types
11-3. ELF Special Sections
11-4. Additional Special Sections
11-5. DWARF Exception Header value format
11-6. DWARF Exception Header application
11-7. Additional DWARF Call Frame Instructions
11-8. Call Frame Information Format
11-9. Common Information Entry Format
11-10. Frame Description Entry Format
11-11. .eh_frame_hdr Section Format
12-1. Linux Segment Types
13-1. libc Definition
13-2. libc - RPC Function Interfaces
13-3. libc - System Calls Function Interfaces
13-4. libc - Standard I/O Function Interfaces
13-5. libc - Standard I/O Data Interfaces
13-6. libc - Signal Handling Function Interfaces
13-7. libc - Signal Handling Data Interfaces
13-8. libc - Localization Functions Function Interfaces
13-9. libc - Localization Functions Data Interfaces
13-10. libc - Socket Interface Function Interfaces
13-11. libc - Wide Characters Function Interfaces
13-12. libc - String Functions Function Interfaces
13-13. libc - IPC Functions Function Interfaces
13-14. libc - Regular Expressions Function Interfaces
13-15. libc - Character Type Functions Function Interfaces
13-16. libc - Time Manipulation Function Interfaces
13-17. libc - Time Manipulation Data Interfaces
13-18. libc - Terminal Interface Functions Function Interfaces
13-19. libc - System Database Interface Function Interfaces
13-20. libc - Language Support Function Interfaces
13-21. libc - Large File Support Function Interfaces
13-22. libc - Standard Library Function Interfaces
13-23. libc - Standard Library Data Interfaces
13-24. libm Definition
13-25. libm - Math Function Interfaces
13-26. libm - Math Data Interfaces
13-27. libpthread Definition
13-28. libpthread - Realtime Threads Function Interfaces
13-29. libpthread - Posix Threads Function Interfaces
13-30. libpthread - Thread aware versions of libc interfaces Function Interfaces
13-31. libgcc_s Definition
13-32. libdl Definition
13-33. libdl - Dynamic Loader Function Interfaces
13-34. librt Definition
13-35. librt - Shared Memory Objects Function Interfaces
13-36. librt - Clock Function Interfaces
13-37. librt - Timers Function Interfaces
13-38. libcrypt Definition
13-39. libcrypt - Encryption Function Interfaces
13-40. libpam Definition
13-41. libpam - Pluggable Authentication API Function Interfaces
14-1. libz Definition
14-2. libz - Compression Library Function Interfaces
14-3. libncurses Definition
14-4. libncurses - Curses Function Interfaces
14-5. libncurses - Curses Data Interfaces
14-6. libutil Definition
14-7. libutil - Utility Functions Function Interfaces
15-1. Commands And Utilities
15-2. Built In Utilities
15-1. Escape Sequences
21-1. Required User & Group Names
21-2. Optional User & Group Names
22-1. RPM File Format
22-2. Signature Format
22-3. Index Type values
22-4. Header Private Tag Values
22-5. Signature Tag Values
22-6. Signature Digest Tag Values
22-7. Signature Signing Tag Values
22-8. Package Info Tag Values
22-9. Installation Tag Values
22-10. File Info Tag Values
22-11. File Flags
22-12. Package Dependency Tag Values
22-13. Index Type values
22-14. Package Dependency Attributes
22-15. Other Tag Values
22-16. CPIO File Format
A-1. libc Function Interfaces
A-2. libc Data Interfaces
A-3. libcrypt Function Interfaces
A-4. libdl Function Interfaces
A-5. libm Function Interfaces
A-6. libm Data Interfaces
A-7. libncurses Function Interfaces
A-8. libncurses Data Interfaces
A-9. libpam Function Interfaces
A-10. libpthread Function Interfaces
A-11. librt Function Interfaces
A-12. libutil Function Interfaces
A-13. libz Function Interfaces

Foreword

This is version 3.1 of the Linux Standard Base Core Specification. This specification is part of a family of specifications under the general title "Linux Standard Base". Developers of applications or implementations interested in using the LSB trademark should see the Free Standards Group Certification Policy for details.


Introduction

The LSB defines a binary interface for application programs that are compiled and packaged for LSB-conforming implementations on many different hardware architectures. Since a binary specification shall include information specific to the computer processor architecture for which it is intended, it is not possible for a single document to specify the interface for all possible LSB-conforming implementations. Therefore, the LSB is a family of specifications, rather than a single one.

This document should be used in conjunction with the documents it references. This document enumerates the system components it includes, but descriptions of those components may be included entirely or partly in this document, partly in other documents, or entirely in other reference documents. For example, the section that describes system service routines includes a list of the system routines supported in this interface, formal declarations of the data structures they use that are visible to applications, and a pointer to the underlying referenced specification for information about the syntax and semantics of each call. Only those routines not described in standards referenced by this document, or extensions to those standards, are described in the detail. Information referenced in this way is as much a part of this document as is the information explicitly included here.

The specification carries a version number of either the form x.y or x.y.z. This version number carries the following meaning:

Since this specification is a descriptive Application Binary Interface, and not a source level API specification, it is not possible to make a guarantee of 100% backward compatibility between major releases. However, it is the intent that those parts of the binary interface that are visible in the source level API will remain backward compatible from version to version, except where a feature marked as "Deprecated" in one release may be removed from a future release.

Implementors are strongly encouraged to make use of symbol versioning to permit simultaneous support of applications conforming to different releases of this specification.


Chapter 1. Scope

1.1. General

The Linux Standard Base (LSB) defines a system interface for compiled applications and a minimal environment for support of installation scripts. Its purpose is to enable a uniform industry standard environment for high-volume applications conforming to the LSB.

These specifications are composed of two basic parts: A common specification ("LSB-generic" or "generic LSB"), ISO/IEC 23360 Part 1, describing those parts of the interface that remain constant across all implementations of the LSB, and an architecture-specific part ("LSB-arch" or "archLSB") describing the parts of the interface that vary by processor architecture. Together, the LSB-generic and the relevant architecture-specific part of ISO/IEC 23360 for a single hardware architecture provide a complete interface specification for compiled application programs on systems that share a common hardware architecture.

ISO/IEC 23360 Part 1, the LSB-generic document, should be used in conjunction with an architecture-specific part. Whenever a section of the LSB-generic specification is supplemented by architecture-specific information, the LSB-generic document includes a reference to the architecture part. Architecture-specific parts of ISO/IEC 23360 may also contain additional information that is not referenced in the LSB-generic document.

The LSB contains both a set of Application Program Interfaces (APIs) and Application Binary Interfaces (ABIs). APIs may appear in the source code of portable applications, while the compiled binary of that application may use the larger set of ABIs. A conforming implementation provides all of the ABIs listed here. The compilation system may replace (e.g. by macro definition) certain APIs with calls to one or more of the underlying binary interfaces, and may insert calls to binary interfaces as needed.

The LSB is primarily a binary interface definition. Not all of the source level APIs available to applications may be contained in this specification.


1.2. Module Specific Scope

This is the Core module of the Linux Standard Base (LSB), ISO/IEC 23360 Part 1. This module provides the fundamental system interfaces, libraries, and runtime environment upon which all conforming applications and libraries depend.

Interfaces described in this part of ISO/IEC 23360 are mandatory except where explicitly listed otherwise. Core interfaces may be supplemented by other modules; all modules are built upon the core.


Chapter 2. References

2.1. Normative References

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

Note: Where copies of a document are available on the World Wide Web, a Uniform Resource Locator (URL) is given for informative purposes only. This may point to a more recent copy of the referenced specification, or may be out of date. Reference copies of specifications at the revision level indicated may be found at the Free Standards Group's Reference Specifications site.

Table 2-1. Normative References

NameTitleURL
Filesystem Hierarchy StandardFilesystem Hierarchy Standard (FHS) 2.3http://www.pathname.com/fhs/
ISO C (1999)ISO/IEC 9899: 1999, Programming Languages --C
ISO POSIX (2003)

ISO/IEC 9945-1:2003 Information technology -- Portable Operating System Interface (POSIX) -- Part 1: Base Definitions

ISO/IEC 9945-2:2003 Information technology -- Portable Operating System Interface (POSIX) -- Part 2: System Interfaces

ISO/IEC 9945-3:2003 Information technology -- Portable Operating System Interface (POSIX) -- Part 3: Shell and Utilities

ISO/IEC 9945-4:2003 Information technology -- Portable Operating System Interface (POSIX) -- Part 4: Rationale

Including Technical Cor. 1: 2004

http://www.unix.org/version3/
Itanium™ C++ ABIItanium™ C++ ABI (Revision 1.83)http://refspecs.freestandards.org/cxxabi-1.83.html
Large File SupportLarge File Supporthttp://www.UNIX-systems.org/version2/whatsnew/lfs20mar.html
SUSv2CAE Specification, January 1997, System Interfaces and Headers (XSH),Issue 5 (ISBN: 1-85912-181-0, C606)http://www.opengroup.org/publications/catalog/un.htm
SVID Issue 3American Telephone and Telegraph Company, System V Interface Definition, Issue 3 ; Morristown, NJ, UNIX Press, 1989.(ISBN 0201566524)
SVID Issue 4System V Interface Definition,Fourth Edition
System V ABISystem V Application Binary Interface, Edition 4.1http://www.caldera.com/developers/devspecs/gabi41.pdf
System V ABI UpdateSystem V Application Binary Interface - DRAFT - 17 December 2003http://www.caldera.com/developers/gabi/2003-12-17/contents.html
X/Open CursesCAE Specification, May 1996, X/Open Curses, Issue 4, Version 2 (ISBN: 1-85912-171-3, C610), plus Corrigendum U018http://www.opengroup.org/publications/catalog/un.htm

2.2. Informative References/Bibliography

In addition, the specifications listed below provide essential background information to implementors of this specification. These references are included for information only.

Table 2-2. Other References

NameTitleURL
DWARF Debugging Information Format, Revision 2.0.0DWARF Debugging Information Format, Revision 2.0.0 (July 27, 1993)http://refspecs.freestandards.org/dwarf/dwarf-2.0.0.pdf
DWARF Debugging Information Format, Revision 3.0.0 (Draft)DWARF Debugging Information Format, Revision 3.0.0 (Draft)http://refspecs.freestandards.org/dwarf/
IEC 60559/IEEE 754 Floating PointIEC 60559:1989 Binary floating-point arithmetic for microprocessor systemshttp://www.ieee.org/
ISO/IEC TR14652ISO/IEC Technical Report 14652:2002 Specification method for cultural conventions
ITU-T V.42International Telecommunication Union Recommendation V.42 (2002): Error-correcting procedures for DCEs using asynchronous-to-synchronous conversionITUVhttp://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-V.42
Li18nux Globalization SpecificationLI18NUX 2000 Globalization Specification, Version 1.0 with Amendment 4http://www.li18nux.org/docs/html/LI18NUX-2000-amd4.htm
Linux Allocated Device RegistryLINUX ALLOCATED DEVICEShttp://www.lanana.org/docs/device-list/devices.txt
PAMOpen Software Foundation, Request For Comments: 86.0 , October 1995, V. Samar & R.Schemers (SunSoft)http://www.opengroup.org/tech/rfc/mirror-rfc/rfc86.0.txt
RFC 1321: The MD5 Message-Digest AlgorithmIETF RFC 1321: The MD5 Message-Digest Algorithmhttp://www.ietf.org/rfc/rfc1321.txt
RFC 1831/1832 RPC & XDRIETF RFC 1831 & 1832http://www.ietf.org/
RFC 1833: Binding Protocols for ONC RPC Version 2IETF RFC 1833: Binding Protocols for ONC RPC Version 2http://www.ietf.org/rfc/rfc1833.txt
RFC 1950: ZLIB Compressed Data Format SpecicationIETF RFC 1950: ZLIB Compressed Data Format Specificationhttp://www.ietf.org/rfc/rfc1950.txt
RFC 1951: DEFLATE Compressed Data Format SpecificationIETF RFC 1951: DEFLATE Compressed Data Format Specification version 1.3http://www.ietf.org/rfc/rfc1951.txt
RFC 1952: GZIP File Format SpecificationIETF RFC 1952: GZIP file format specification version 4.3http://www.ietf.org/rfc/rfc1952.txt
RFC 2440: OpenPGP Message FormatIETF RFC 2440: OpenPGP Message Formathttp://www.ietf.org/rfc/rfc2440.txt
RFC 2821:Simple Mail Transfer ProtocolIETF RFC 2821: Simple Mail Transfer Protocolhttp://www.ietf.org/rfc/rfc2821.txt
RFC 2822:Internet Message FormatIETF RFC 2822: Internet Message Formathttp://www.ietf.org/rfc/rfc2822.txt
RFC 791:Internet ProtocolIETF RFC 791: Internet Protocol Specificationhttp://www.ietf.org/rfc/rfc791.txt
RPM Package FormatRPM Package Format V3.0http://www.rpm.org/max-rpm/s1-rpm-file-format-rpm-file-format.html
SUSv2 Commands and UtilitiesThe Single UNIX Specification(SUS) Version 2, Commands and Utilities (XCU), Issue 5 (ISBN: 1-85912-191-8, C604)http://www.opengroup.org/publications/catalog/un.htm
zlib Manualzlib 1.2 Manualhttp://www.gzip.org/zlib/

Chapter 3. Requirements

3.1. Relevant Libraries

The libraries listed in Table 3-1 shall be available on a Linux Standard Base system, with the specified runtime names. The libraries listed in Table 3-2 are architecture specific, but shall be available on all LSB conforming systems. This list may be supplemented or amended by the relevant architecture specific part of ISO/IEC 23360.

Table 3-1. Standard Library Names

LibraryRuntime Name
libdllibdl.so.2
libcryptlibcrypt.so.1
libzlibz.so.1
libncurseslibncurses.so.5
libutillibutil.so.1
libpthreadlibpthread.so.0
librtlibrt.so.1
libpamlibpam.so.0
libgcc_slibgcc_s.so.1

Table 3-2. Standard Library Names defined in the Architecture Specific Parts of ISO/IEC 23360

LibraryRuntime Name
libmSee archLSB
libcSee archLSB
proginterpSee archLSB

These libraries will be in an implementation-defined directory which the dynamic linker shall search by default.


3.2. LSB Implementation Conformance

A conforming implementation is necessarily architecture specific, and must provide the interfaces specified by both the generic LSB Core specification (ISO/IEC 23360 Part 1) and the relevant architecture specific part of ISO/IEC 23360.

Rationale: An implementation must provide at least the interfaces specified in these specifications. It may also provide additional interfaces.

A conforming implementation shall satisfy the following requirements:

  • A processor architecture represents a family of related processors which may not have identical feature sets. The architecture specific parts of ISO/IEC 23360 that supplement this specification for a given target processor architecture describe a minimum acceptable processor. The implementation shall provide all features of this processor, whether in hardware or through emulation transparent to the application.

  • The implementation shall be capable of executing compiled applications having the format and using the system interfaces described in this document.

  • The implementation shall provide libraries containing the interfaces specified by this document, and shall provide a dynamic linking mechanism that allows these interfaces to be attached to applications at runtime. All the interfaces shall behave as specified in this document.

  • The map of virtual memory provided by the implementation shall conform to the requirements of this document.

  • The implementation's low-level behavior with respect to function call linkage, system traps, signals, and other such activities shall conform to the formats described in this document.

  • The implementation shall provide all of the mandatory interfaces in their entirety.

  • The implementation may provide one or more of the optional interfaces. Each optional interface that is provided shall be provided in its entirety. The product documentation shall state which optional interfaces are provided.

  • The implementation shall provide all files and utilities specified as part of this document in the format defined here and in other referenced documents. All commands and utilities shall behave as required by this document. The implementation shall also provide all mandatory components of an application's runtime environment that are included or referenced in this document.

  • The implementation, when provided with standard data formats and values at a named interface, shall provide the behavior defined for those values and data formats at that interface. However, a conforming implementation may consist of components which are separately packaged and/or sold. For example, a vendor of a conforming implementation might sell the hardware, operating system, and windowing system as separately packaged items.

  • The implementation may provide additional interfaces with different names. It may also provide additional behavior corresponding to data values outside the standard ranges, for standard named interfaces.


3.3. LSB Application Conformance

A conforming application is necessarily architecture specific, and must conform to both the generic LSB Core specification (ISO/IEC 23360 Part 1)and the relevant architecture specific part of ISO/IEC 23360.

A conforming application shall satisfy the following requirements:

  • Its executable files shall be either shell scripts or object files in the format defined for the Object File Format system interface.

  • Its object files shall participate in dynamic linking as defined in the Program Loading and Linking System interface.

  • It shall employ only the instructions, traps, and other low-level facilities defined in the Low-Level System interface as being for use by applications.

  • If it requires any optional interface defined in this document in order to be installed or to execute successfully, the requirement for that optional interface shall be stated in the application's documentation.

  • It shall not use any interface or data format that is not required to be provided by a conforming implementation, unless:

    • If such an interface or data format is supplied by another application through direct invocation of that application during execution, that application shall be in turn an LSB conforming application.

    • The use of that interface or data format, as well as its source, shall be identified in the documentation of the application.

  • It shall not use any values for a named interface that are reserved for vendor extensions.

A strictly conforming application shall not require or use any interface, facility, or implementation-defined extension that is not defined in this document in order to be installed or to execute successfully.


Chapter 4. Definitions

For the purposes of this document, the following definitions, as specified in the ISO/IEC Directives, Part 2, 2001, 4th Edition, apply:

can 

be able to; there is a possibility of; it is possible to

cannot 

be unable to; there is no possibilty of; it is not possible to

may 

is permitted; is allowed; is permissible

need not 

it is not required that; no...is required

shall 

is to; is required to; it is required that; has to; only...is permitted; it is necessary

shall not 

is not allowed [permitted] [acceptable] [permissible]; is required to be not; is required that...be not; is not to be

should 

it is recommended that; ought to

should not 

it is not recommended that; ought not to


Chapter 5. Terminology

For the purposes of this document, the following terms apply:

archLSB

The architectural part of the LSB Specification which describes the specific parts of the interface that are platform specific. The archLSB is complementary to the gLSB.

Binary Standard

The total set of interfaces that are available to be used in the compiled binary code of a conforming application.

gLSB

The common part of the LSB Specification that describes those parts of the interface that remain constant across all hardware implementations of the LSB.

implementation-defined

Describes a value or behavior that is not defined by this document but is selected by an implementor. The value or behavior may vary among implementations that conform to this document. An application should not rely on the existence of the value or behavior. An application that relies on such a value or behavior cannot be assured to be portable across conforming implementations. The implementor shall document such a value or behavior so that it can be used correctly by an application.

Shell Script

A file that is read by an interpreter (e.g., awk). The first line of the shell script includes a reference to its interpreter binary.

Source Standard

The set of interfaces that are available to be used in the source code of a conforming application.

undefined

Describes the nature of a value or behavior not defined by this document which results from use of an invalid program construct or invalid data input. The value or behavior may vary among implementations that conform to this document. An application should not rely on the existence or validity of the value or behavior. An application that relies on any particular value or behavior cannot be assured to be portable across conforming implementations.

unspecified

Describes the nature of a value or behavior not specified by this document which results from use of a valid program construct or valid data input. The value or behavior may vary among implementations that conform to this document. An application should not rely on the existence or validity of the value or behavior. An application that relies on any particular value or behavior cannot be assured to be portable across conforming implementations.

Other terms and definitions used in this document shall have the same meaning as defined in Chapter 3 of the Base Definitions volume of ISO POSIX (2003).


Chapter 6. Documentation Conventions

Throughout this document, the following typographic conventions are used:

function() 

the name of a function

command 

the name of a command or utility

CONSTANT 

a constant value

parameter 

a parameter

variable 

a variable

Throughout this specification, several tables of interfaces are presented. Each entry in these tables has the following format:

name 

the name of the interface

(symver) 

An optional symbol version identifier, if required.

[refno] 

A reference number indexing the table of referenced specifications that follows this table.

For example,

forkpty(GLIBC_2.0) [SUSv3]

refers to the interface named forkpty() with symbol version GLIBC_2.0 that is defined in the SUSv3 reference.

Note: Symbol versions are defined in the architecture specific parts of ISO/IEC 23360 only.


Chapter 7. Relationship To ISO/IEC 9945 POSIX

This specification includes many interfaces described in ISO POSIX (2003). Unless otherwise specified, such interfaces should behave exactly as described in that specification. Any conflict between the requirements described here and the ISO POSIX (2003) standard is unintentional, except as explicitly noted otherwise.

Note: In addition to the differences noted inline in this specification, PDTR 24715 has extracted the differences between this specification and ISO POSIX (2003) into a single place. It is the long term plan of the Free Standards Group to converge the LSB Core Specification with ISO/IEC 9945 POSIX.

The LSB Specification Authority is responsible for deciding the meaning of conformance to normative referenced standards in the LSB context. Problem Reports regarding underlying or referenced standards in any other context will be referred to the relevant maintenance body for that standard.


Chapter 8. Relationship To Other Free Standards Group Specifications

The LSB is the base for several other specification projects under the umbrella of the Free Standards Group (FSG). This specification is the foundation, and other specifications build on the interfaces defined here. However, beyond those specifications listed as Normative References, this specification has no dependencies on other FSG projects.


Chapter 9. Introduction

Executable and Linking Format (ELF) defines the object format for compiled applications. This specification supplements the information found in System V ABI Update and is intended to document additions made since the publication of that document.


Chapter 10. Low Level System Information

10.1. Operating System Interface

LSB-conforming applications shall assume that stack, heap and other allocated memory regions will be non-executable. The application must take steps to make them executable if needed.


10.2. Machine Interface

10.2.1. Data Representation

LSB-conforming applications shall use the data representation as defined in the Arcitecture specific ELF documents.


10.2.1.1. Fundamental Types

In addition to the fundamental types specified in the relevant architecture specific part of ISO/IEC 23360, a 1 byte data type is defined here.

Table 10-1. Scalar Types

TypeCC++sizeofAlignment (bytes)Architecture Representation
Integral_Boolbool11byte


Chapter 11. Object Format

11.1. Object Files

LSB-conforming implementations shall support the object file Executable and Linking Format (ELF), which is defined by the following documents:

Conforming implementations may also support other unspecified object file formats.


11.2. Sections

11.2.1. Introduction

As described in System V ABI, an ELF object file contains a number of sections.


11.2.2. Sections Types

The section header table is an array of Elf32_Shdr or Elf64_Shdr structures as described in System V ABI. The sh_type member shall be either a value from Table 11-1, drawn from the System V ABI, or one of the additional values specified in Table 11-2.

A section header's sh_type member specifies the sections's semantics.


11.2.2.1. ELF Section Types

The following section types are defined in the System V ABI and the System V ABI Update.

Table 11-1. ELF Section Types

NameValueDescription
SHT_DYNAMIC0x6The section holds information for dynamic linking. Currently, an object file shall have only one dynamic section, but this restriction may be relaxed in the future. See `Dynamic Section' in Chapter 5 for details.
SHT_DYNSYM0xbThis section holds a minimal set of symbols adequate for dynamic linking. See also SHT_SYMTAB. Currently, an object file may have either a section of SHT_SYMTAB type or a section of SHT_DYNSYM type, but not both. This restriction may be relaxed in the future.
SHT_FINI_ARRAY0xfThis section contains an array of pointers to termination functions, as described in `Initialization and Termination Functions' in Chapter 5. Each pointer in the array is taken as a parameterless procedure with a void return.
SHT_HASH0x5The section holds a symbol hash table. Currently, an object file shall have only one hash table, but this restriction may be relaxed in the future. See `Hash Table' in the Chapter 5 for details.
SHT_INIT_ARRAY0xeThis section contains an array of pointers to initialization functions, as described in `Initialization and Termination Functions' in Chapter 5. Each pointer in the array is taken as a parameterless procedure with a void return.
SHT_NOBITS0x8A section of this type occupies no space in the file but otherwise resembles SHT_PROGBITS. Although this section contains no bytes, the sh_offset member contains the conceptual file offset.
SHT_NOTE0x7The section holds information that marks the file in some way. See `Note Section' in Chapter 5 for details.
SHT_NULL0x0This value marks the section header as inactive; it does not have an associated section. Other members of the section header have undefined values.
SHT_PREINIT_ARRAY0x10This section contains an array of pointers to functions that are invoked before all other initialization functions, as described in `Initialization and Termination Functions' in Chapter 5. Each pointer in the array is taken as a parameterless proceure with a void return.
SHT_PROGBITS0x1The section holds information defined by the program, whose format and meaning are determined solely by the program.
SHT_REL0x9The section holds relocation entries without explicit addends, such as type Elf32_Rel for the 32-bit class of object files or type Elf64_Rel for the 64-bit class of object files. An object file may have multiple relocation sections. See "Relocation"
SHT_RELA0x4The section holds relocation entries with explicit addends, such as type Elf32_Rela for the 32-bit class of object files or type Elf64_Rela for the 64-bit class of object files. An object file may have multiple relocation sections. `Relocation' b
SHT_STRTAB0x3The section holds a string table. An object file may have multiple string table sections. See `String Table' below for details.
SHT_SYMTAB0x2This section holds a symbol table. Currently, an object file may have either a section of SHT_SYMTAB type or a section of SHT_DYNSYM type, but not both. This restriction may be relaxed in the future. Typically, SHT_SYMTAB provides symbols for link editing, though it may also be used for dynamic linking. As a complete symbol table, it may contain many symbols unnecessary for dynamic linking.


11.2.2.2. Additional Section Types

The following additional section types are defined here.

Table 11-2. Additional Section Types

NameValueDescription
SHT_GNU_verdef0x6ffffffdThis section contains the symbol versions that are provided.
SHT_GNU_verneed0x6ffffffeThis section contains the symbol versions that are required.
SHT_GNU_versym0x6fffffffThis section contains the Symbol Version Table.


11.3. Special Sections

11.3.1. Special Sections

Various sections hold program and control information. Sections in the lists below are used by the system and have the indicated types and attributes.


11.3.1.1. ELF Special Sections

The following sections are defined in the System V ABI and the System V ABI Update.

Table 11-3. ELF Special Sections

NameTypeAttributes
.bssSHT_NOBITSSHF_ALLOC+SHF_WRITE
.commentSHT_PROGBITS0
.dataSHT_PROGBITSSHF_ALLOC+SHF_WRITE
.data1SHT_PROGBITSSHF_ALLOC+SHF_WRITE
.debugSHT_PROGBITS0
.dynamicSHT_DYNAMICSHF_ALLOC+SHF_WRITE
.dynstrSHT_STRTABSHF_ALLOC
.dynsymSHT_DYNSYMSHF_ALLOC
.finiSHT_PROGBITSSHF_ALLOC+SHF_EXECINSTR
.fini_arraySHT_FINI_ARRAYSHF_ALLOC+SHF_WRITE
.hashSHT_HASHSHF_ALLOC
.initSHT_PROGBITSSHF_ALLOC+SHF_EXECINSTR
.init_arraySHT_INIT_ARRAY SHF_ALLOC+SHF_WRITE
.interpSHT_PROGBITSSHF_ALLOC
.lineSHT_PROGBITS0
.noteSHT_NOTE0
.preinit_arraySHT_PREINIT_ARRAYSHF_ALLOC+SHF_WRITE
.rodataSHT_PROGBITSSHF_ALLOC
.rodata1SHT_PROGBITSSHF_ALLOC
.shstrtabSHT_STRTAB0
.strtabSHT_STRTABSHF_ALLOC
.symtabSHT_SYMTABSHF_ALLOC
.tbssSHT_NOBITSSHF_ALLOC+SHF_WRITE+SHF_TLS
.tdataSHT_PROGBITSSHF_ALLOC+SHF_WRITE+SHF_TLS
.textSHT_PROGBITSSHF_ALLOC+SHF_EXECINSTR

.bss 

This section holds data that contributes to the program's memory image. The program may treat this data as uninitialized. However, the system shall initialize this data with zeroes when the program begins to run. The section occupies no file space, as indicated by the section type, SHT_NOBITS

.comment 

This section holds version control information.

.data 

This section holds initialized data that contribute to the program's memory image.

.data1 

This section holds initialized data that contribute to the program's memory image.

.debug 

This section holds information for symbolic debugging. The contents are unspecified. All section names with the prefix .debug hold information for symbolic debugging. The contents of these sections are unspecified.

.dynamic 

This section holds dynamic linking information. The section's attributes will include the SHF_ALLOC bit. Whether the SHF_WRITE bit is set is processor specific. See Chapter 5 for more information.

.dynstr 

This section holds strings needed for dynamic linking, most commonly the strings that represent the names associated with symbol table entries. See Chapter 5 for more information.

.dynsym 

This section holds the dynamic linking symbol table, as described in `Symbol Table'. See Chapter 5 for more information.

.fini 

This section holds executable instructions that contribute to the process termination code. That is, when a program exits normally, the system arranges to execute the code in this section.

.fini_array 

This section holds an array of function pointers that contributes to a single termination array for the executable or shared object containing the section.

.hash 

This section holds a symbol hash table. See `Hash Table' in Chapter 5 for more information.

.init 

This section holds executable instructions that contribute to the process initialization code. When a program starts to run, the system arranges to execute the code in this section before calling the main program entry point (called main for C programs)

.init_array 

This section holds an array of function pointers that contributes to a single initialization array for the executable or shared object containing the section.

.interp 

This section holds the path name of a program interpreter. If the file has a loadable segment that includes relocation, the sections' attributes will include the SHF_ALLOC bit; otherwise, that bit will be off. See Chapter 5 for more information.

.line 

This section holds line number information for symbolic debugging, which describes the correspondence between the source program and the machine code. The contents are unspecified.

.note 

This section holds information in the format that `Note Section' in Chapter 5 describes of the System V Application Binary Interface, Edition 4.1.

.preinit_array 

This section holds an array of function pointers that contributes to a single pre-initialization array for the executable or shared object containing the section.

.rodata 

This section holds read-only data that typically contribute to a non-writable segment in the process image. See `Program Header' in Chapter 5 for more information.

.rodata1 

This section hold sread-only data that typically contribute to a non-writable segment in the process image. See `Program Header' in Chapter 5 for more information.

.shstrtab 

This section holds section names.

.strtab 

This section holds strings, most commonly the strings that represent the names associated with symbol table entries. If the file has a loadable segment that includes the symbol string table, the section's attributes will include the SHF_ALLOC bit; otherwi

.symtab 

This section holds a symbol table, as `Symbol Table'. in this chapter describes. If the file has a loadable segment that includes the symbol table, the section's attributes will include the SHF_ALLOC bit; otherwise, that bit will be off.

.tbss 

This section holds uninitialized thread-local data that contribute to the program's memory image. By definition, the system initializes the data with zeros when the data is instantiated for each new execution flow. The section occupies no file space, as indicated by the section type, SHT_NOBITS. Implementations need not support thread-local storage.

.tdata 

This section holds initialized thread-local data that contributes to the program's memory image. A copy of its contents is instantiated by the system for each new execution flow. Implementations need not support thread-local storage.

.text 

This section holds the `text,' or executable instructions, of a program.


11.3.1.2. Additional Special Sections

Object files in an LSB conforming application may also contain one or more of the additional special sections described below.

Table 11-4. Additional Special Sections

NameTypeAttributes
.ctorsSHT_PROGBITSSHF_ALLOC+SHF_WRITE
.data.rel.roSHT_PROGBITSSHF_ALLOC+SHF_WRITE
.dtorsSHT_PROGBITSSHF_ALLOC+SHF_WRITE
.eh_frameSHT_PROGBITSSHF_ALLOC
.eh_frame_hdrSHT_PROGBITSSHF_ALLOC
.gcc_except_tableSHT_PROGBITSSHF_ALLOC
.gnu.versionSHT_GNU_versymSHF_ALLOC
.gnu.version_dSHT_GNU_verdefSHF_ALLOC
.gnu.version_rSHT_GNU_verneedSHF_ALLOC
.got.pltSHT_PROGBITSSHF_ALLOC+SHF_WRITE
.jcrSHT_PROGBITSSHF_ALLOC+SHF_WRITE
.note.ABI-tagSHT_NOTESHF_ALLOC
.stabSHT_PROGBITS0
.stabstrSHT_STRTAB0

.ctors 

This section contains a list of global constructor function pointers.

.data.rel.ro 

This section holds initialized data that contribute to the program's memory image. This section may be made read-only after relocations have been applied.

.dtors 

This section contains a list of global destructor function pointers.

.eh_frame 

This section contains information necessary for frame unwinding during exception handling. See Section 11.6.1.

.eh_frame_hdr 

This section contains a pointer to the .eh_frame section which is accessible to the runtime support code of a C++ application. This section may also contain a binary search table which may be used by the runtime support code to more efficiently access records in the .eh_frame section. See Section 11.6.2.

.gcc_except_table 

This section holds Language Specific Data.

.gnu.version 

This section contains the Symbol Version Table. See Section 11.7.2.

.gnu.version_d 

This section contains the Version Definitions. See Section 11.7.3.

.gnu.version_r 

This section contains the Version Requirements. See Section 11.7.4.

.got.plt 

This section holds the read-only portion of the GLobal Offset Table. This section may be made read-only after relocations have been applied.

.jcr 

This section contains information necessary for registering compiled Java classes. The contents are compiler-specific and used by compiler initialization functions.

.note.ABI-tag 

Specify ABI details. See Section 11.8.

.stab 

This section contains debugging information. The contents are not specified as part of the LSB.

.stabstr 

This section contains strings associated with the debugging infomation contained in the .stab section.


11.4. Symbol Mapping

11.4.1. Introduction

Symbols in a source program are translated by the compilation system into symbols that exist in the object file.


11.4.1.1. C Language

External C symbols shall be unchanged in an object file's symbol table.


11.5. DWARF Extensions

The LSB does not specify debugging information, however, some additional sections contain information which is encoded using the the encoding as specified by DWARF Debugging Information Format, Revision 2.0.0 with extensions defined here.

Note: The extensions specified here also exist in DWARF Debugging Information Format, Revision 3.0.0 (Draft). It is expected that future versions of the LSB will reference the final version of that document, and that the definitions here will be taken from that document instead of being specified here.


11.5.1. DWARF Exception Header Encoding

The DWARF Exception Header Encoding is used to describe the type of data used in the .eh_frame and .eh_frame_hdr section. The upper 4 bits indicate how the value is to be applied. The lower 4 bits indicate the format of the data.

Table 11-5. DWARF Exception Header value format

NameValueMeaning
DW_EH_PE_absptr0x00The Value is a literal pointer whose size is determined by the architecture.
DW_EH_PE_uleb1280x01Unsigned value is encoded using the Little Endian Base 128 (LEB128) as defined by DWARF Debugging Information Format, Revision 2.0.0.
DW_EH_PE_udata20x02A 2 bytes unsigned value.
DW_EH_PE_udata40x03A 4 bytes unsigned value.
DW_EH_PE_udata80x04An 8 bytes unsigned value.
DW_EH_PE_sleb1280x09Signed value is encoded using the Little Endian Base 128 (LEB128) as defined by DWARF Debugging Information Format, Revision 2.0.0.
DW_EH_PE_sdata20x0AA 2 bytes signed value.
DW_EH_PE_sdata40x0BA 4 bytes signed value.
DW_EH_PE_sdata80x0CAn 8 bytes signed value.

Table 11-6. DWARF Exception Header application

NameValueMeaning
DW_EH_PE_pcrel0x10Value is relative to the current program counter.
DW_EH_PE_textrel0x20Value is relative to the beginning of the .text section.
DW_EH_PE_datarel0x30Value is relative to the beginning of the .got or .eh_frame_hdr section.
DW_EH_PE_funcrel0x40Value is relative to the beginning of the function.
DW_EH_PE_aligned0x50Value is aligned to an address unit sized boundary.

One special encoding, 0xff (DW_EH_PE_omit), shall be used to indicate that no value ispresent.


11.5.2. DWARF CFI Extensions

In addition to the Call Frame Instructions defined in section 6.4.2 of DWARF Debugging Information Format, Revision 2.0.0, the following additional Call Frame Instructions may also be used.

Table 11-7. Additional DWARF Call Frame Instructions

NameValueMeaning
DW_CFA_expression0x10The DW_CFA_expression instruction takes two operands: an unsigned LEB128 value representing a register number, and a DW_FORM_block value representing a DWARF expression. The required action is to establish the DWARF expression as the means by which the address in which the given register contents are found may be computed. The value of the CFA is pushed on the DWARF evaluation stack prior to execution of the DWARF expression. The DW_OP_call2, DW_OP_call4, DW_OP_call_ref and DW_OP_push_object_address DWARF operators (see Section 2.4.1 of DWARF Debugging Information Format, Revision 2.0.0) cannot be used in such a DWARF expression.
DW_CFA_offset_extended_sf0x11The DW_CFA_offset_extended_sf instruction takes two operands: an unsigned LEB128 value representing a register number and a signed LEB128 factored offset. This instruction is identical to DW_CFA_offset_extended except that the second operand is signed.
DW_CFA_def_cfa_sf0x12The DW_CFA_def_cfa_sf instruction takes two operands: an unsigned LEB128 value representing a register number and a signed LEB128 factored offset. This instruction is identical to DW_CFA_def_cfa except that the second operand is signed and factored.
DW_CFA_def_cfa_offset_sf0x13The DW_CFA_def_cfa_offset_sf instruction takes a signed LEB128 operand representing a factored offset. This instruction is identical to DW_CFA_def_cfa_offset except that the operand is signed and factored.
DW_CFA_GNU_args_size0x2eThe DW_CFA_GNU_args_size instruction takes an unsigned LEB128 operand representing an argument size. This instruction specifies the total of the size of the arguments which have been pushed onto the stack.
DW_CFA_GNU_negative_offset_extended0x2fThe DW_CFA_def_cfa_sf instruction takes two operands: an unsigned LEB128 value representing a register number and an unsigned LEB128 which represents the magnitude of the offset. This instruction is identical to DW_CFA_offset_extended_sf except that the operand is subtracted to produce the offset. This instructions is obsoleted by DW_CFA_offset_extended_sf.

11.6. Exception Frames

When using languages that support exceptions, such as C++, additional information must be provided to the runtime environment that describes the call frames that must be unwound during the processing of an exception. This information is contained in the special sections .eh_frame and .eh_framehdr.

Note: The format of the .eh_frame section is similar in format and purpose to the .debug_frame section which is specified in DWARF Debugging Information Format, Revision 3.0.0 (Draft). Readers are advised that there are some subtle difference, and care should be taken when comparing the two sections.


11.6.1. The .eh_frame section

The .eh_frame section shall contain 1 or more Call Frame Information (CFI) records. The number of records present shall be determined by size of the section as contained in the section header. Each CFI record contains a Common Information Entry (CIE) record followed by 1 or more Frame Description Entry (FDE) records. Both CIEs and FDEs shall be aligned to an addressing unit sized boundary.

Table 11-8. Call Frame Information Format

Common Information Entry Record
Frame Description Entry Record(s)

11.6.1.1. The Common Information Entry Format

Table 11-9. Common Information Entry Format

LengthRequired
Extended LengthOptional
CIE IDRequired
VersionRequired
Augmentation StringRequired
Code Alignment FactorRequired
Data Alignment FactorRequired
Return Address RegisterRequired
Augmentation Data LengthOptional
Augmentation DataOptional
Initial InstructionsRequired
Padding 

Length

A 4 byte unsigned value indicating the length in bytes of the CIE structure, not including the Length field itself. If Length contains the value 0xffffffff, then the length is contained in the Extended Length field. If Length contains the value 0, then this CIE shall be considered a terminator and processing shall end.

Extended Length

A 8 byte unsigned value indicating the length in bytes of the CIE structure, not including the Length and Extended Length fields.

CIE ID

A 4 byte unsigned value that is used to distinguish CIE records from FDE records. This value shall always be 0, which indicates this record is a CIE.

Version

A 1 byte value that identifies the version number of the frame information structure. This value shall be 1.

Augmentation String

This value is a NUL terminated string that identifies the augmentation to the CIE or to the FDEs associated with this CIE. A zero length string indicates that no augmentation data is present. The augmentation string is case sensitive and shall be interpreted as described below.

Code Alignment Factor

An unsigned LEB128 encoded value that is factored out of all advance location instructions that are associated with this CIE or its FDEs. This value shall be multiplied by the delta argument of an adavance location instruction to obtain the new location value.

Data Alignment Factor

A signed LEB128 encoded value that is factored out of all offset instructions that are associated with this CIE or its FDEs. This value shall be multiplied by the register offset argument of an offset instruction to obtain the new offset value.

Augmentation Length

An unsigned LEB128 encoded value indicating the length in bytes of the Augmentation Data. This field is only present if the Augmentation String contains the character 'z'.

Augmentation Data

A block of data whose contents are defined by the contents of the Augmentation String as described below. This field is only present if the Augmentation String contains the character 'z'. The size of this data is given by the Augentation Length.

Initial Instructions

Initial set of Call Frame Instructions. The number of instructions is determined by the remaining space in the CIE record.

Padding

Extra bytes to align the CIE structure to an addressing unit size boundary.


11.6.1.1.1. Augmentation String Format

The Agumentation String indicates the presence of some optional fields, and how those fields should be intepreted. This string is case sensitive. Each character in the augmentation string in the CIE can be interpreted as below:

'z' 

A 'z' may be present as the first character of the string. If present, the Augmentation Data field shall be present. The contents of the Augmentation Data shall be intepreted according to other characters in the Augmentation String.

'L' 

A 'L' may be present at any position after the first character of the string. This character may only be present if 'z' is the first character of the string. If present, it indicates the presence of one argument in the Augmentation Data of the CIE, and a corresponding argument in the Augmentation Data of the FDE. The argument in the Augmentation Data of the CIE is 1-byte and represents the pointer encoding used for the argument in the Augmentation Data of the FDE, which is the address of a language-specific data area (LSDA). The size of the LSDA pointer is specified by the pointer encoding used.

'P' 

A 'P' may be present at any position after the first character of the string. This character may only be present if 'z' is the first character of the string. If present, it indicates the presence of two arguments in the Augmentation Data of the CIE. The first argument is 1-byte and represents the pointer encoding used for the second argument, which is the address of a personality routine handler. The personality routine is used to handle language and vendor-specific tasks. The system unwind library interface accesses the language-specific exception handling semantics via the pointer to the personality routine. The personality routine does not have an ABI-specific name. The size of the personality routine pointer is specified by the pointer encoding used.

'R' 

A 'R' may be present at any position after the first character of the string. This character may only be present if 'z' is the first character of the string. If present, The Augmentation Data shall include a 1 byte argument that represents the pointer encoding for the address pointers used in the FDE.


11.6.1.2. The Frame Description Entry Format

Table 11-10. Frame Description Entry Format

LengthRequired
Extended LengthOptional
CIE PointerRequired
PC BeginRequired
PC RangeRequired
Augmentation Data LengthOptional
Augmentation DataOptional
Call Frame InstructionsRequired
Padding 

Length

A 4 byte unsigned value indicating the length in bytes of the CIE structure, not including the Length field itself. If Length contains the value 0xffffffff, then the length is contained the Extended Length field. If Length contains the value 0, then this CIE shall be considered a terminator and processing shall end.

Extended Length

A 8 byte unsigned value indicating the length in bytes of the CIE structure, not including the Length field itself.

CIE Pointer

A 4 byte unsigned value that when subtracted from the offset of the the CIE Pointer in the current FDE yields the offset of the start of the associated CIE. This value shall never be 0.

PC Begin

An encoded value that indicates the address of the initial location associated with this FDE. The encoding format is specified in the Augmentation Data.

PC Range

An absolute value that indicates the number of bytes of instructions associated with this FDE.

Augmentation Length

An unsigned LEB128 encoded value indicating the length in bytes of the Augmentation Data. This field is only present if the Augmentation String in the associated CIE contains the character 'z'.

Augmentation Data

A block of data whose contents are defined by the contents of the Augmentation String in the associated CIE as described above. This field is only present if the Augmentation String in the associated CIE contains the character 'z'. The size of this data is given by the Augentation Length.

Call Frame Instructions

A set of Call Frame Instructions.

Padding

Extra bytes to align the FDE structure to an addressing unit size boundary.


11.6.2. The .eh_frame_hdr section

The .eh_frame_hdr section contains additional information about the .eh_frame section. A pointer to the start of the .eh_frame data, and optionally, a binary search table of pointers to the .eh_frame records are found in this section.

Data in this section is encoded according to Section 11.5.1.

Table 11-11. .eh_frame_hdr Section Format

EncodingField
unsigned byteversion
unsigned byteeh_frame_ptr_enc
unsigned bytefde_count_enc
unsigned bytetable_enc
encodedeh_frame_ptr
encodedfde_count
 binary search table

version 

Version of the .eh_frame_hdr format. This value shall be 1.

eh_frame_ptr_enc 

The encoding format of the eh_frame_ptr field.

fde_count_enc 

The encoding format of the fde_count field. A value of DW_EH_PE_omit indicates the binary search table is not present.

table_enc 

The encoding format of the entries in the binary search table. A value of DW_EH_PE_omit indicates the binary search table is not present.

eh_frame_ptr 

The encoded value of the pointer to the start of the .eh_frame section.

fde_count 

The encoded value of the count of entries in the binary search table.

binary search table 

A binary search table containing fde_count entries. Each entry of the table consist of two encoded values, the initial location, and the address. The entries are sorted in an increasing order by the initial location value.


11.7. Symbol Versioning

11.7.1. Introduction

This chapter describes the Symbol Versioning mechanism. All ELF objects may provide or depend on versioned symbols. Symbol Versioning is implemented by 3 section types: SHT_GNU_versym, SHT_GNU_verdef, and SHT_GNU_verneed.

The prefix Elfxx in the following descriptions and code fragments stands for either "Elf32" or "Elf64", depending on the architecture.

Versions are described by strings. The structures that are used for symbol versions also contain a member that holds the ELF hashing values of the strings. This allows for more efficient processing.


11.7.2. Symbol Version Table

The special section .gnu.version which has a section type of SHT_GNU_versym shall contain the Symbol Version Table. This section shall have the same number of entries as the Dynamic Symbol Table in the .dynsym section.

The .gnu.version section shall contain an array of elements of type Elfxx_Half. Each entry specifies the version defined for or required by the corresponding symbol in the Dynamic Symbol Table.

The values in the Symbol Version Table are specific to the object in which they are located. These values are identifiers that are provided by the the vna_other member of the Elfxx_Vernaux structure or the vd_ndx member of the Elfxx_Verdef structure.

The values 0 and 1 are reserved.

0 

The symbol is local, not available outside the object.

1 

The symbol is defined in this object and is globally available.

All other values are used to identify version strings located in one of the other Symbol Version sections. The value itself is not the version associated with the symbol. The string identified by the value defines the version of the symbol.


11.7.3. Version Definitions

The special section .gnu.version_d which has a section type of SHT_GNU_verdef shall contain symbol version definitions. The number of entries in this section shall be contained in the DT_VERDEFNUM entry of the Dynamic Section .dynamic. The sh_link member of the section header (see figure 4-8 in the System V ABI) shall point to the section that contains the strings referenced by this section.

The section shall contain an array of Elfxx_Verdef structures, as described in Figure 11-1, optionally followed by an array of Elfxx_Verdaux structures, as defined in Figure 11-2.

typedef struct {
	Elfxx_Half    vd_version;
	Elfxx_Half    vd_flags;
	Elfxx_Half    vd_ndx;
	Elfxx_Half    vd_cnt;
	Elfxx_Word    vd_hash;
	Elfxx_Word    vd_aux;
	Elfxx_Word    vd_next;
} Elfxx_Verdef;

Figure 11-1. Version Definition Entries

vd_version 

Version revision. This field shall be set to 1.

vd_flags 

Version information flag bitmask.

vd_ndx 

Version index numeric value referencing the SHT_GNU_versym section.

vd_cnt 

Number of associated verdaux array entries.

vd_hash 

Version name hash value (ELF hash function).

vd_aux 

Offset in bytes to a corresponding entry in an array of Elfxx_Verdaux structures as defined in Figure 11-2

vd_next 

Offset to the next verdef entry, in bytes.

typedef struct {
	Elfxx_Word    vda_name;
	Elfxx_Word    vda_next;
} Elfxx_Verdaux;

Figure 11-2. Version Definition Auxiliary Entries

vda_name 

Offset to the version or dependency name string in the section header, in bytes.

vda_next 

Offset to the next verdaux entry, in bytes.


11.7.4. Version Requirements

The special section .gnu.version_r which has a section type of SHT_GNU_verneed shall contain required symbol version definitions. The number of entries in this section shall be contained in the DT_VERNEEDNUM entry of the Dynamic Section .dynamic. The sh_link member of the section header (see figure 4-8 in System V ABI) shall point to the section that contains the strings referenced by this section.

The section shall contain an array of Elfxx_Verneed structures, as described in Figure 11-3, optionally followed by an array of Elfxx_Vernaux structures, as defined in Figure 11-4.

typedef struct {
	Elfxx_Half    vn_version;
	Elfxx_Half    vn_cnt;
	Elfxx_Word    vn_file;
	Elfxx_Word    vn_aux;
	Elfxx_Word    vn_next;
} Elfxx_Verneed;

Figure 11-3. Version Needed Entries

vn_version 

Version of structure. This value is currently set to 1, and will be reset if the versioning implementation is incompatibly altered.

vn_cnt 

Number of associated verneed array entries.

vn_file 

Offset to the file name string in the section header, in bytes.

vn_aux 

Offset to a corresponding entry in the vernaux array, in bytes.

vn_next 

Offset to the next verneed entry, in bytes.

typedef struct {
	Elfxx_Word    vna_hash;
	Elfxx_Half    vna_flags;
	Elfxx_Half    vna_other;
	Elfxx_Word    vna_name;
	Elfxx_Word    vna_next;
} Elfxx_Vernaux;

Figure 11-4. Version Needed Auxiliary Entries

vna_hash 

Dependency name hash value (ELF hash function).

vna_flags 

Dependency information flag bitmask.

vna_other 

Object file version identifier used in the .gnu.version symbol version array. Bit number 15 controls whether or not the object is hidden; if this bit is set, the object cannot be used and the static linker will ignore the symbol's presence in the object.

vna_name 

Offset to the dependency name string in the section header, in bytes.

vna_next 

Offset to the next vernaux entry, in bytes.


11.7.5. Startup Sequence

When loading a sharable object the system shall analyze version definition data from the loaded object to assure that it meets the version requirements of the calling object. This step is referred to as definition testing. The dynamic loader shall retrieve the entries in the caller's Elfxx_Verneed array and attempt to find matching definition information in the loaded Elfxx_Verdef table.

Each object and dependency shall be tested in turn. If a symbol definition is missing and the vna_flags bit for VER_FLG_WEAK is not set, the loader shall return an error and exit. If the vna_flags bit for VER_FLG_WEAK is set in the Elfxx_Vernaux entry, and the loader shall issue a warning and continue operation.

When the versions referenced by undefined symbols in the loaded object are found, version availability is certified. The test completes without error and the object shall be made available.


11.7.6. Symbol Resolution

When symbol versioning is used in an object, relocations extend definition testing beyond the simple match of symbol name strings: the version of the reference shall also equal the name of the definition.

The same index that is used in the symbol table can be referenced in the SHT_GNU_versym section, and the value of this index is then used to acquire name data. The corresponding requirement string is retrieved from the Elfxx_Verneed array, and likewise, the corresponding definition string from the Elfxx_Verdef table.

If the high order bit (bit number 15) of the version symbolis set, the object cannot be used and the static linker shall ignore the symbol's presence in the object.

When an object with a reference and an object with the definition are being linked, the following rules shall govern the result:

  • The object with the reference and the object with the definitions both use versioning. All described matching is processed in this case. A fatal error shall be triggered when no matching definition can be found in the object whose name is the one referenced by the vn_name element in the Elfxx_Verneed entry.

  • The object with the reference does not use versioning, while the object with the definitions does. In this instance, only the definitions with index numbers 1 and 2 will be used in the reference match, the same identified by the static linker as the base definition. In cases where the static linker was not used, such as in calls to dlopen(), a version that does not have the base definition index shall be acceptable if it is the only version for which the symbol is defined.

  • The object with the reference uses versioning, but the object with the definitions specifies none. A matching symbol shall be accepted in this case. A fatal error shall be triggered if a corruption in the required symbols list obscures an outdated object file and causes a match on the object filename in the Elfxx_Verneed entry.

  • Neither the object with the reference nor the object with the definitions use versioning. The behavior in this instance shall default to pre-existing symbol rules.


11.8. ABI note tag

Every executable shall contain a section named .note.ABI-tag of type SHT_NOTE. This section is structured as a note section as documented in the ELF spec. The section shall contain at least the following entry. The name field (namesz/name) contains the string "GNU". The type field shall be 1. The descsz field shall be at least 16, and the first 16 bytes of the desc field shall be as follows.

The first 32-bit word of the desc field shall be 0 (this signifies a Linux executable). The second, third, and fourth 32-bit words of the desc field contain the earliest compatible kernel version. For example, if the 3 words are 2, 2, and 5, this signifies a 2.2.5 kernel.


Chapter 12. Dynamic Linking

12.1. Program Loading and Dynamic Linking

LSB-conforming implementations shall support the object file information and system actions that create running programs as specified in the System V ABI and System V ABI Update and as further required by this specification and the relevant architecture specific part of ISO/IEC 23360.

Any shared object that is loaded shall contain sufficient DT_NEEDED records to satisfy the symbols on the shared library.


12.2. Program Header

In addition to the Segment Types defined in the System V ABI and System V ABI Update the following Segment Types shall also be supported.

Table 12-1. Linux Segment Types

NameValue
PT_GNU_EH_FRAME0x6474e550
PT_GNU_STACK0x6474e551
PT_GNU_RELRO0x6474e552

PT_GNU_EH_FRAME 

The array element specifies the location and size of the exception handling information as defined by the .eh_frame_hdr section.

PT_GNU_STACK 

The p_flags member specifies the permissions on the segment containing the stack and is used to indicate wether the stack should be executable. The absense of this header indicates that the stack will be executable.

PT_GNU_RELRO 

The array element specifies the location and size of a segment which may be made read-only after relocation shave been processed.


12.3. Dynamic Entries

12.3.1. Introduction

As described in System V ABI, if an object file CHAPTERicipates in dynamic linking, its program header table shall have an element of type PT_DYNAMIC. This `segment' contains the .dynamic section. A special symbol, _DYNAMIC, labels the section, which contains an array of the following structures.

typedef struct {
	Elf32_Sword	d_tag;
   	union {
   		Elf32_Word	d_val;
   		Elf32_Addr	d_ptr;
	} d_un;
} Elf32_Dyn;

extern Elf32_Dyn	_DYNAMIC[];

typedef struct {
	Elf64_Sxword	d_tag;
   	union {
   		Elf64_Xword	d_val;
   		Elf64_Addr	d_ptr;
	} d_un;
} Elf64_Dyn;

extern Elf64_Dyn	_DYNAMIC[];

Figure 12-1. Dynamic Structure

For each object with this type, d_tag controls the interpretation of d_un.


12.3.2. Dynamic Entries


12.3.2.1. ELF Dynamic Entries

The following dynamic entries are defined in the System V ABI and System V ABI Update.

DT_BIND_NOW 

Process relocations of object

DT_DEBUG 

For debugging; unspecified

DT_FINI 

Address of termination function

DT_HASH 

Address of symbol hash table

DT_HIPROC 

End of processor-specific

DT_INIT 

Address of init function

DT_JMPREL 

Address of PLT relocs

DT_LOPROC 

Start of processor-specific

DT_NEEDED 

Name of needed library

DT_NULL 

Marks end of dynamic section

DT_PLTREL 

Type of reloc in PLT

DT_PLTRELSZ 

Size in bytes of PLT relocs

DT_REL 

Address of Rel relocs

DT_RELA 

Address of Rela relocs

DT_RELAENT 

Size of one Rela reloc

DT_RELASZ 

Total size of Rela relocs

DT_RELENT 

Size of one Rel reloc

DT_RELSZ 

Total size of Rel relocs

DT_RPATH 

Library search path

DT_SONAME 

Name of shared object

DT_STRSZ 

Size of string table

DT_STRTAB 

Address of string table

DT_SYMBOLIC 

Start symbol search here

DT_SYMENT 

Size of one symbol table entry

DT_SYMTAB 

Address of symbol table

DT_TEXTREL 

Reloc might modify .text


12.3.2.2. Additional Dynamic Entries

An LSB conforming object may also use the following additional Dynamic Entry types.

DT_ADDRRNGHI 

Values from DT_ADDRRNGLO through DT_ADDRRNGHI are reserved for definition by an archLSB.

DT_ADDRRNGLO 

Values from DT_ADDRRNGLO through DT_ADDRRNGHI are reserved for definition by an archLSB.

DT_AUXILIARY 

Shared object to load before self

DT_FILTER 

Shared object to get values from

DT_FINI_ARRAY 

The address of an array of pointers to termination functions.

DT_FINI_ARRAYSZ 

Size in bytes of DT_FINI_ARRAY

DT_HIOS 

Values from DT_LOOS through DT_HIOS are reserved for definition by specific operating systems.

DT_INIT_ARRAY 

The address of an array of pointers to initialization functions.

DT_INIT_ARRAYSZ 

Size in bytes of DT_INIT_ARRAY

DT_LOOS 

Values from DT_LOOS through DT_HIOS are reserved for definition by specific operating systems.

DT_NUM 

Number of dynamic entry tags defined (excepting reserved ranges).

DT_POSFLAG_1 

Flags for DT_* entries, effecting the following DT_* entry

DT_RELCOUNT 

All Elf32_Rel R_*_RELATIVE relocations have been placed into a single block and this entry specifies the number of entries in that block. This permits ld.so.1 to streamline the processing of RELATIVE relocations.

DT_RUNPATH 

null-terminated library search path string

DT_SYMINENT 

Entry size of syminfo

DT_SYMINFO 

Address of the Syminfo table.

DT_SYMINSZ 

Size of syminfo table (in bytes)

DT_VALRNGHI 

Entries which fall between DT_VALRNGHI & DT_VALRNGLO use the Dyn.d_un.d_val field of the Elf*_Dyn structure.

DT_VALRNGLO 

Entries which fall between DT_VALRNGHI & DT_VALRNGLO use the Dyn.d_un.d_val field of the Elf*_Dyn structure.

DT_VERDEF 

Address of version definition table

DT_VERDEFNUM 

Number of version definitions

DT_VERNEED 

Address of table with needed versions

DT_VERNEEDNUM 

Number of needed versions

DT_VERSYM 

Address of the table provided by the .gnu.version section.

III. Base Libraries

Table of Contents
13. Base Libraries
13.1. Introduction
13.2. Program Interpreter
13.3. Interfaces for libc
13.3.1. RPC
13.3.2. System Calls
13.3.3. Standard I/O
13.3.4. Signal Handling
13.3.5. Localization Functions
13.3.6. Socket Interface
13.3.7. Wide Characters
13.3.8. String Functions
13.3.9. IPC Functions
13.3.10. Regular Expressions
13.3.11. Character Type Functions
13.3.12. Time Manipulation
13.3.13. Terminal Interface Functions
13.3.14. System Database Interface
13.3.15. Language Support
13.3.16. Large File Support
13.3.17. Standard Library
13.4. Data Definitions for libc
13.4.1. arpa/inet.h
13.4.2. assert.h
13.4.3. ctype.h
13.4.4. dirent.h
13.4.5. err.h
13.4.6. errno.h
13.4.7. fcntl.h
13.4.8. fmtmsg.h
13.4.9. fnmatch.h
13.4.10. ftw.h
13.4.11. getopt.h
13.4.12. glob.h
13.4.13. grp.h
13.4.14. iconv.h
13.4.15. inttypes.h
13.4.16. langinfo.h
13.4.17. libgen.h
13.4.18. libintl.h
13.4.19. limits.h
13.4.20. locale.h
13.4.21. monetary.h
13.4.22. net/if.h
13.4.23. netdb.h
13.4.24. netinet/in.h
13.4.25. netinet/ip.h
13.4.26. netinet/tcp.h
13.4.27. netinet/udp.h
13.4.28. nl_types.h
13.4.29. poll.h
13.4.30. pty.h
13.4.31. pwd.h
13.4.32. regex.h
13.4.33. rpc/auth.h
13.4.34. rpc/clnt.h
13.4.35. rpc/pmap_clnt.h
13.4.36. rpc/rpc_msg.h
13.4.37. rpc/svc.h
13.4.38. rpc/types.h
13.4.39. rpc/xdr.h
13.4.40. sched.h
13.4.41. search.h
13.4.42. setjmp.h
13.4.43. signal.h
13.4.44. stddef.h
13.4.45. stdio.h
13.4.46. stdlib.h
13.4.47. string.h
13.4.48. sys/file.h
13.4.49. sys/ioctl.h
13.4.50. sys/ipc.h
13.4.51. sys/mman.h
13.4.52. sys/msg.h
13.4.53. sys/param.h
13.4.54. sys/poll.h
13.4.55. sys/resource.h
13.4.56. sys/sem.h
13.4.57. sys/shm.h
13.4.58. sys/socket.h
13.4.59. sys/stat.h
13.4.60. sys/statfs.h
13.4.61. sys/statvfs.h
13.4.62. sys/time.h
13.4.63. sys/timeb.h
13.4.64. sys/times.h
13.4.65. sys/types.h
13.4.66. sys/uio.h
13.4.67. sys/un.h
13.4.68. sys/utsname.h
13.4.69. sys/wait.h
13.4.70. syslog.h
13.4.71. termios.h
13.4.72. time.h
13.4.73. ucontext.h
13.4.74. ulimit.h
13.4.75. unistd.h
13.4.76. utime.h
13.4.77. utmp.h
13.4.78. utmpx.h
13.4.79. wchar.h
13.4.80. wctype.h
13.4.81. wordexp.h
13.5. Interface Definitions for libc
_IO_feof -- alias for feof
_IO_getc -- alias for getc
_IO_putc -- alias for putc
_IO_puts -- alias for puts
__assert_fail -- abort the program after false assertion
__ctype_b_loc -- accessor function for __ctype_b array for ctype functions
__ctype_get_mb_cur_max -- maximum length of a multibyte character in the current locale
__ctype_tolower_loc -- accessor function for __ctype_b_tolower array for ctype tolower() function
__ctype_toupper_loc -- accessor function for __ctype_b_toupper() array for ctype toupper() function
__cxa_atexit -- register a function to be called by exit or when a shared library is unloaded
__daylight -- daylight savings time flag
__environ -- alias for environ - user environment
__errno_location -- address of errno variable
__fpending -- returns in bytes the amount of output pending on a stream
__getpagesize -- alias for getpagesize - get current page size
__getpgid -- get the process group id
__h_errno_location -- address of h_errno variable
__isinf -- test for infinity
__isinff -- test for infinity
__isinfl -- test for infinity
__isnan -- test for infinity
__isnanf -- test for infinity
__isnanl -- test for infinity
__libc_current_sigrtmax -- return number of available real-time signal with lowest priority
__libc_current_sigrtmin -- return number of available real-time signal with highest priority
__libc_start_main -- initialization routine
__lxstat -- inline wrapper around call to lxstat
__mempcpy -- copy given number of bytes of source to destination
__rawmemchr -- scan memory
__register_atfork -- alias for register_atfork
__sigsetjmp -- save stack context for non-local goto
__stpcpy -- alias for stpcpy
__strdup -- alias for strdup
__strtod_internal -- underlying function for strtod
__strtof_internal -- underlying function for strtof
__strtok_r -- alias for strtok_r
__strtol_internal -- alias for strtol
__strtold_internal -- underlying function for strtold
__strtoll_internal -- underlying function for strtoll
__strtoul_internal -- underlying function for strtoul
__strtoull_internal -- underlying function for strtoull
__sysconf -- get configuration information at runtime
__sysv_signal -- signal handling
__timezone -- global variable containing timezone
__tzname -- global variable containing the timezone
__wcstod_internal -- underlying function for wcstod
__wcstof_internal -- underlying function for wcstof
__wcstol_internal -- underlying function for wcstol
__wcstold_internal -- underlying function for wcstold
__wcstoul_internal -- underlying function for wcstoul
__xmknod -- make block or character special file
__xstat -- get File Status
__xstat64 -- get File Status
_environ -- alias for environ - user environment
_nl_msg_cat_cntr -- new catalog load counter
_sys_errlist -- array containing the "C" locale strings used by strerror()
_sys_siglist -- array containing the names of the signal names
acct -- switch process accounting on or off
adjtime -- correct the time to allow synchronization of the system clock
asprintf -- write formatted output to a dynamically allocated string
bind_textdomain_codeset -- specify encoding for message retrieval
bindresvport -- bind socket to privileged IP port
bindtextdomain -- specify the location of a message catalog
cfmakeraw -- get and set terminal attributes
cfsetspeed -- set terminal input and output data rate
daemon -- run in the background
dcgettext -- perform domain and category specific lookup in message catalog
dcngettext -- perform domain and category specific lookup in message catalog with plural
dgettext -- perform lookup in message catalog for the current LC_MESSAGES locale
dngettext -- perform lookup in message catalog for the current locale
duplocale -- provide new handle for selection of locale
endutent -- access utmp file entries
err -- display formatted error messages
error -- print error message
errx -- display formatted error message and exit
fcntl -- file control
fflush_unlocked -- non thread safe fflush
fgetwc_unlocked -- non thread safe fgetwc
flock -- apply or remove an advisory lock on an open file
freelocale -- free a locale object
fscanf -- convert formatted input
fstatfs -- (deprecated)
fstatfs64 -- (deprecated)
fwscanf -- convert formatted input
getgrouplist -- get network group entry
getloadavg -- get system load averages
getopt -- parse command line options
getopt_long -- parse command line options
getopt_long_only -- parse command line options
getsockopt -- get socket options
gettext -- search message catalogs for a string
getutent -- access user accounting database entries
getutent_r -- access user accounting database entries
glob64 -- find pathnames matching a pattern (Large File Support)
globfree64 -- free memory from glob64() (Large File Support)
initgroups -- initialize the supplementary group access list
ioctl -- control device
sockio -- socket ioctl commands
ttyio -- tty ioctl commands
kill -- send a signal
link -- create a link to a file
mbsnrtowcs -- convert a multibyte string to a wide character string
memmem -- locate bytes
memrchr -- scan memory for a character
newlocale -- allocate a locale object
ngettext -- search message catalogs for plural string
pmap_getport -- find the port number assigned to a service registered with a portmapper.
pmap_set -- establishes mapping to machine's RPC Bind service.
pmap_unset --  destroys RPC Binding
psignal -- print signal message
regexec -- regular expression matching
scanf -- convert formatted input
setbuffer -- stream buffering operation
setgroups -- set list of supplementary group IDs
sethostname -- set host name
setsockopt -- set socket options
setutent -- access user accounting database entries
sigandset -- build a new signal set by combining the two input sets using logical AND
sigisemptyset -- check for empty signal set
sigorset -- build a new signal set by combining the two input sets using logical OR
sigreturn -- return from signal handler and cleanup stack frame
sscanf -- convert formatted input
statfs -- (deprecated)
statfs64 -- (deprecated)
stime -- set time
stpcpy -- copy a string returning a pointer to its end
stpncpy -- copy a fixed-size string, returning a pointer to its end
strcasestr -- locate a substring ignoring case
strerror_r -- reentrant version of strerror
strndup -- return a malloc'd copy of at most the specified number of bytes of a string
strnlen -- determine the length of a fixed-size string
strptime -- parse a time string
strsep -- extract token from string
strsignal -- return string describing signal
strtoq -- convert string value to a long or quad_t integer
strtouq -- convert a string to an unsigned long long
svc_register -- register Remote Procedure Call interface
svc_run -- waits for RPC requests to arrive and calls service procedure
svc_sendreply -- called by RPC service's dispatch routine
svctcp_create -- create a TCP/IP-based RPC service transport
svcudp_create --  create a UDP-based RPC service transport
swscanf -- convert formatted input
system -- execute a shell command
textdomain -- set the current default message domain
unlink -- remove a directory entry
uselocale -- set locale for thread
utmpname -- set user accounting database
vasprintf -- write formatted output to a dynamically allocated string
vdprintf -- write formatted output to a file descriptor
verrx -- display formatted error message and exit
vfscanf -- convert formatted input
vfwscanf -- convert formatted input
vscanf -- convert formatted input
vsscanf -- convert formatted input
vswscanf -- convert formatted input
vsyslog -- log to system log
vwscanf -- convert formatted input
wait4 -- wait for process termination, BSD style
waitpid -- wait for child process
warn -- formatted error messages
warnx -- formatted error messages
wcpcpy -- copy a wide character string, returning a pointer to its end
wcpncpy -- copy a fixed-size string of wide characters, returning a pointer to its end
wcscasecmp -- compare two wide-character strings, ignoring case
wcsdup -- duplicate a wide-character string
wcsncasecmp -- compare two fixed-size wide-character strings, ignoring case
wcsnlen -- determine the length of a fixed-size wide-character string
wcsnrtombs -- convert a wide character string to a multi-byte string
wcstoq -- convert wide string to long long int representation
wcstouq -- convert wide string to unsigned long long int representation
wscanf -- convert formatted input
xdr_u_int -- library routines for external data representation
13.6. Interfaces for libm
13.6.1. Math
13.7. Data Definitions for libm
13.7.1. complex.h
13.7.2. fenv.h
13.7.3. math.h
13.8. Interface Definitions for libm
__fpclassify -- Classify real floating type
__fpclassifyf -- Classify real floating type
13.9. Interfaces for libpthread
13.9.1. Realtime Threads
13.9.2. Advanced Realtime Threads
13.9.3. Posix Threads
13.9.4. Thread aware versions of libc interfaces
13.10. Data Definitions for libpthread
13.10.1. pthread.h
13.10.2. semaphore.h
13.11. Interface Definitions for libpthread
_pthread_cleanup_pop -- establish cancellation handlers
_pthread_cleanup_push -- establish cancellation handlers
13.12. Interfaces for libgcc_s
13.12.1. Unwind Library
13.13. Data Definitions for libgcc_s
13.13.1. unwind.h
13.14. Interfaces for libdl
13.14.1. Dynamic Loader
13.15. Data Definitions for libdl
13.15.1. dlfcn.h
13.16. Interface Definitions for libdl
dladdr -- find the shared object containing a given address
dlopen -- open dynamic object
dlsym -- obtain the address of a symbol from a dlopen object
13.17. Interfaces for librt
13.17.1. Shared Memory Objects
13.17.2. Clock
13.17.3. Timers
13.18. Interfaces for libcrypt
13.18.1. Encryption
13.19. Interfaces for libpam
13.19.1. Pluggable Authentication API
13.20. Data Definitions for libpam
13.20.1. security/pam_appl.h
13.21. Interface Definitions for libpam
pam_acct_mgmt -- establish the status of a user's account
pam_authenticate -- authenticate the user
pam_chauthtok -- change the authentication token for a given user
pam_close_session -- indicate that an authenticated session has ended
pam_end -- terminate the use of the PAM library
pam_fail_delay -- specify delay time to use on authentication error
pam_get_item -- obtain the value of the indicated item.
pam_getenvlist -- returns a pointer to the complete PAM environment.
pam_open_session -- indicate session has started
pam_set_item -- (re)set the value of an item.
pam_setcred -- set the module-specific credentials of the user
pam_start -- initialize the PAM library
pam_strerror -- returns a string describing the PAM error

Chapter 13. Base Libraries

13.1. Introduction

An LSB-conforming implementation shall support the following base libraries which provide interfaces for accessing the operating system, processor and other hardware in the system.

  • libc

  • libm

  • libgcc_s

  • libdl

  • librt

  • libcrypt

  • libpam

There are three main parts to the definition of each of these libraries.

The "Interfaces" section defines the required library name and version, and the required public symbols (interfaces and global data), as well as symbol versions, if any.

The "Interface Definitions" section provides complete or partial definitions of certain interfaces where either this specification is the source specification, or where there are variations from the source specification. If an interface definition requires one or more header files, one of those headers shall include the function prototype for the interface.

For source definitions of interfaces which include a reference to a header file, the contents of such header files form a part of the specification. The "Data Definitions" section provides the binary-level details for the header files from the source specifications, such as values for macros and enumerated types, as well as structure layouts, sizes and padding, etc. These data definitions, although presented in the form of header files for convenience, should not be taken a representing complete header files, as they are a supplement to the source specifications. Application developers should follow the guidelines of the source specifications when determining which header files need to be included to completely resolve all references.

Note: While the Data Definitions supplement the source specifications, this specification itself does not require conforming implementations to supply any header files.


13.2. Program Interpreter

The Program Interpreter is specified in the appropriate architecture specific part of ISO/IEC 23360.


13.3. Interfaces for libc

Table 13-1 defines the library name and shared object name for the libc library

Table 13-1. libc Definition

Library:libc
SONAME:See archLSB.

The behavior of the interfaces in this library is specified by the following specifications:

[LFS] Large File Support
[LSB] This Specification
[SUSv2] SUSv2
[SUSv3] ISO POSIX (2003)
[SVID.3] SVID Issue 3
[SVID.4] SVID Issue 4


13.3.1. RPC


13.3.1.1. Interfaces for RPC

An LSB conforming implementation shall provide the generic functions for RPC specified in Table 13-2, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-2. libc - RPC Function Interfaces

authnone_create [SVID.4]clnt_create [SVID.4]clnt_pcreateerror [SVID.4]clnt_perrno [SVID.4]
clnt_perror [SVID.4]clnt_spcreateerror [SVID.4]clnt_sperrno [SVID.4]clnt_sperror [SVID.4]
key_decryptsession [SVID.3]pmap_getport [LSB]pmap_set [LSB]pmap_unset [LSB]
svc_getreqset [SVID.3]svc_register [LSB]svc_run [LSB]svc_sendreply [LSB]
svcerr_auth [SVID.3]svcerr_decode [SVID.3]svcerr_noproc [SVID.3]svcerr_noprog [SVID.3]
svcerr_progvers [SVID.3]svcerr_systemerr [SVID.3]svcerr_weakauth [SVID.3]svctcp_create [LSB]
svcudp_create [LSB]xdr_accepted_reply [SVID.3]xdr_array [SVID.3]xdr_bool [SVID.3]
xdr_bytes [SVID.3]xdr_callhdr [SVID.3]xdr_callmsg [SVID.3]xdr_char [SVID.3]
xdr_double [SVID.3]xdr_enum [SVID.3]xdr_float [SVID.3]xdr_free [SVID.3]
xdr_int [SVID.3]xdr_long [SVID.3]xdr_opaque [SVID.3]xdr_opaque_auth [SVID.3]
xdr_pointer [SVID.3]xdr_reference [SVID.3]xdr_rejected_reply [SVID.3]xdr_replymsg [SVID.3]
xdr_short [SVID.3]xdr_string [SVID.3]xdr_u_char [SVID.3]xdr_u_int [LSB]
xdr_u_long [SVID.3]xdr_u_short [SVID.3]xdr_union [SVID.3]xdr_vector [SVID.3]
xdr_void [SVID.3]xdr_wrapstring [SVID.3]xdrmem_create [SVID.3]xdrrec_create [SVID.3]
xdrrec_eof [SVID.3]   

13.3.2. System Calls


13.3.2.1. Interfaces for System Calls

An LSB conforming implementation shall provide the generic functions for System Calls specified in Table 13-3, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-3. libc - System Calls Function Interfaces

__fxstat [LSB]__getpgid [LSB]__lxstat [LSB]__xmknod [LSB]
__xstat [LSB]access [SUSv3]acct [LSB]alarm [SUSv3]
brk [SUSv2]chdir [SUSv3]chmod [SUSv3]chown [SUSv3]
chroot [SUSv2]clock [SUSv3]close [SUSv3]closedir [SUSv3]
creat [SUSv3]dup [SUSv3]dup2 [SUSv3]execl [SUSv3]
execle [SUSv3]execlp [SUSv3]execv [SUSv3]execve [SUSv3]
execvp [SUSv3]exit [SUSv3]fchdir [SUSv3]fchmod [SUSv3]
fchown [SUSv3]fcntl [LSB]fdatasync [SUSv3]flock [LSB]
fork [SUSv3]fstatfs [LSB]fstatvfs [SUSv3]fsync [SUSv3]
ftime [SUSv3]ftruncate [SUSv3]getcontext [SUSv3]getegid [SUSv3]
geteuid [SUSv3]getgid [SUSv3]getgroups [SUSv3]getitimer [SUSv3]
getloadavg [LSB]getpagesize [SUSv2]getpgid [SUSv3]getpgrp [SUSv3]
getpid [SUSv3]getppid [SUSv3]getpriority [SUSv3]getrlimit [SUSv3]
getrusage [SUSv3]getsid [SUSv3]getuid [SUSv3]getwd [SUSv3]
initgroups [LSB]ioctl [LSB]kill [LSB]killpg [SUSv3]
lchown [SUSv3]link [LSB]lockf [SUSv3]lseek [SUSv3]
mkdir [SUSv3]mkfifo [SUSv3]mlock [SUSv3]mlockall [SUSv3]
mmap [SUSv3]mprotect [SUSv3]msync [SUSv3]munlock [SUSv3]
munlockall [SUSv3]munmap [SUSv3]nanosleep [SUSv3]nice [SUSv3]
open [SUSv3]opendir [SUSv3]pathconf [SUSv3]pause [SUSv3]
pipe [SUSv3]poll [SUSv3]read [SUSv3]readdir [SUSv3]
readdir_r [SUSv3]readlink [SUSv3]readv [SUSv3]rename [SUSv3]
rmdir [SUSv3]sbrk [SUSv2]sched_get_priority_max [SUSv3]sched_get_priority_min [SUSv3]
sched_getparam [SUSv3]sched_getscheduler [SUSv3]sched_rr_get_interval [SUSv3]sched_setparam [SUSv3]
sched_setscheduler [SUSv3]sched_yield [SUSv3]select [SUSv3]setcontext [SUSv3]
setegid [SUSv3]seteuid [SUSv3]setgid [SUSv3]setitimer [SUSv3]
setpgid [SUSv3]setpgrp [SUSv3]setpriority [SUSv3]setregid [SUSv3]
setreuid [SUSv3]setrlimit [SUSv3]setrlimit64 [LFS]setsid [SUSv3]
setuid [SUSv3]sleep [SUSv3]statfs [LSB]statvfs [SUSv3]
stime [LSB]symlink [SUSv3]sync [SUSv3]sysconf [SUSv3]
time [SUSv3]times [SUSv3]truncate [SUSv3]ulimit [SUSv3]
umask [SUSv3]uname [SUSv3]unlink [LSB]utime [SUSv3]
utimes [SUSv3]vfork [SUSv3]wait [SUSv3]wait4 [LSB]
waitpid [LSB]write [SUSv3]writev [SUSv3] 

13.3.3. Standard I/O


13.3.3.1. Interfaces for Standard I/O

An LSB conforming implementation shall provide the generic functions for Standard I/O specified in Table 13-4, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-4. libc - Standard I/O Function Interfaces

_IO_feof [LSB]_IO_getc [LSB]_IO_putc [LSB]_IO_puts [LSB]
asprintf [LSB]clearerr [SUSv3]ctermid [SUSv3]fclose [SUSv3]
fdopen [SUSv3]feof [SUSv3]ferror [SUSv3]fflush [SUSv3]
fflush_unlocked [LSB]fgetc [SUSv3]fgetpos [SUSv3]fgets [SUSv3]
fgetwc_unlocked [LSB]fileno [SUSv3]flockfile [SUSv3]fopen [SUSv3]
fprintf [SUSv3]fputc [SUSv3]fputs [SUSv3]fread [SUSv3]
freopen [SUSv3]fscanf [LSB]fseek [SUSv3]fseeko [SUSv3]
fsetpos [SUSv3]ftell [SUSv3]ftello [SUSv3]fwrite [SUSv3]
getc [SUSv3]getc_unlocked [SUSv3]getchar [SUSv3]getchar_unlocked [SUSv3]
getw [SUSv2]pclose [SUSv3]popen [SUSv3]printf [SUSv3]
putc [SUSv3]putc_unlocked [SUSv3]putchar [SUSv3]putchar_unlocked [SUSv3]
puts [SUSv3]putw [SUSv2]remove [SUSv3]rewind [SUSv3]
rewinddir [SUSv3]scanf [LSB]seekdir [SUSv3]setbuf [SUSv3]
setbuffer [LSB]setvbuf [SUSv3]snprintf [SUSv3]sprintf [SUSv3]
sscanf [LSB]telldir [SUSv3]tempnam [SUSv3]ungetc [SUSv3]
vasprintf [LSB]vdprintf [LSB]vfprintf [SUSv3]vprintf [SUSv3]
vsnprintf [SUSv3]vsprintf [SUSv3]  

An LSB conforming implementation shall provide the generic data interfaces for Standard I/O specified in Table 13-5, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-5. libc - Standard I/O Data Interfaces

stderr [SUSv3]stdin [SUSv3]stdout [SUSv3] 

13.3.4. Signal Handling


13.3.4.1. Interfaces for Signal Handling

An LSB conforming implementation shall provide the generic functions for Signal Handling specified in Table 13-6, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-6. libc - Signal Handling Function Interfaces

__libc_current_sigrtmax [LSB]__libc_current_sigrtmin [LSB]__sigsetjmp [LSB]__sysv_signal [LSB]
bsd_signal [SUSv3]psignal [LSB]raise [SUSv3]sigaction [SUSv3]
sigaddset [SUSv3]sigaltstack [SUSv3]sigandset [LSB]sigdelset [SUSv3]
sigemptyset [SUSv3]sigfillset [SUSv3]sighold [SUSv3]sigignore [SUSv3]
siginterrupt [SUSv3]sigisemptyset [LSB]sigismember [SUSv3]siglongjmp [SUSv3]
signal [SUSv3]sigorset [LSB]sigpause [SUSv3]sigpending [SUSv3]
sigprocmask [SUSv3]sigqueue [SUSv3]sigrelse [SUSv3]sigreturn [LSB]
sigset [SUSv3]sigsuspend [SUSv3]sigtimedwait [SUSv3]sigwait [SUSv3]
sigwaitinfo [SUSv3]   

An LSB conforming implementation shall provide the generic data interfaces for Signal Handling specified in Table 13-7, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-7. libc - Signal Handling Data Interfaces

_sys_siglist [LSB]   

13.3.5. Localization Functions


13.3.5.1. Interfaces for Localization Functions

An LSB conforming implementation shall provide the generic functions for Localization Functions specified in Table 13-8, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-8. libc - Localization Functions Function Interfaces

bind_textdomain_codeset [LSB]bindtextdomain [LSB]catclose [SUSv3]catgets [SUSv3]
catopen [SUSv3]dcgettext [LSB]dcngettext [LSB]dgettext [LSB]
dngettext [LSB]duplocale(GLIBC_2.3) [LSB]freelocale(GLIBC_2.3) [LSB]gettext [LSB]
iconv [SUSv3]iconv_close [SUSv3]iconv_open [SUSv3]localeconv [SUSv3]
newlocale(GLIBC_2.3) [LSB]ngettext [LSB]nl_langinfo [SUSv3]setlocale [SUSv3]
textdomain [LSB]uselocale(GLIBC_2.3) [LSB]  

An LSB conforming implementation shall provide the generic data interfaces for Localization Functions specified in Table 13-9, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-9. libc - Localization Functions Data Interfaces

_nl_msg_cat_cntr [LSB]   

13.3.6. Socket Interface


13.3.6.1. Interfaces for Socket Interface

An LSB conforming implementation shall provide the generic functions for Socket Interface specified in Table 13-10, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-10. libc - Socket Interface Function Interfaces

__h_errno_location [LSB]accept [SUSv3]bind [SUSv3]bindresvport [LSB]
connect [SUSv3]gethostid [SUSv3]gethostname [SUSv3]getpeername [SUSv3]
getsockname [SUSv3]getsockopt [LSB]if_freenameindex [SUSv3]if_indextoname [SUSv3]
if_nameindex [SUSv3]if_nametoindex [SUSv3]listen [SUSv3]recv [SUSv3]
recvfrom [SUSv3]recvmsg [SUSv3]send [SUSv3]sendmsg [SUSv3]
sendto [SUSv3]setsockopt [LSB]shutdown [SUSv3]sockatmark [SUSv3]
socket [SUSv3]socketpair [SUSv3]  

13.3.7. Wide Characters


13.3.7.1. Interfaces for Wide Characters

An LSB conforming implementation shall provide the generic functions for Wide Characters specified in Table 13-11, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-11. libc - Wide Characters Function Interfaces

__wcstod_internal [LSB]__wcstof_internal [LSB]__wcstol_internal [LSB]__wcstold_internal [LSB]
__wcstoul_internal [LSB]btowc [SUSv3]fgetwc [SUSv3]fgetws [SUSv3]
fputwc [SUSv3]fputws [SUSv3]fwide [SUSv3]fwprintf [SUSv3]
fwscanf [LSB]getwc [SUSv3]getwchar [SUSv3]mblen [SUSv3]
mbrlen [SUSv3]mbrtowc [SUSv3]mbsinit [SUSv3]mbsnrtowcs [LSB]
mbsrtowcs [SUSv3]mbstowcs [SUSv3]mbtowc [SUSv3]putwc [SUSv3]
putwchar [SUSv3]swprintf [SUSv3]swscanf [LSB]towctrans [SUSv3]
towlower [SUSv3]towupper [SUSv3]ungetwc [SUSv3]vfwprintf [SUSv3]
vfwscanf [LSB]vswprintf [SUSv3]vswscanf [LSB]vwprintf [SUSv3]
vwscanf [LSB]wcpcpy [LSB]wcpncpy [LSB]wcrtomb [SUSv3]
wcscasecmp [LSB]wcscat [SUSv3]wcschr [SUSv3]wcscmp [SUSv3]
wcscoll [SUSv3]wcscpy [SUSv3]wcscspn [SUSv3]wcsdup [LSB]
wcsftime [SUSv3]wcslen [SUSv3]wcsncasecmp [LSB]wcsncat [SUSv3]
wcsncmp [SUSv3]wcsncpy [SUSv3]wcsnlen [LSB]wcsnrtombs [LSB]
wcspbrk [SUSv3]wcsrchr [SUSv3]wcsrtombs [SUSv3]wcsspn [SUSv3]
wcsstr [SUSv3]wcstod [SUSv3]wcstof [SUSv3]wcstoimax [SUSv3]
wcstok [SUSv3]wcstol [SUSv3]wcstold [SUSv3]wcstoll [SUSv3]
wcstombs [SUSv3]wcstoq [LSB]wcstoul [SUSv3]wcstoull [SUSv3]
wcstoumax [SUSv3]wcstouq [LSB]wcswcs [SUSv3]wcswidth [SUSv3]
wcsxfrm [SUSv3]wctob [SUSv3]wctomb [SUSv3]wctrans [SUSv3]
wctype [SUSv3]wcwidth [SUSv3]wmemchr [SUSv3]wmemcmp [SUSv3]
wmemcpy [SUSv3]wmemmove [SUSv3]wmemset [SUSv3]wprintf [SUSv3]
wscanf [LSB]   

13.3.8. String Functions


13.3.8.1. Interfaces for String Functions

An LSB conforming implementation shall provide the generic functions for String Functions specified in Table 13-12, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-12. libc - String Functions Function Interfaces

__mempcpy [LSB]__rawmemchr [LSB]__stpcpy [LSB]__strdup [LSB]
__strtod_internal [LSB]__strtof_internal [LSB]__strtok_r [LSB]__strtol_internal [LSB]
__strtold_internal [LSB]__strtoll_internal [LSB]__strtoul_internal [LSB]__strtoull_internal [LSB]
bcmp [SUSv3]bcopy [SUSv3]bzero [SUSv3]ffs [SUSv3]
index [SUSv3]memccpy [SUSv3]memchr [SUSv3]memcmp [SUSv3]
memcpy [SUSv3]memmove [SUSv3]memrchr [LSB]memset [SUSv3]
rindex [SUSv3]stpcpy [LSB]stpncpy [LSB]strcasecmp [SUSv3]
strcasestr [LSB]strcat [SUSv3]strchr [SUSv3]strcmp [SUSv3]
strcoll [SUSv3]strcpy [SUSv3]strcspn [SUSv3]strdup [SUSv3]
strerror [SUSv3]strerror_r [LSB]strfmon [SUSv3]strftime [SUSv3]
strlen [SUSv3]strncasecmp [SUSv3]strncat [SUSv3]strncmp [SUSv3]
strncpy [SUSv3]strndup [LSB]strnlen [LSB]strpbrk [SUSv3]
strptime [LSB]strrchr [SUSv3]strsep [LSB]strsignal [LSB]
strspn [SUSv3]strstr [SUSv3]strtof [SUSv3]strtoimax [SUSv3]
strtok [SUSv3]strtok_r [SUSv3]strtold [SUSv3]strtoll [SUSv3]
strtoq [LSB]strtoull [SUSv3]strtoumax [SUSv3]strtouq [LSB]
strxfrm [SUSv3]swab [SUSv3]  

13.3.9. IPC Functions


13.3.9.1. Interfaces for IPC Functions

An LSB conforming implementation shall provide the generic functions for IPC Functions specified in Table 13-13, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-13. libc - IPC Functions Function Interfaces

ftok [SUSv3]msgctl [SUSv3]msgget [SUSv3]msgrcv [SUSv3]
msgsnd [SUSv3]semctl [SUSv3]semget [SUSv3]semop [SUSv3]
shmat [SUSv3]shmctl [SUSv3]shmdt [SUSv3]shmget [SUSv3]

13.3.10. Regular Expressions


13.3.10.1. Interfaces for Regular Expressions

An LSB conforming implementation shall provide the generic functions for Regular Expressions specified in Table 13-14, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-14. libc - Regular Expressions Function Interfaces

regcomp [SUSv3]regerror [SUSv3]regexec [LSB]regfree [SUSv3]

13.3.11. Character Type Functions


13.3.11.1. Interfaces for Character Type Functions

An LSB conforming implementation shall provide the generic functions for Character Type Functions specified in Table 13-15, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-15. libc - Character Type Functions Function Interfaces

__ctype_b_loc(GLIBC_2.3) [LSB]__ctype_get_mb_cur_max [LSB]__ctype_tolower_loc(GLIBC_2.3) [LSB]__ctype_toupper_loc(GLIBC_2.3) [LSB]
_tolower [SUSv3]_toupper [SUSv3]isalnum [SUSv3]isalpha [SUSv3]
isascii [SUSv3]iscntrl [SUSv3]isdigit [SUSv3]isgraph [SUSv3]
islower [SUSv3]isprint [SUSv3]ispunct [SUSv3]isspace [SUSv3]
isupper [SUSv3]iswalnum [SUSv3]iswalpha [SUSv3]iswblank [SUSv3]
iswcntrl [SUSv3]iswctype [SUSv3]iswdigit [SUSv3]iswgraph [SUSv3]
iswlower [SUSv3]iswprint [SUSv3]iswpunct [SUSv3]iswspace [SUSv3]
iswupper [SUSv3]iswxdigit [SUSv3]isxdigit [SUSv3]toascii [SUSv3]
tolower [SUSv3]toupper [SUSv3]  

13.3.12. Time Manipulation


13.3.12.1. Interfaces for Time Manipulation

An LSB conforming implementation shall provide the generic functions for Time Manipulation specified in Table 13-16, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-16. libc - Time Manipulation Function Interfaces

adjtime [LSB]asctime [SUSv3]asctime_r [SUSv3]ctime [SUSv3]
ctime_r [SUSv3]difftime [SUSv3]gmtime [SUSv3]gmtime_r [SUSv3]
localtime [SUSv3]localtime_r [SUSv3]mktime [SUSv3]tzset [SUSv3]
ualarm [SUSv3]   

An LSB conforming implementation shall provide the generic data interfaces for Time Manipulation specified in Table 13-17, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-17. libc - Time Manipulation Data Interfaces

__daylight [LSB]__timezone [LSB]__tzname [LSB]daylight [SUSv3]
timezone [SUSv3]tzname [SUSv3]  

13.3.13. Terminal Interface Functions


13.3.13.1. Interfaces for Terminal Interface Functions

An LSB conforming implementation shall provide the generic functions for Terminal Interface Functions specified in Table 13-18, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-18. libc - Terminal Interface Functions Function Interfaces

cfgetispeed [SUSv3]cfgetospeed [SUSv3]cfmakeraw [LSB]cfsetispeed [SUSv3]
cfsetospeed [SUSv3]cfsetspeed [LSB]tcdrain [SUSv3]tcflow [SUSv3]
tcflush [SUSv3]tcgetattr [SUSv3]tcgetpgrp [SUSv3]tcgetsid [SUSv3]
tcsendbreak [SUSv3]tcsetattr [SUSv3]tcsetpgrp [SUSv3] 

13.3.14. System Database Interface


13.3.14.1. Interfaces for System Database Interface

An LSB conforming implementation shall provide the generic functions for System Database Interface specified in Table 13-19, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-19. libc - System Database Interface Function Interfaces

endgrent [SUSv3]endprotoent [SUSv3]endpwent [SUSv3]endservent [SUSv3]
endutent [LSB]endutxent [SUSv3]getgrent [SUSv3]getgrgid [SUSv3]
getgrgid_r [SUSv3]getgrnam [SUSv3]getgrnam_r [SUSv3]getgrouplist [LSB]
gethostbyaddr [SUSv3]gethostbyname [SUSv3]getprotobyname [SUSv3]getprotobynumber [SUSv3]
getprotoent [SUSv3]getpwent [SUSv3]getpwnam [SUSv3]getpwnam_r [SUSv3]
getpwuid [SUSv3]getpwuid_r [SUSv3]getservbyname [SUSv3]getservbyport [SUSv3]
getservent [SUSv3]getutent [LSB]getutent_r [LSB]getutxent [SUSv3]
getutxid [SUSv3]getutxline [SUSv3]pututxline [SUSv3]setgrent [SUSv3]
setgroups [LSB]setprotoent [SUSv3]setpwent [SUSv3]setservent [SUSv3]
setutent [LSB]setutxent [SUSv3]utmpname [LSB] 

13.3.15. Language Support


13.3.15.1. Interfaces for Language Support

An LSB conforming implementation shall provide the generic functions for Language Support specified in Table 13-20, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-20. libc - Language Support Function Interfaces

__libc_start_main [LSB]__register_atfork(GLIBC_2.3.2) [LSB]  

13.3.16. Large File Support


13.3.16.1. Interfaces for Large File Support

An LSB conforming implementation shall provide the generic functions for Large File Support specified in Table 13-21, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-21. libc - Large File Support Function Interfaces

__fxstat64 [LSB]__lxstat64 [LSB]__xstat64 [LSB]creat64 [LFS]
fgetpos64 [LFS]fopen64 [LFS]freopen64 [LFS]fseeko64 [LFS]
fsetpos64 [LFS]fstatfs64 [LSB]fstatvfs64 [LFS]ftello64 [LFS]
ftruncate64 [LFS]ftw64 [LFS]getrlimit64 [LFS]lockf64 [LFS]
mkstemp64 [LFS]mmap64 [LFS]nftw64 [LFS]readdir64 [LFS]
statfs64 [LSB]statvfs64 [LFS]tmpfile64 [LFS]truncate64 [LFS]

13.3.17. Standard Library


13.3.17.1. Interfaces for Standard Library

An LSB conforming implementation shall provide the generic functions for Standard Library specified in Table 13-22, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-22. libc - Standard Library Function Interfaces

_Exit [SUSv3]__assert_fail [LSB]__cxa_atexit [LSB]__errno_location [LSB]
__fpending [LSB]__getpagesize [LSB]__isinf [LSB]__isinff [LSB]
__isinfl [LSB]__isnan [LSB]__isnanf [LSB]__isnanl [LSB]
__sysconf [LSB]_exit [SUSv3]_longjmp [SUSv3]_setjmp [SUSv3]
a64l [SUSv3]abort [SUSv3]abs [SUSv3]atof [SUSv3]
atoi [SUSv3]atol [SUSv3]atoll [SUSv3]basename [SUSv3]
bsearch [SUSv3]calloc [SUSv3]closelog [SUSv3]confstr [SUSv3]
cuserid [SUSv2]daemon [LSB]dirname [SUSv3]div [SUSv3]
drand48 [SUSv3]ecvt [SUSv3]erand48 [SUSv3]err [LSB]
error [LSB]errx [LSB]fcvt [SUSv3]fmtmsg [SUSv3]
fnmatch [SUSv3]fpathconf [SUSv3]free [SUSv3]freeaddrinfo [SUSv3]
ftrylockfile [SUSv3]ftw [SUSv3]funlockfile [SUSv3]gai_strerror [SUSv3]
gcvt [SUSv3]getaddrinfo [SUSv3]getcwd [SUSv3]getdate [SUSv3]
getenv [SUSv3]getlogin [SUSv3]getlogin_r [SUSv3]getnameinfo [SUSv3]
getopt [LSB]getopt_long [LSB]getopt_long_only [LSB]getsubopt [SUSv3]
gettimeofday [SUSv3]glob [SUSv3]glob64 [LSB]globfree [SUSv3]
globfree64 [LSB]grantpt [SUSv3]hcreate [SUSv3]hdestroy [SUSv3]
hsearch [SUSv3]htonl [SUSv3]htons [SUSv3]imaxabs [SUSv3]
imaxdiv [SUSv3]inet_addr [SUSv3]inet_ntoa [SUSv3]inet_ntop [SUSv3]
inet_pton [SUSv3]initstate [SUSv3]insque [SUSv3]isatty [SUSv3]
isblank [SUSv3]jrand48 [SUSv3]l64a [SUSv3]labs [SUSv3]
lcong48 [SUSv3]ldiv [SUSv3]lfind [SUSv3]llabs [SUSv3]
lldiv [SUSv3]longjmp [SUSv3]lrand48 [SUSv3]lsearch [SUSv3]
makecontext [SUSv3]malloc [SUSv3]memmem [LSB]mkstemp [SUSv3]
mktemp [SUSv3]mrand48 [SUSv3]nftw [SUSv3]nrand48 [SUSv3]
ntohl [SUSv3]ntohs [SUSv3]openlog [SUSv3]perror [SUSv3]
posix_memalign [SUSv3]posix_openpt [SUSv3]ptsname [SUSv3]putenv [SUSv3]
qsort [SUSv3]rand [SUSv3]rand_r [SUSv3]random [SUSv3]
realloc [SUSv3]realpath [SUSv3]remque [SUSv3]seed48 [SUSv3]
setenv [SUSv3]sethostname [LSB]setlogmask [SUSv3]setstate [SUSv3]
srand [SUSv3]srand48 [SUSv3]srandom [SUSv3]strtod [SUSv3]
strtol [SUSv3]strtoul [SUSv3]swapcontext [SUSv3]syslog [SUSv3]
system [LSB]tdelete [SUSv3]tfind [SUSv3]tmpfile [SUSv3]
tmpnam [SUSv3]tsearch [SUSv3]ttyname [SUSv3]ttyname_r [SUSv3]
twalk [SUSv3]unlockpt [SUSv3]unsetenv [SUSv3]usleep [SUSv3]
verrx [LSB]vfscanf [LSB]vscanf [LSB]vsscanf [LSB]
vsyslog [LSB]warn [LSB]warnx [LSB]wordexp [SUSv3]
wordfree [SUSv3]   

An LSB conforming implementation shall provide the generic data interfaces for Standard Library specified in Table 13-23, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-23. libc - Standard Library Data Interfaces

__environ [LSB]_environ [LSB]_sys_errlist [LSB]environ [SUSv3]
getdate_err [SUSv3]optarg [SUSv3]opterr [SUSv3]optind [SUSv3]
optopt [SUSv3]   

13.4. Data Definitions for libc

This section defines global identifiers and their values that are associated with interfaces contained in libc. These definitions are organized into groups that correspond to system headers. This convention is used as a convenience for the reader, and does not imply the existence of these headers, or their content. Where an interface is defined as requiring a particular system header file all of the data definitions for that system header file presented here shall be in effect.

This section gives data definitions to promote binary application portability, not to repeat source interface definitions available elsewhere. System providers and application developers should use this ABI to supplement - not to replace - source interface definition specifications.

This specification uses the ISO C (1999) C Language as the reference programming language, and data definitions are specified in ISO C format. The C language is used here as a convenient notation. Using a C language description of these data objects does not preclude their use by other programming languages.


13.4.1. arpa/inet.h


extern uint32_t htonl(uint32_t);
extern uint16_t htons(uint16_t);
extern in_addr_t inet_addr(const char *);
extern char *inet_ntoa(struct in_addr);
extern const char *inet_ntop(int, const void *, char *, socklen_t);
extern int inet_pton(int, const char *, void *);
extern uint32_t ntohl(uint32_t);
extern uint16_t ntohs(uint16_t);

13.4.2. assert.h

The assert.h header shall define the assert() macro. It refers to the macro NDEBUG, which is not defined in this header. If NDEBUG is defined before the inclusion of this header, the assert() macro shall be defined as described below, otherwise the macro shall behave as described in assert() in ISO/IEC 9945 POSIX.


extern void __assert_fail(const char *, const char *, unsigned int,
			  const char *);

13.4.3. ctype.h


enum {
    _ISupper = 256,
    _ISlower = 512,
    _ISalpha = 1024,
    _ISdigit = 2048,
    _ISxdigit = 4096,
    _ISspace = 8192,
    _ISprint = 16384,
    _ISgraph = 32768,
    _ISblank = 1,
    _IScntrl = 2,
    _ISpunct = 4,
    _ISalnum = 8
};
extern int _tolower(int);
extern int _toupper(int);
extern int isalnum(int);
extern int isalpha(int);
extern int isascii(int);
extern int iscntrl(int);
extern int isdigit(int);
extern int isgraph(int);
extern int islower(int);
extern int isprint(int);
extern int ispunct(int);
extern int isspace(int);
extern int isupper(int);
extern int isxdigit(int);
extern int toascii(int);
extern int tolower(int);
extern int toupper(int);
extern int isblank(int);
extern const unsigned short **__ctype_b_loc(void);
extern const int32_t **__ctype_toupper_loc(void);
extern const int32_t **__ctype_tolower_loc(void);

13.4.4. dirent.h


typedef struct __dirstream DIR;

struct dirent {
    long int d_ino;
    off_t d_off;
    unsigned short d_reclen;
    unsigned char d_type;
    char d_name[256];
};
struct dirent64 {
    uint64_t d_ino;
    int64_t d_off;
    unsigned short d_reclen;
    unsigned char d_type;
    char d_name[256];
};
extern void rewinddir(DIR *);
extern void seekdir(DIR *, long int);
extern long int telldir(DIR *);
extern int closedir(DIR *);
extern DIR *opendir(const char *);
extern struct dirent *readdir(DIR *);
extern struct dirent64 *readdir64(DIR *);
extern int readdir_r(DIR *, struct dirent *, struct dirent **);

13.4.5. err.h


extern void err(int, const char *, ...);
extern void errx(int, const char *, ...);
extern void warn(const char *, ...);
extern void warnx(const char *, ...);
extern void error(int, int, const char *, ...);

13.4.6. errno.h

ISO POSIX (2003) requires that each error value shall be unique, with permission for EAGAIN and EWOULDBLOCK possibly having the same value. This specification also requires that ENOTSUP and EOPNOTSUPP have the same value.

Note: A defect report against ISO POSIX (2003) has been filed to request that specification also permit these two symbols to have the same value.


#define errno	(*__errno_location())

#define EPERM	1
#define ECHILD	10
#define ENETDOWN	100
#define ENETUNREACH	101
#define ENETRESET	102
#define ECONNABORTED	103
#define ECONNRESET	104
#define ENOBUFS	105
#define EISCONN	106
#define ENOTCONN	107
#define ESHUTDOWN	108
#define ETOOMANYREFS	109
#define EAGAIN	11
#define ETIMEDOUT	110
#define ECONNREFUSED	111
#define EHOSTDOWN	112
#define EHOSTUNREACH	113
#define EALREADY	114
#define EINPROGRESS	115
#define ESTALE	116
#define EUCLEAN	117
#define ENOTNAM	118
#define ENAVAIL	119
#define ENOMEM	12
#define EISNAM	120
#define EREMOTEIO	121
#define EDQUOT	122
#define ENOMEDIUM	123
#define EMEDIUMTYPE	124
#define ECANCELED	125
#define EACCES	13
#define EFAULT	14
#define ENOTBLK	15
#define EBUSY	16
#define EEXIST	17
#define EXDEV	18
#define ENODEV	19
#define ENOENT	2
#define ENOTDIR	20
#define EISDIR	21
#define EINVAL	22
#define ENFILE	23
#define EMFILE	24
#define ENOTTY	25
#define ETXTBSY	26
#define EFBIG	27
#define ENOSPC	28
#define ESPIPE	29
#define ESRCH	3
#define EROFS	30
#define EMLINK	31
#define EPIPE	32
#define EDOM	33
#define ERANGE	34
#define EDEADLK	35
#define ENAMETOOLONG	36
#define ENOLCK	37
#define ENOSYS	38
#define ENOTEMPTY	39
#define EINTR	4
#define ELOOP	40
#define ENOMSG	42
#define EIDRM	43
#define ECHRNG	44
#define EL2NSYNC	45
#define EL3HLT	46
#define EL3RST	47
#define ELNRNG	48
#define EUNATCH	49
#define EIO	5
#define ENOANO	55
#define EBADRQC	56
#define EBADSLT	57
#define EBFONT	59
#define ENXIO	6
#define ENOSTR	60
#define ENODATA	61
#define ETIME	62
#define ENOSR	63
#define ENONET	64
#define ENOPKG	65
#define EREMOTE	66
#define ENOLINK	67
#define EADV	68
#define ESRMNT	69
#define E2BIG	7
#define ECOMM	70
#define EPROTO	71
#define EMULTIHOP	72
#define EDOTDOT	73
#define EBADMSG	74
#define EOVERFLOW	75
#define ENOTUNIQ	76
#define EBADFD	77
#define EREMCHG	78
#define ELIBACC	79
#define ENOEXEC	8
#define ELIBBAD	80
#define ELIBSCN	81
#define ELIBMAX	82
#define ELIBEXEC	83
#define EILSEQ	84
#define ERESTART	85
#define ESTRPIPE	86
#define EUSERS	87
#define ENOTSOCK	88
#define EDESTADDRREQ	89
#define EBADF	9
#define EMSGSIZE	90
#define EPROTOTYPE	91
#define ENOPROTOOPT	92
#define EPROTONOSUPPORT	93
#define ESOCKTNOSUPPORT	94
#define EOPNOTSUPP	95
#define EPFNOSUPPORT	96
#define EAFNOSUPPORT	97
#define EADDRINUSE	98
#define EADDRNOTAVAIL	99
#define EWOULDBLOCK	EAGAIN
#define ENOTSUP	EOPNOTSUPP

extern int *__errno_location(void);

13.4.7. fcntl.h


#define O_RDONLY	00
#define O_ACCMODE	0003
#define O_WRONLY	01
#define O_CREAT	0100
#define O_TRUNC	01000
#define O_SYNC	010000
#define O_RDWR	02
#define O_EXCL	0200
#define O_APPEND	02000
#define O_ASYNC	020000
#define O_NOCTTY	0400
#define O_NDELAY	04000
#define O_NONBLOCK	04000
#define FD_CLOEXEC	1

struct flock {
    short l_type;
    short l_whence;
    off_t l_start;
    off_t l_len;
    pid_t l_pid;
};
struct flock64 {
    short l_type;
    short l_whence;
    loff_t l_start;
    loff_t l_len;
    pid_t l_pid;
};

#define F_DUPFD	0
#define F_RDLCK	0
#define F_GETFD	1
#define F_WRLCK	1
#define F_SETFD	2
#define F_UNLCK	2
#define F_GETFL	3
#define F_SETFL	4
#define F_GETLK	5
#define F_SETLK	6
#define F_SETLKW	7
#define F_SETOWN	8
#define F_GETOWN	9

extern int lockf64(int, int, off64_t);
extern int fcntl(int, int, ...);

13.4.8. fmtmsg.h


#define MM_HARD	1
#define MM_NRECOV	128
#define MM_UTIL	16
#define MM_SOFT	2
#define MM_OPSYS	32
#define MM_FIRM	4
#define MM_RECOVER	64
#define MM_APPL	8

#define MM_NOSEV	0
#define MM_HALT	1
#define MM_ERROR	2

#define MM_NULLLBL	((char *) 0)

extern int fmtmsg(long int, const char *, int, const char *, const char *,
		  const char *);

13.4.9. fnmatch.h


#define FNM_PATHNAME	(1<<0)
#define FNM_NOESCAPE	(1<<1)
#define FNM_PERIOD	(1<<2)
#define FNM_NOMATCH	1

extern int fnmatch(const char *, const char *, int);

13.4.10. ftw.h


#define FTW_D	FTW_D
#define FTW_DNR	FTW_DNR
#define FTW_DP	FTW_DP
#define FTW_F	FTW_F
#define FTW_NS	FTW_NS
#define FTW_SL	FTW_SL
#define FTW_SLN	FTW_SLN

enum {
    FTW_F,
    FTW_D,
    FTW_DNR,
    FTW_NS,
    FTW_SL,
    FTW_DP,
    FTW_SLN
};

enum {
    FTW_PHYS = 1,
    FTW_MOUNT = 2,
    FTW_CHDIR = 4,
    FTW_DEPTH = 8
};

struct FTW {
    int base;
    int level;
};

typedef int (*__ftw_func_t) (char *__filename, struct stat * __status,
			     int __flag);
typedef int (*__ftw64_func_t) (char *__filename, struct stat64 * __status,
			       int __flag);
typedef int (*__nftw_func_t) (char *__filename, struct stat * __status,
			      int __flag, struct FTW * __info);
typedef int (*__nftw64_func_t) (char *__filename, struct stat64 * __status,
				int __flag, struct FTW * __info);
extern int ftw(const char *, __ftw_func_t, int);
extern int ftw64(const char *, __ftw64_func_t, int);
extern int nftw(const char *, __nftw_func_t, int, int);
extern int nftw64(const char *, __nftw64_func_t, int, int);

13.4.11. getopt.h


#define no_argument	0
#define required_argument	1
#define optional_argument	2

struct option {
    const char *name;
    int has_arg;
    int *flag;
    int val;
};
extern int getopt_long(int, char *const, const char *,
		       const struct option *, int *);
extern int getopt_long_only(int, char *const, const char *,
			    const struct option *, int *);

13.4.12. glob.h


#define GLOB_ERR	(1<<0)
#define GLOB_MARK	(1<<1)
#define GLOB_BRACE	(1<<10)
#define GLOB_NOMAGIC	(1<<11)
#define GLOB_TILDE	(1<<12)
#define GLOB_ONLYDIR	(1<<13)
#define GLOB_TILDE_CHECK	(1<<14)
#define GLOB_NOSORT	(1<<2)
#define GLOB_DOOFFS	(1<<3)
#define GLOB_NOCHECK	(1<<4)
#define GLOB_APPEND	(1<<5)
#define GLOB_NOESCAPE	(1<<6)
#define GLOB_PERIOD	(1<<7)
#define GLOB_MAGCHAR	(1<<8)
#define GLOB_ALTDIRFUNC	(1<<9)

#define GLOB_NOSPACE	1
#define GLOB_ABORTED	2
#define GLOB_NOMATCH	3
#define GLOB_NOSYS	4

typedef struct {
    size_t gl_pathc;
    char **gl_pathv;
    size_t gl_offs;
    int gl_flags;
    void (*gl_closedir) (void *);
    struct dirent *(*gl_readdir) (void *);
    void *(*gl_opendir) (const char *);
    int (*gl_lstat) (const char *, struct stat *);
    int (*gl_stat) (const char *, struct stat *);
} glob_t;

typedef struct {
    size_t gl_pathc;
    char **gl_pathv;
    size_t gl_offs;
    int gl_flags;
    void (*gl_closedir) (void *);
    struct dirent64 *(*gl_readdir) (void *);
    void *(*gl_opendir) (const char *);
    int (*gl_lstat) (const char *, struct stat *);
    int (*gl_stat) (const char *, struct stat *);
} glob64_t;
extern int glob(const char *, int, int (*gl_stat) (const char *p1, int p2)
		, glob_t *);
extern int glob64(const char *, int,
		  int (*gl_stat) (const char *p1, int p2)
		  , glob64_t *);
extern void globfree(glob_t *);
extern void globfree64(glob64_t *);

13.4.13. grp.h


struct group {
    char *gr_name;
    char *gr_passwd;
    gid_t gr_gid;
    char **gr_mem;
};

extern void endgrent(void);
extern struct group *getgrent(void);
extern struct group *getgrgid(gid_t);
extern struct group *getgrnam(char *);
extern int initgroups(const char *, gid_t);
extern void setgrent(void);
extern int setgroups(size_t, const gid_t *);
extern int getgrgid_r(gid_t, struct group *, char *, size_t,
		      struct group **);
extern int getgrnam_r(const char *, struct group *, char *, size_t,
		      struct group **);
extern int getgrouplist(const char *, gid_t, gid_t *, int *);

13.4.14. iconv.h


typedef void *iconv_t;
extern size_t iconv(iconv_t, char **, size_t *, char **, size_t *);
extern int iconv_close(iconv_t);
extern iconv_t iconv_open(char *, char *);

13.4.15. inttypes.h


typedef lldiv_t imaxdiv_t;
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned int uint32_t;

extern intmax_t strtoimax(const char *, char **, int);
extern uintmax_t strtoumax(const char *, char **, int);
extern intmax_t wcstoimax(const wchar_t *, wchar_t * *, int);
extern uintmax_t wcstoumax(const wchar_t *, wchar_t * *, int);
extern intmax_t imaxabs(intmax_t);
extern imaxdiv_t imaxdiv(intmax_t, intmax_t);

13.4.16. langinfo.h


#define ABDAY_1	0x20000
#define ABDAY_2	0x20001
#define ABDAY_3	0x20002
#define ABDAY_4	0x20003
#define ABDAY_5	0x20004
#define ABDAY_6	0x20005
#define ABDAY_7	0x20006

#define DAY_1	0x20007
#define DAY_2	0x20008
#define DAY_3	0x20009
#define DAY_4	0x2000A
#define DAY_5	0x2000B
#define DAY_6	0x2000C
#define DAY_7	0x2000D

#define ABMON_1	0x2000E
#define ABMON_2	0x2000F
#define ABMON_3	0x20010
#define ABMON_4	0x20011
#define ABMON_5	0x20012
#define ABMON_6	0x20013
#define ABMON_7	0x20014
#define ABMON_8	0x20015
#define ABMON_9	0x20016
#define ABMON_10	0x20017
#define ABMON_11	0x20018
#define ABMON_12	0x20019

#define MON_1	0x2001A
#define MON_2	0x2001B
#define MON_3	0x2001C
#define MON_4	0x2001D
#define MON_5	0x2001E
#define MON_6	0x2001F
#define MON_7	0x20020
#define MON_8	0x20021
#define MON_9	0x20022
#define MON_10	0x20023
#define MON_11	0x20024
#define MON_12	0x20025

#define AM_STR	0x20026
#define PM_STR	0x20027

#define D_T_FMT	0x20028
#define D_FMT	0x20029
#define T_FMT	0x2002A
#define T_FMT_AMPM	0x2002B

#define ERA	0x2002C
#define ERA_D_FMT	0x2002E
#define ALT_DIGITS	0x2002F
#define ERA_D_T_FMT	0x20030
#define ERA_T_FMT	0x20031

#define CODESET	14

#define CRNCYSTR	0x4000F

#define RADIXCHAR	0x10000
#define THOUSEP	0x10001
#define YESEXPR	0x50000
#define NOEXPR	0x50001
#define YESSTR	0x50002
#define NOSTR	0x50003

extern char *nl_langinfo(nl_item);

13.4.17. libgen.h


extern char *basename(const char *);
extern char *dirname(char *);

13.4.18. libintl.h


extern char *bindtextdomain(const char *, const char *);
extern char *dcgettext(const char *, const char *, int);
extern char *dgettext(const char *, const char *);
extern char *gettext(const char *);
extern char *textdomain(const char *);
extern char *bind_textdomain_codeset(const char *, const char *);
extern char *dcngettext(const char *, const char *, const char *,
			unsigned long int, int);
extern char *dngettext(const char *, const char *, const char *,
		       unsigned long int);
extern char *ngettext(const char *, const char *, unsigned long int);

13.4.19. limits.h


#define LLONG_MIN	(-LLONG_MAX-1LL)
#define ULLONG_MAX	18446744073709551615ULL
#define OPEN_MAX	256
#define PATH_MAX	4096
#define LLONG_MAX	9223372036854775807LL
#define SSIZE_MAX	LONG_MAX

#define MB_LEN_MAX	16

#define SCHAR_MIN	(-128)
#define SCHAR_MAX	127
#define UCHAR_MAX	255
#define CHAR_BIT	8

#define SHRT_MIN	(-32768)
#define SHRT_MAX	32767
#define USHRT_MAX	65535

#define INT_MIN	(-INT_MAX-1)
#define INT_MAX	2147483647
#define UINT_MAX	4294967295U

#define LONG_MIN	(-LONG_MAX-1L)

#define PTHREAD_KEYS_MAX	1024
#define PTHREAD_THREADS_MAX	16384
#define PTHREAD_DESTRUCTOR_ITERATIONS	4

13.4.20. locale.h


struct lconv {
    char *decimal_point;
    char *thousands_sep;
    char *grouping;
    char *int_curr_symbol;
    char *currency_symbol;
    char *mon_decimal_point;
    char *mon_thousands_sep;
    char *mon_grouping;
    char *positive_sign;
    char *negative_sign;
    char int_frac_digits;
    char frac_digits;
    char p_cs_precedes;
    char p_sep_by_space;
    char n_cs_precedes;
    char n_sep_by_space;
    char p_sign_posn;
    char n_sign_posn;
    char int_p_cs_precedes;
    char int_p_sep_by_space;
    char int_n_cs_precedes;
    char int_n_sep_by_space;
    char int_p_sign_posn;
    char int_n_sign_posn;
};

#define LC_GLOBAL_LOCALE	((locale_t) -1L)
#define LC_CTYPE	0
#define LC_NUMERIC	1
#define LC_TELEPHONE	10
#define LC_MEASUREMENT	11
#define LC_IDENTIFICATION	12
#define LC_TIME	2
#define LC_COLLATE	3
#define LC_MONETARY	4
#define LC_MESSAGES	5
#define LC_ALL	6
#define LC_PAPER	7
#define LC_NAME	8
#define LC_ADDRESS	9

struct __locale_struct {
    struct locale_data *__locales[13];
    const unsigned short *__ctype_b;
    const int *__ctype_tolower;
    const int *__ctype_toupper;
    const char *__names[13];
};
typedef struct __locale_struct *__locale_t;

typedef struct __locale_struct *locale_t;

#define LC_ADDRESS_MASK	(1 << LC_ADDRESS)
#define LC_COLLATE_MASK	(1 << LC_COLLATE)
#define LC_IDENTIFICATION_MASK	(1 << LC_IDENTIFICATION)
#define LC_MEASUREMENT_MASK	(1 << LC_MEASUREMENT)
#define LC_MESSAGES_MASK	(1 << LC_MESSAGES)
#define LC_MONETARY_MASK	(1 << LC_MONETARY)
#define LC_NAME_MASK	(1 << LC_NAME)
#define LC_NUMERIC_MASK	(1 << LC_NUMERIC)
#define LC_PAPER_MASK	(1 << LC_PAPER)
#define LC_TELEPHONE_MASK	(1 << LC_TELEPHONE)
#define LC_TIME_MASK	(1 << LC_TIME)
#define LC_CTYPE_MASK	(1<<LC_CTYPE)
#define LC_ALL_MASK	\
        (LC_CTYPE_MASK| LC_NUMERIC_MASK| LC_TIME_MASK| LC_COLLATE_MASK| LC_MONETARY_MASK|\
         LC_MESSAGES_MASK| LC_PAPER_MASK| LC_NAME_MASK| LC_ADDRESS_MASK| LC_TELEPHONE_MASK|\
         LC_MEASUREMENT_MASK| LC_IDENTIFICATION_MASK)

extern struct lconv *localeconv(void);
extern char *setlocale(int, const char *);
extern locale_t uselocale(locale_t);
extern void freelocale(locale_t);
extern locale_t duplocale(locale_t);
extern locale_t newlocale(int, const char *, locale_t);

13.4.21. monetary.h


extern ssize_t strfmon(char *, size_t, const char *, ...);

13.4.22. net/if.h


#define IF_NAMESIZE	16

#define IFF_UP	0x01
#define IFF_BROADCAST	0x02
#define IFF_DEBUG	0x04
#define IFF_LOOPBACK	0x08
#define IFF_POINTOPOINT	0x10
#define IFF_PROMISC	0x100
#define IFF_MULTICAST	0x1000
#define IFF_NOTRAILERS	0x20
#define IFF_RUNNING	0x40
#define IFF_NOARP	0x80

struct if_nameindex {
    unsigned int if_index;
    char *if_name;
};

struct ifaddr {
    struct sockaddr ifa_addr;
    union {
	struct sockaddr ifu_broadaddr;
	struct sockaddr ifu_dstaddr;
    } ifa_ifu;
    void *ifa_ifp;
    void *ifa_next;
};

#define IFNAMSIZ	IF_NAMESIZE

struct ifreq {
    union {
	char ifrn_name[IFNAMSIZ];
    } ifr_ifrn;
    union {
	struct sockaddr ifru_addr;
	struct sockaddr ifru_dstaddr;
	struct sockaddr ifru_broadaddr;
	struct sockaddr ifru_netmask;
	struct sockaddr ifru_hwaddr;
	short ifru_flags;
	int ifru_ivalue;
	int ifru_mtu;
	char ifru_slave[IFNAMSIZ];
	char ifru_newname[IFNAMSIZ];
	caddr_t ifru_data;
	struct ifmap ifru_map;
    } ifr_ifru;
};

struct ifconf {
    int ifc_len;
    union {
	caddr_t ifcu_buf;
	struct ifreq *ifcu_req;
    } ifc_ifcu;
};
extern void if_freenameindex(struct if_nameindex *);
extern char *if_indextoname(unsigned int, char *);
extern struct if_nameindex *if_nameindex(void);
extern unsigned int if_nametoindex(const char *);

13.4.23. netdb.h


#define NETDB_INTERNAL	-1
#define NETDB_SUCCESS	0
#define HOST_NOT_FOUND	1
#define IPPORT_RESERVED	1024
#define NI_MAXHOST	1025
#define TRY_AGAIN	2
#define NO_RECOVERY	3
#define NI_MAXSERV	32
#define NO_DATA	4
#define h_addr	h_addr_list[0]
#define NO_ADDRESS	NO_DATA

struct servent {
    char *s_name;
    char **s_aliases;
    int s_port;
    char *s_proto;
};
struct hostent {
    char *h_name;
    char **h_aliases;
    int h_addrtype;
    int h_length;
    char **h_addr_list;
};
struct protoent {
    char *p_name;
    char **p_aliases;
    int p_proto;
};
struct netent {
    char *n_name;
    char **n_aliases;
    int n_addrtype;
    unsigned int n_net;
};

#define AI_PASSIVE	0x0001
#define AI_CANONNAME	0x0002
#define AI_NUMERICHOST	0x0004

struct addrinfo {
    int ai_flags;
    int ai_family;
    int ai_socktype;
    int ai_protocol;
    socklen_t ai_addrlen;
    struct sockaddr *ai_addr;
    char *ai_canonname;
    struct addrinfo *ai_next;
};

#define NI_NUMERICHOST	1
#define NI_DGRAM	16
#define NI_NUMERICSERV	2
#define NI_NOFQDN	4
#define NI_NAMEREQD	8

#define EAI_BADFLAGS	-1
#define EAI_MEMORY	-10
#define EAI_SYSTEM	-11
#define EAI_NONAME	-2
#define EAI_AGAIN	-3
#define EAI_FAIL	-4
#define EAI_NODATA	-5
#define EAI_FAMILY	-6
#define EAI_SOCKTYPE	-7
#define EAI_SERVICE	-8
#define EAI_ADDRFAMILY	-9

extern void endprotoent(void);
extern void endservent(void);
extern void freeaddrinfo(struct addrinfo *);
extern const char *gai_strerror(int);
extern int getaddrinfo(const char *, const char *, const struct addrinfo *,
		       struct addrinfo **);
extern struct hostent *gethostbyaddr(const void *, socklen_t, int);
extern struct hostent *gethostbyname(const char *);
extern struct protoent *getprotobyname(const char *);
extern struct protoent *getprotobynumber(int);
extern struct protoent *getprotoent(void);
extern struct servent *getservbyname(const char *, const char *);
extern struct servent *getservbyport(int, const char *);
extern struct servent *getservent(void);
extern void setprotoent(int);
extern void setservent(int);
extern int *__h_errno_location(void);

13.4.24. netinet/in.h


#define IPPROTO_IP	0
#define IPPROTO_ICMP	1
#define IPPROTO_UDP	17
#define IPPROTO_IGMP	2
#define IPPROTO_RAW	255
#define IPPROTO_IPV6	41
#define IPPROTO_ICMPV6	58
#define IPPROTO_TCP	6

typedef uint16_t in_port_t;

struct in_addr {
    uint32_t s_addr;
};
typedef uint32_t in_addr_t;

#define INADDR_NONE	((in_addr_t) 0xffffffff)
#define INADDR_BROADCAST	(0xffffffff)
#define INADDR_ANY	0

struct in6_addr {
    union {
	uint8_t u6_addr8[16];
	uint16_t u6_addr16[8];
	uint32_t u6_addr32[4];
    } in6_u;
};

#define IN6ADDR_ANY_INIT	{ { { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } } }
#define IN6ADDR_LOOPBACK_INIT	{ { { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 } } }

#define INET_ADDRSTRLEN	16

struct sockaddr_in {
    sa_family_t sin_family;
    unsigned short sin_port;
    struct in_addr sin_addr;
    unsigned char sin_zero[8];
};

#define INET6_ADDRSTRLEN	46

struct sockaddr_in6 {
    unsigned short sin6_family;
    uint16_t sin6_port;
    uint32_t sin6_flowinfo;
    struct in6_addr sin6_addr;
    uint32_t sin6_scope_id;
};

#define SOL_IP	0
#define IP_TOS	1
#define IPV6_UNICAST_HOPS	16
#define IPV6_MULTICAST_IF	17
#define IPV6_MULTICAST_HOPS	18
#define IPV6_MULTICAST_LOOP	19
#define IP_TTL	2
#define IPV6_JOIN_GROUP	20
#define IPV6_LEAVE_GROUP	21
#define IPV6_V6ONLY	26
#define IP_MULTICAST_IF	32
#define IP_MULTICAST_TTL	33
#define IP_MULTICAST_LOOP	34
#define IP_ADD_MEMBERSHIP	35
#define IP_DROP_MEMBERSHIP	36
#define IP_OPTIONS	4

struct ipv6_mreq {
    struct in6_addr ipv6mr_multiaddr;
    int ipv6mr_interface;
};
struct ip_mreq {
    struct in_addr imr_multiaddr;
    struct in_addr imr_interface;
};
extern int bindresvport(int, struct sockaddr_in *);

13.4.25. netinet/ip.h


#define IPTOS_LOWCOST	0x02
#define IPTOS_RELIABILITY	0x04
#define IPTOS_THROUGHPUT	0x08
#define IPTOS_LOWDELAY	0x10
#define IPTOS_TOS_MASK	0x1e
#define IPTOS_MINCOST	IPTOS_LOWCOST

#define IPTOS_PREC_MASK	0xe0

13.4.26. netinet/tcp.h


#define TCP_NODELAY	1
#define SOL_TCP	6

13.4.27. netinet/udp.h


#define SOL_UDP	17

13.4.28. nl_types.h


#define NL_CAT_LOCALE	1
#define NL_SETD	1

typedef void *nl_catd;

typedef int nl_item;
extern int catclose(nl_catd);
extern char *catgets(nl_catd, int, int, const char *);
extern nl_catd catopen(const char *, int);

13.4.29. poll.h


extern int poll(struct pollfd *, nfds_t, int);

13.4.30. pty.h


extern int openpty(int *, int *, char *, struct termios *,
		   struct winsize *);
extern int forkpty(int *, char *, struct termios *, struct winsize *);

13.4.31. pwd.h


struct passwd {
    char *pw_name;
    char *pw_passwd;
    uid_t pw_uid;
    gid_t pw_gid;
    char *pw_gecos;
    char *pw_dir;
    char *pw_shell;
};
extern void endpwent(void);
extern struct passwd *getpwent(void);
extern struct passwd *getpwnam(char *);
extern struct passwd *getpwuid(uid_t);
extern void setpwent(void);
extern int getpwnam_r(char *, struct passwd *, char *, size_t,
		      struct passwd **);
extern int getpwuid_r(uid_t, struct passwd *, char *, size_t,
		      struct passwd **);

13.4.32. regex.h


typedef unsigned long int reg_syntax_t;

typedef struct re_pattern_buffer {
    unsigned char *buffer;
    unsigned long int allocated;
    unsigned long int used;
    reg_syntax_t syntax;
    char *fastmap;
    char *translate;
    size_t re_nsub;
    unsigned int can_be_null:1;
    unsigned int regs_allocated:2;
    unsigned int fastmap_accurate:1;
    unsigned int no_sub:1;
    unsigned int not_bol:1;
    unsigned int not_eol:1;
    unsigned int newline_anchor:1;
} regex_t;
typedef int regoff_t;
typedef struct {
    regoff_t rm_so;
    regoff_t rm_eo;
} regmatch_t;

#define REG_ICASE	(REG_EXTENDED<<1)
#define REG_NEWLINE	(REG_ICASE<<1)
#define REG_NOSUB	(REG_NEWLINE<<1)
#define REG_EXTENDED	1

#define REG_NOTEOL	(1<<1)
#define REG_NOTBOL	1

typedef enum {
    REG_ENOSYS = -1,
    REG_NOERROR = 0,
    REG_NOMATCH = 1,
    REG_BADPAT = 2,
    REG_ECOLLATE = 3,
    REG_ECTYPE = 4,
    REG_EESCAPE = 5,
    REG_ESUBREG = 6,
    REG_EBRACK = 7,
    REG_EPAREN = 8,
    REG_EBRACE = 9,
    REG_BADBR = 10,
    REG_ERANGE = 11,
    REG_ESPACE = 12,
    REG_BADRPT = 13,
    REG_EEND = 14,
    REG_ESIZE = 15,
    REG_ERPAREN = 16
} reg_errcode_t;
extern int regcomp(regex_t *, const char *, int);
extern size_t regerror(int, const regex_t *, char *, size_t);
extern int regexec(const regex_t *, const char *, size_t, regmatch_t, int);
extern void regfree(regex_t *);

13.4.33. rpc/auth.h


enum auth_stat {
    AUTH_OK = 0,
    AUTH_BADCRED = 1,
    AUTH_REJECTEDCRED = 2,
    AUTH_BADVERF = 3,
    AUTH_REJECTEDVERF = 4,
    AUTH_TOOWEAK = 5,
    AUTH_INVALIDRESP = 6,
    AUTH_FAILED = 7
};

union des_block {
    struct {
	u_int32_t high;
	u_int32_t low;
    } key;
    char c[8];
};

struct opaque_auth {
    enum_t oa_flavor;
    caddr_t oa_base;
    u_int oa_length;
};

typedef struct AUTH {
    struct opaque_auth ah_cred;
    struct opaque_auth ah_verf;
    union des_block ah_key;
    struct auth_ops *ah_ops;
    caddr_t ah_private;
} AUTH;

struct auth_ops {
    void (*ah_nextverf) (struct AUTH *);
    int (*ah_marshal) (struct AUTH *, XDR *);
    int (*ah_validate) (struct AUTH *, struct opaque_auth *);
    int (*ah_refresh) (struct AUTH *);
    void (*ah_destroy) (struct AUTH *);
};
extern struct AUTH *authnone_create(void);
extern int key_decryptsession(char *, union des_block *);
extern bool_t xdr_opaque_auth(XDR *, struct opaque_auth *);

13.4.34. rpc/clnt.h


#define clnt_control(cl,rq,in)	((*(cl)->cl_ops->cl_control)(cl,rq,in))
#define clnt_abort(rh)	((*(rh)->cl_ops->cl_abort)(rh))
#define clnt_destroy(rh)	((*(rh)->cl_ops->cl_destroy)(rh))
#define clnt_freeres(rh,xres,resp)	((*(rh)->cl_ops->cl_freeres)(rh,xres,resp))
#define clnt_geterr(rh,errp)	((*(rh)->cl_ops->cl_geterr)(rh, errp))
#define NULLPROC	((u_long)0)
#define CLSET_TIMEOUT	1
#define CLGET_XID	10
#define CLSET_XID	11
#define CLGET_VERS	12
#define CLSET_VERS	13
#define CLGET_PROG	14
#define CLSET_PROG	15
#define CLGET_TIMEOUT	2
#define CLGET_SERVER_ADDR	3
#define CLSET_RETRY_TIMEOUT	4
#define CLGET_RETRY_TIMEOUT	5
#define CLGET_FD	6
#define CLGET_SVC_ADDR	7
#define CLSET_FD_CLOSE	8
#define CLSET_FD_NCLOSE	9
#define clnt_call(rh, proc, xargs, argsp, xres, resp, secs)	\
	((*(rh)->cl_ops->cl_call)(rh, proc, xargs, argsp, xres, resp, secs))

enum clnt_stat {
    RPC_SUCCESS = 0,
    RPC_CANTENCODEARGS = 1,
    RPC_CANTDECODERES = 2,
    RPC_CANTSEND = 3,
    RPC_CANTRECV = 4,
    RPC_TIMEDOUT = 5,
    RPC_VERSMISMATCH = 6,
    RPC_AUTHERROR = 7,
    RPC_PROGUNAVAIL = 8,
    RPC_PROGVERSMISMATCH = 9,
    RPC_PROCUNAVAIL = 10,
    RPC_CANTDECODEARGS = 11,
    RPC_SYSTEMERROR = 12,
    RPC_NOBROADCAST = 21,
    RPC_UNKNOWNHOST = 13,
    RPC_UNKNOWNPROTO = 17,
    RPC_UNKNOWNADDR = 19,
    RPC_RPCBFAILURE = 14,
    RPC_PROGNOTREGISTERED = 15,
    RPC_N2AXLATEFAILURE = 22,
    RPC_FAILED = 16,
    RPC_INTR = 18,
    RPC_TLIERROR = 20,
    RPC_UDERROR = 23,
    RPC_INPROGRESS = 24,
    RPC_STALERACHANDLE = 25
};
struct rpc_err {
    enum clnt_stat re_status;
    union {
	int RE_errno;
	enum auth_stat RE_why;
	struct {
	    u_long low;
	    u_long high;
	} RE_vers;
	struct {
	    long int s1;
	    long int s2;
	} RE_lb;
    } ru;
};

typedef struct CLIENT {
    struct AUTH *cl_auth;
    struct clnt_ops *cl_ops;
    caddr_t cl_private;
} CLIENT;

struct clnt_ops {
    enum clnt_stat (*cl_call) (struct CLIENT *, u_long, xdrproc_t, caddr_t,
			       xdrproc_t, caddr_t, struct timeval);
    void (*cl_abort) (void);
    void (*cl_geterr) (struct CLIENT *, struct rpc_err *);
     bool_t(*cl_freeres) (struct CLIENT *, xdrproc_t, caddr_t);
    void (*cl_destroy) (struct CLIENT *);
     bool_t(*cl_control) (struct CLIENT *, int, char *);
};
extern struct CLIENT *clnt_create(const char *, const u_long, const u_long,
				  const char *);
extern void clnt_pcreateerror(const char *);
extern void clnt_perrno(enum clnt_stat);
extern void clnt_perror(struct CLIENT *, const char *);
extern char *clnt_spcreateerror(const char *);
extern char *clnt_sperrno(enum clnt_stat);
extern char *clnt_sperror(struct CLIENT *, const char *);

13.4.35. rpc/pmap_clnt.h


extern u_short pmap_getport(struct sockaddr_in *, const u_long,
			    const u_long, u_int);
extern bool_t pmap_set(const u_long, const u_long, int, u_short);
extern bool_t pmap_unset(u_long, u_long);

13.4.36. rpc/rpc_msg.h


enum msg_type {
    CALL = 0,
    REPLY = 1
};
enum reply_stat {
    MSG_ACCEPTED = 0,
    MSG_DENIED = 1
};
enum accept_stat {
    SUCCESS = 0,
    PROG_UNAVAIL = 1,
    PROG_MISMATCH = 2,
    PROC_UNAVAIL = 3,
    GARBAGE_ARGS = 4,
    SYSTEM_ERR = 5
};
enum reject_stat {
    RPC_MISMATCH = 0,
    AUTH_ERROR = 1
};

struct accepted_reply {
    struct opaque_auth ar_verf;
    enum accept_stat ar_stat;
    union {
	struct {
	    unsigned long int low;
	    unsigned long int high;
	} AR_versions;
	struct {
	    caddr_t where;
	    xdrproc_t proc;
	} AR_results;
    } ru;
};

struct rejected_reply {
    enum reject_stat rj_stat;
    union {
	struct {
	    unsigned long int low;
	    unsigned long int high;
	} RJ_versions;
	enum auth_stat RJ_why;
    } ru;
};

struct reply_body {
    enum reply_stat rp_stat;
    union {
	struct accepted_reply RP_ar;
	struct rejected_reply RP_dr;
    } ru;
};

struct call_body {
    unsigned long int cb_rpcvers;
    unsigned long int cb_prog;
    unsigned long int cb_vers;
    unsigned long int cb_proc;
    struct opaque_auth cb_cred;
    struct opaque_auth cb_verf;
};

struct rpc_msg {
    unsigned long int rm_xid;
    enum msg_type rm_direction;
    union {
	struct call_body RM_cmb;
	struct reply_body RM_rmb;
    } ru;
};
extern bool_t xdr_callhdr(XDR *, struct rpc_msg *);

13.4.37. rpc/svc.h


#define RPC_ANYSOCK	-1
#define svc_freeargs(xprt,xargs, argsp)	\
	(*(xprt)->xp_ops->xp_freeargs)((xprt), (xargs), (argsp))
#define svc_getargs(xprt,xargs, argsp)	\
	(*(xprt)->xp_ops->xp_getargs)((xprt), (xargs), (argsp))

enum xprt_stat {
    XPRT_DIED,
    XPRT_MOREREQS,
    XPRT_IDLE
};

typedef struct SVCXPRT {
    int xp_sock;
    u_short xp_port;
    struct xp_ops *xp_ops;
    int xp_addrlen;
    struct sockaddr_in xp_raddr;
    struct opaque_auth xp_verf;
    caddr_t xp_p1;
    caddr_t xp_p2;
    char xp_pad[256];
} SVCXPRT;

struct svc_req {
    rpcprog_t rq_prog;
    rpcvers_t rq_vers;
    rpcproc_t rq_proc;
    struct opaque_auth rq_cred;
    caddr_t rq_clntcred;
    SVCXPRT *rq_xprt;
};

typedef void (*__dispatch_fn_t) (struct svc_req *, SVCXPRT *);

struct xp_ops {
    bool_t(*xp_recv) (SVCXPRT * __xprt, struct rpc_msg * __msg);
    enum xprt_stat (*xp_stat) (SVCXPRT * __xprt);
     bool_t(*xp_getargs) (SVCXPRT * __xprt, xdrproc_t __xdr_args,
			  caddr_t args_ptr);
     bool_t(*xp_reply) (SVCXPRT * __xprt, struct rpc_msg * __msg);
     bool_t(*xp_freeargs) (SVCXPRT * __xprt, xdrproc_t __xdr_args,
			   caddr_t args_ptr);
    void (*xp_destroy) (SVCXPRT * __xprt);
};
extern void svc_getreqset(fd_set *);
extern bool_t svc_register(SVCXPRT *, rpcprog_t, rpcvers_t,
			   __dispatch_fn_t, rpcprot_t);
extern void svc_run(void);
extern bool_t svc_sendreply(SVCXPRT *, xdrproc_t, caddr_t);
extern void svcerr_auth(SVCXPRT *, enum auth_stat);
extern void svcerr_decode(SVCXPRT *);
extern void svcerr_noproc(SVCXPRT *);
extern void svcerr_noprog(SVCXPRT *);
extern void svcerr_progvers(SVCXPRT *, rpcvers_t, rpcvers_t);
extern void svcerr_systemerr(SVCXPRT *);
extern void svcerr_weakauth(SVCXPRT *);
extern SVCXPRT *svctcp_create(int, u_int, u_int);
extern SVCXPRT *svcudp_create(int);

13.4.38. rpc/types.h


typedef int bool_t;
typedef int enum_t;
typedef unsigned long int rpcprog_t;
typedef unsigned long int rpcvers_t;
typedef unsigned long int rpcproc_t;
typedef unsigned long int rpcprot_t;

13.4.39. rpc/xdr.h


enum xdr_op {
    XDR_ENCODE,
    XDR_DECODE,
    XDR_FREE
};
typedef struct XDR {
    enum xdr_op x_op;
    struct xdr_ops *x_ops;
    caddr_t x_public;
    caddr_t x_private;
    caddr_t x_base;
    int x_handy;
} XDR;

struct xdr_ops {
    bool_t(*x_getlong) (XDR * __xdrs, long int *__lp);
    bool_t(*x_putlong) (XDR * __xdrs, long int *__lp);
    bool_t(*x_getbytes) (XDR * __xdrs, caddr_t __addr, u_int __len);
    bool_t(*x_putbytes) (XDR * __xdrs, char *__addr, u_int __len);
    u_int(*x_getpostn) (XDR * __xdrs);
    bool_t(*x_setpostn) (XDR * __xdrs, u_int __pos);
    int32_t *(*x_inline) (XDR * __xdrs, int __len);
    void (*x_destroy) (XDR * __xdrs);
     bool_t(*x_getint32) (XDR * __xdrs, int32_t * __ip);
     bool_t(*x_putint32) (XDR * __xdrs, int32_t * __ip);
};

typedef bool_t(*xdrproc_t) (XDR *, void *, ...);

struct xdr_discrim {
    int value;
    xdrproc_t proc;
};
extern bool_t xdr_array(XDR *, caddr_t *, u_int *, u_int, u_int,
			xdrproc_t);
extern bool_t xdr_bool(XDR *, bool_t *);
extern bool_t xdr_bytes(XDR *, char **, u_int *, u_int);
extern bool_t xdr_char(XDR *, char *);
extern bool_t xdr_double(XDR *, double *);
extern bool_t xdr_enum(XDR *, enum_t *);
extern bool_t xdr_float(XDR *, float *);
extern void xdr_free(xdrproc_t, char *);
extern bool_t xdr_int(XDR *, int *);
extern bool_t xdr_long(XDR *, long int *);
extern bool_t xdr_opaque(XDR *, caddr_t, u_int);
extern bool_t xdr_pointer(XDR *, char **, u_int, xdrproc_t);
extern bool_t xdr_reference(XDR *, caddr_t *, u_int, xdrproc_t);
extern bool_t xdr_short(XDR *, short *);
extern bool_t xdr_string(XDR *, char **, u_int);
extern bool_t xdr_u_char(XDR *, u_char *);
extern bool_t xdr_u_int(XDR *, u_int *);
extern bool_t xdr_u_long(XDR *, u_long *);
extern bool_t xdr_u_short(XDR *, u_short *);
extern bool_t xdr_union(XDR *, enum_t *, char *,
			const struct xdr_discrim *, xdrproc_t);
extern bool_t xdr_vector(XDR *, char *, u_int, u_int, xdrproc_t);
extern bool_t xdr_void(void);
extern bool_t xdr_wrapstring(XDR *, char **);
extern void xdrmem_create(XDR *, caddr_t, u_int, enum xdr_op);
extern void xdrrec_create(XDR *, u_int, u_int, caddr_t,
			  int (*proc) (char *p1, char *p2, int p3)
			  , int (*proc) (char *p1, char *p2, int p3)
    );
extern bool_t xdrrec_eof(XDR *);

13.4.40. sched.h


#define SCHED_OTHER	0
#define SCHED_FIFO	1
#define SCHED_RR	2

struct sched_param {
    int sched_priority;
};
extern int sched_get_priority_max(int);
extern int sched_get_priority_min(int);
extern int sched_getparam(pid_t, struct sched_param *);
extern int sched_getscheduler(pid_t);
extern int sched_rr_get_interval(pid_t, struct timespec *);
extern int sched_setparam(pid_t, const struct sched_param *);
extern int sched_setscheduler(pid_t, int, const struct sched_param *);
extern int sched_yield(void);

13.4.41. search.h


typedef struct entry {
    char *key;
    void *data;
} ENTRY;
typedef enum {
    FIND,
    ENTER
} ACTION;
typedef enum {
    preorder,
    postorder,
    endorder,
    leaf
} VISIT;

typedef void (*__action_fn_t) (void *__nodep, VISIT __value, int __level);
extern int hcreate(size_t);
extern ENTRY *hsearch(ENTRY, ACTION);
extern void insque(void *, void *);
extern void *lfind(const void *, const void *, size_t *, size_t,
		   __compar_fn_t);
extern void *lsearch(const void *, void *, size_t *, size_t,
		     __compar_fn_t);
extern void remque(void *);
extern void hdestroy(void);
extern void *tdelete(const void *, void **, __compar_fn_t);
extern void *tfind(const void *, void *const *, __compar_fn_t);
extern void *tsearch(const void *, void **, __compar_fn_t);
extern void twalk(const void *, __action_fn_t);

13.4.42. setjmp.h


#define setjmp(env)	_setjmp(env)
#define sigsetjmp(a,b)	__sigsetjmp(a,b)

struct __jmp_buf_tag {
    __jmp_buf __jmpbuf;
    int __mask_was_saved;
    sigset_t __saved_mask;
};

typedef struct __jmp_buf_tag jmp_buf[1];
typedef jmp_buf sigjmp_buf;
extern int __sigsetjmp(jmp_buf, int);
extern void longjmp(jmp_buf, int);
extern void siglongjmp(sigjmp_buf, int);
extern void _longjmp(jmp_buf, int);
extern int _setjmp(jmp_buf);

13.4.43. signal.h


#define _SIGSET_NWORDS	(1024/(8*sizeof(unsigned long)))
#define SIGRTMAX	(__libc_current_sigrtmax ())
#define SIGRTMIN	(__libc_current_sigrtmin ())
#define SIG_BLOCK	0
#define SIG_UNBLOCK	1
#define SIG_SETMASK	2
#define NSIG	65

typedef int sig_atomic_t;

typedef void (*sighandler_t) (int);

#define SIG_HOLD	((sighandler_t) 2)
#define SIG_ERR	((sighandler_t)-1)
#define SIG_DFL	((sighandler_t)0)
#define SIG_IGN	((sighandler_t)1)

#define SIGHUP	1
#define SIGUSR1	10
#define SIGSEGV	11
#define SIGUSR2	12
#define SIGPIPE	13
#define SIGALRM	14
#define SIGTERM	15
#define SIGSTKFLT	16
#define SIGCHLD	17
#define SIGCONT	18
#define SIGSTOP	19
#define SIGINT	2
#define SIGTSTP	20
#define SIGTTIN	21
#define SIGTTOU	22
#define SIGURG	23
#define SIGXCPU	24
#define SIGXFSZ	25
#define SIGVTALRM	26
#define SIGPROF	27
#define SIGWINCH	28
#define SIGIO	29
#define SIGQUIT	3
#define SIGPWR	30
#define SIGSYS	31
#define SIGUNUSED	31
#define SIGILL	4
#define SIGTRAP	5
#define SIGABRT	6
#define SIGIOT	6
#define SIGBUS	7
#define SIGFPE	8
#define SIGKILL	9
#define SIGCLD	SIGCHLD
#define SIGPOLL	SIGIO

#define SV_ONSTACK	(1<<0)
#define SV_INTERRUPT	(1<<1)
#define SV_RESETHAND	(1<<2)

typedef union sigval {
    int sival_int;
    void *sival_ptr;
} sigval_t;

#define SIGEV_SIGNAL	0
#define SIGEV_NONE	1
#define SIGEV_THREAD	2
#define SIGEV_MAX_SIZE	64

typedef struct sigevent {
    sigval_t sigev_value;
    int sigev_signo;
    int sigev_notify;
    union {
	int _pad[SIGEV_PAD_SIZE];
	struct {
	    void (*_function) (sigval_t);
	    void *_attribute;
	} _sigev_thread;
    } _sigev_un;
} sigevent_t;

#define SI_MAX_SIZE	128
#define si_pid	_sifields._kill._pid
#define si_uid	_sifields._kill._uid
#define si_value	_sifields._rt._sigval
#define si_int	_sifields._rt._sigval.sival_int
#define si_ptr	_sifields._rt._sigval.sival_ptr
#define si_status	_sifields._sigchld._status
#define si_stime	_sifields._sigchld._stime
#define si_utime	_sifields._sigchld._utime
#define si_addr	_sifields._sigfault._addr
#define si_band	_sifields._sigpoll._band
#define si_fd	_sifields._sigpoll._fd
#define si_timer1	_sifields._timer._timer1
#define si_timer2	_sifields._timer._timer2

typedef struct siginfo {
    int si_signo;
    int si_errno;
    int si_code;
    union {
	int _pad[SI_PAD_SIZE];
	struct {
	    pid_t _pid;
	    uid_t _uid;
	} _kill;
	struct {
	    unsigned int _timer1;
	    unsigned int _timer2;
	} _timer;
	struct {
	    pid_t _pid;
	    uid_t _uid;
	    sigval_t _sigval;
	} _rt;
	struct {
	    pid_t _pid;
	    uid_t _uid;
	    int _status;
	    clock_t _utime;
	    clock_t _stime;
	} _sigchld;
	struct {
	    void *_addr;
	} _sigfault;
	struct {
	    int _band;
	    int _fd;
	} _sigpoll;
    } _sifields;
} siginfo_t;

#define SI_QUEUE	-1
#define SI_TIMER	-2
#define SI_MESGQ	-3
#define SI_ASYNCIO	-4
#define SI_SIGIO	-5
#define SI_TKILL	-6
#define SI_ASYNCNL	-60
#define SI_USER	0
#define SI_KERNEL	0x80

#define ILL_ILLOPC	1
#define ILL_ILLOPN	2
#define ILL_ILLADR	3
#define ILL_ILLTRP	4
#define ILL_PRVOPC	5
#define ILL_PRVREG	6
#define ILL_COPROC	7
#define ILL_BADSTK	8

#define FPE_INTDIV	1
#define FPE_INTOVF	2
#define FPE_FLTDIV	3
#define FPE_FLTOVF	4
#define FPE_FLTUND	5
#define FPE_FLTRES	6
#define FPE_FLTINV	7
#define FPE_FLTSUB	8

#define SEGV_MAPERR	1
#define SEGV_ACCERR	2

#define BUS_ADRALN	1
#define BUS_ADRERR	2
#define BUS_OBJERR	3

#define TRAP_BRKPT	1
#define TRAP_TRACE	2

#define CLD_EXITED	1
#define CLD_KILLED	2
#define CLD_DUMPED	3
#define CLD_TRAPPED	4
#define CLD_STOPPED	5
#define CLD_CONTINUED	6

#define POLL_IN	1
#define POLL_OUT	2
#define POLL_MSG	3
#define POLL_ERR	4
#define POLL_PRI	5
#define POLL_HUP	6

typedef struct {
    unsigned long int sig[_SIGSET_NWORDS];
} sigset_t;

#define SA_NOCLDSTOP	0x00000001
#define SA_NOCLDWAIT	0x00000002
#define SA_SIGINFO	0x00000004
#define SA_ONSTACK	0x08000000
#define SA_RESTART	0x10000000
#define SA_INTERRUPT	0x20000000
#define SA_NODEFER	0x40000000
#define SA_RESETHAND	0x80000000
#define SA_NOMASK	SA_NODEFER
#define SA_ONESHOT	SA_RESETHAND

typedef struct sigaltstack {
    void *ss_sp;
    int ss_flags;
    size_t ss_size;
} stack_t;

#define SS_ONSTACK	1
#define SS_DISABLE	2

extern int __libc_current_sigrtmax(void);
extern int __libc_current_sigrtmin(void);
extern sighandler_t __sysv_signal(int, sighandler_t);
extern char *const _sys_siglist[];
extern int killpg(pid_t, int);
extern void psignal(int, const char *);
extern int raise(int);
extern int sigaddset(sigset_t *, int);
extern int sigandset(sigset_t *, const sigset_t *, const sigset_t *);
extern int sigdelset(sigset_t *, int);
extern int sigemptyset(sigset_t *);
extern int sigfillset(sigset_t *);
extern int sighold(int);
extern int sigignore(int);
extern int siginterrupt(int, int);
extern int sigisemptyset(const sigset_t *);
extern int sigismember(const sigset_t *, int);
extern int sigorset(sigset_t *, const sigset_t *, const sigset_t *);
extern int sigpending(sigset_t *);
extern int sigrelse(int);
extern sighandler_t sigset(int, sighandler_t);
extern int pthread_kill(pthread_t, int);
extern int pthread_sigmask(int, sigset_t *, sigset_t *);
extern int sigaction(int, const struct sigaction *, struct sigaction *);
extern int sigwait(sigset_t *, int *);
extern int kill(pid_t, int);
extern int sigaltstack(const struct sigaltstack *, struct sigaltstack *);
extern sighandler_t signal(int, sighandler_t);
extern int sigpause(int);
extern int sigprocmask(int, const sigset_t *, sigset_t *);
extern int sigreturn(struct sigcontext *);
extern int sigsuspend(const sigset_t *);
extern int sigqueue(pid_t, int, const union sigval);
extern int sigwaitinfo(const sigset_t *, siginfo_t *);
extern int sigtimedwait(const sigset_t *, siginfo_t *,
			const struct timespec *);
extern sighandler_t bsd_signal(int, sighandler_t);

13.4.44. stddef.h


#define offsetof(TYPE,MEMBER)	((size_t)&((TYPE*)0)->MEMBER)
#define NULL	(0L)

typedef int wchar_t;

13.4.45. stdio.h


#define EOF	(-1)
#define P_tmpdir	"/tmp"
#define FOPEN_MAX	16
#define L_tmpnam	20
#define FILENAME_MAX	4096
#define BUFSIZ	8192
#define L_ctermid	9
#define L_cuserid	9

typedef struct {
    off_t __pos;
    mbstate_t __state;
} fpos_t;
typedef struct {
    off64_t __pos;
    mbstate_t __state;
} fpos64_t;

typedef struct _IO_FILE FILE;

#define _IOFBF	0
#define _IOLBF	1
#define _IONBF	2

extern char *const _sys_errlist[];
extern void clearerr(FILE *);
extern int fclose(FILE *);
extern FILE *fdopen(int, const char *);
extern int fflush_unlocked(FILE *);
extern int fileno(FILE *);
extern FILE *fopen(const char *, const char *);
extern int fprintf(FILE *, const char *, ...);
extern int fputc(int, FILE *);
extern FILE *freopen(const char *, const char *, FILE *);
extern FILE *freopen64(const char *, const char *, FILE *);
extern int fscanf(FILE *, const char *, ...);
extern int fseek(FILE *, long int, int);
extern int fseeko(FILE *, off_t, int);
extern int fseeko64(FILE *, loff_t, int);
extern off_t ftello(FILE *);
extern loff_t ftello64(FILE *);
extern int getchar(void);
extern int getchar_unlocked(void);
extern int getw(FILE *);
extern int pclose(FILE *);
extern void perror(const char *);
extern FILE *popen(const char *, const char *);
extern int printf(const char *, ...);
extern int putc_unlocked(int, FILE *);
extern int putchar(int);
extern int putchar_unlocked(int);
extern int putw(int, FILE *);
extern int remove(const char *);
extern void rewind(FILE *);
extern int scanf(const char *, ...);
extern void setbuf(FILE *, char *);
extern int sprintf(char *, const char *, ...);
extern int sscanf(const char *, const char *, ...);
extern FILE *stderr;
extern FILE *stdin;
extern FILE *stdout;
extern char *tempnam(const char *, const char *);
extern FILE *tmpfile64(void);
extern FILE *tmpfile(void);
extern char *tmpnam(char *);
extern int vfprintf(FILE *, const char *, va_list);
extern int vprintf(const char *, va_list);
extern int feof(FILE *);
extern int ferror(FILE *);
extern int fflush(FILE *);
extern int fgetc(FILE *);
extern int fgetpos(FILE *, fpos_t *);
extern char *fgets(char *, int, FILE *);
extern int fputs(const char *, FILE *);
extern size_t fread(void *, size_t, size_t, FILE *);
extern int fsetpos(FILE *, const fpos_t *);
extern long int ftell(FILE *);
extern size_t fwrite(const void *, size_t, size_t, FILE *);
extern int getc(FILE *);
extern int putc(int, FILE *);
extern int puts(const char *);
extern int setvbuf(FILE *, char *, int, size_t);
extern int snprintf(char *, size_t, const char *, ...);
extern int ungetc(int, FILE *);
extern int vsnprintf(char *, size_t, const char *, va_list);
extern int vsprintf(char *, const char *, va_list);
extern void flockfile(FILE *);
extern int asprintf(char **, const char *, ...);
extern int fgetpos64(FILE *, fpos64_t *);
extern FILE *fopen64(const char *, const char *);
extern int fsetpos64(FILE *, const fpos64_t *);
extern int ftrylockfile(FILE *);
extern void funlockfile(FILE *);
extern int getc_unlocked(FILE *);
extern void setbuffer(FILE *, char *, size_t);
extern int vasprintf(char **, const char *, va_list);
extern int vdprintf(int, const char *, va_list);
extern int vfscanf(FILE *, const char *, va_list);
extern int vscanf(const char *, va_list);
extern int vsscanf(const char *, const char *, va_list);
extern size_t __fpending(FILE *);

13.4.46. stdlib.h


#define MB_CUR_MAX	(__ctype_get_mb_cur_max())
#define EXIT_SUCCESS	0
#define EXIT_FAILURE	1
#define RAND_MAX	2147483647

typedef int (*__compar_fn_t) (const void *, const void *);
struct random_data {
    int32_t *fptr;
    int32_t *rptr;
    int32_t *state;
    int rand_type;
    int rand_deg;
    int rand_sep;
    int32_t *end_ptr;
};

typedef struct {
    int quot;
    int rem;
} div_t;

typedef struct {
    long int quot;
    long int rem;
} ldiv_t;

typedef struct {
    long long int quot;
    long long int rem;
} lldiv_t;
extern double __strtod_internal(const char *, char **, int);
extern float __strtof_internal(const char *, char **, int);
extern long int __strtol_internal(const char *, char **, int, int);
extern long double __strtold_internal(const char *, char **, int);
extern long long int __strtoll_internal(const char *, char **, int, int);
extern unsigned long int __strtoul_internal(const char *, char **, int,
					    int);
extern unsigned long long int __strtoull_internal(const char *, char **,
						  int, int);
extern long int a64l(const char *);
extern void abort(void);
extern int abs(int);
extern double atof(const char *);
extern int atoi(char *);
extern long int atol(char *);
extern long long int atoll(const char *);
extern void *bsearch(const void *, const void *, size_t, size_t,
		     __compar_fn_t);
extern div_t div(int, int);
extern double drand48(void);
extern char *ecvt(double, int, int *, int *);
extern double erand48(unsigned short);
extern void exit(int);
extern char *fcvt(double, int, int *, int *);
extern char *gcvt(double, int, char *);
extern char *getenv(const char *);
extern int getsubopt(char **, char *const *, char **);
extern int grantpt(int);
extern long int jrand48(unsigned short);
extern char *l64a(long int);
extern long int labs(long int);
extern void lcong48(unsigned short);
extern ldiv_t ldiv(long int, long int);
extern long long int llabs(long long int);
extern lldiv_t lldiv(long long int, long long int);
extern long int lrand48(void);
extern int mblen(const char *, size_t);
extern size_t mbstowcs(wchar_t *, const char *, size_t);
extern int mbtowc(wchar_t *, const char *, size_t);
extern char *mktemp(char *);
extern long int mrand48(void);
extern long int nrand48(unsigned short);
extern char *ptsname(int);
extern int putenv(char *);
extern void qsort(void *, size_t, size_t, __compar_fn_t);
extern int rand(void);
extern int rand_r(unsigned int *);
extern unsigned short *seed48(unsigned short);
extern void srand48(long int);
extern int unlockpt(int);
extern size_t wcstombs(char *, const wchar_t *, size_t);
extern int wctomb(char *, wchar_t);
extern int system(const char *);
extern void *calloc(size_t, size_t);
extern void free(void *);
extern char *initstate(unsigned int, char *, size_t);
extern void *malloc(size_t);
extern long int random(void);
extern void *realloc(void *, size_t);
extern char *setstate(char *);
extern void srand(unsigned int);
extern void srandom(unsigned int);
extern double strtod(char *, char **);
extern float strtof(const char *, char **);
extern long int strtol(char *, char **, int);
extern long double strtold(const char *, char **);
extern long long int strtoll(const char *, char **, int);
extern long long int strtoq(const char *, char **, int);
extern unsigned long int strtoul(const char *, char **, int);
extern unsigned long long int strtoull(const char *, char **, int);
extern unsigned long long int strtouq(const char *, char **, int);
extern void _Exit(int);
extern size_t __ctype_get_mb_cur_max(void);
extern char **environ;
extern char *realpath(const char *, char *);
extern int setenv(const char *, const char *, int);
extern int unsetenv(const char *);
extern int getloadavg(double, int);
extern int mkstemp64(char *);
extern int posix_memalign(void **, size_t, size_t);
extern int posix_openpt(int);

13.4.47. string.h


extern void *__mempcpy(void *, const void *, size_t);
extern char *__stpcpy(char *, const char *);
extern char *__strdup(const char *);
extern char *__strtok_r(char *, const char *, char **);
extern void bcopy(void *, void *, size_t);
extern void *memchr(void *, int, size_t);
extern int memcmp(void *, void *, size_t);
extern void *memcpy(void *, void *, size_t);
extern void *memmem(const void *, size_t, const void *, size_t);
extern void *memmove(void *, const void *, size_t);
extern void *memset(void *, int, size_t);
extern char *strcat(char *, const char *);
extern char *strchr(char *, int);
extern int strcmp(char *, char *);
extern int strcoll(const char *, const char *);
extern char *strcpy(char *, char *);
extern size_t strcspn(const char *, const char *);
extern char *strerror(int);
extern size_t strlen(char *);
extern char *strncat(char *, char *, size_t);
extern int strncmp(char *, char *, size_t);
extern char *strncpy(char *, char *, size_t);
extern char *strpbrk(const char *, const char *);
extern char *strrchr(char *, int);
extern char *strsignal(int);
extern size_t strspn(const char *, const char *);
extern char *strstr(char *, char *);
extern char *strtok(char *, const char *);
extern size_t strxfrm(char *, const char *, size_t);
extern int bcmp(void *, void *, size_t);
extern void bzero(void *, size_t);
extern int ffs(int);
extern char *index(char *, int);
extern void *memccpy(void *, const void *, int, size_t);
extern char *rindex(char *, int);
extern int strcasecmp(char *, char *);
extern char *strdup(char *);
extern int strncasecmp(char *, char *, size_t);
extern char *strndup(const char *, size_t);
extern size_t strnlen(const char *, size_t);
extern char *strsep(char **, const char *);
extern char *strerror_r(int, char *, size_t);
extern char *strtok_r(char *, const char *, char **);
extern char *strcasestr(const char *, const char *);
extern char *stpcpy(char *, const char *);
extern char *stpncpy(char *, const char *, size_t);
extern void *memrchr(const void *, int, size_t);

13.4.48. sys/file.h


#define LOCK_SH	1
#define LOCK_EX	2
#define LOCK_NB	4
#define LOCK_UN	8

extern int flock(int, int);

13.4.49. sys/ioctl.h


struct winsize {
    unsigned short ws_row;
    unsigned short ws_col;
    unsigned short ws_xpixel;
    unsigned short ws_ypixel;
};
extern int ioctl(int, unsigned long int, ...);

13.4.50. sys/ipc.h


#define IPC_PRIVATE	((key_t)0)
#define IPC_RMID	0
#define IPC_CREAT	00001000
#define IPC_EXCL	00002000
#define IPC_NOWAIT	00004000
#define IPC_SET	1
#define IPC_STAT	2

extern key_t ftok(char *, int);

13.4.51. sys/mman.h


#define MAP_FAILED	((void*)-1)
#define PROT_NONE	0x0
#define MAP_SHARED	0x01
#define MAP_PRIVATE	0x02
#define PROT_READ	0x1
#define MAP_FIXED	0x10
#define PROT_WRITE	0x2
#define MAP_ANONYMOUS	0x20
#define PROT_EXEC	0x4
#define MS_ASYNC	1
#define MS_INVALIDATE	2
#define MS_SYNC	4
#define MAP_ANON	MAP_ANONYMOUS

extern int msync(void *, size_t, int);
extern int mlock(const void *, size_t);
extern int mlockall(int);
extern void *mmap(void *, size_t, int, int, int, off_t);
extern int mprotect(void *, size_t, int);
extern int munlock(const void *, size_t);
extern int munlockall(void);
extern int munmap(void *, size_t);
extern void *mmap64(void *, size_t, int, int, int, off64_t);
extern int shm_open(const char *, int, mode_t);
extern int shm_unlink(const char *);

13.4.52. sys/msg.h


#define MSG_NOERROR	010000

extern int msgctl(int, int, struct msqid_ds *);
extern int msgget(key_t, int);
extern int msgrcv(int, void *, size_t, long int, int);
extern int msgsnd(int, const void *, size_t, int);

13.4.53. sys/param.h


#define NOFILE	256
#define MAXPATHLEN	4096

13.4.54. sys/poll.h


#define POLLIN	0x0001
#define POLLPRI	0x0002
#define POLLOUT	0x0004
#define POLLERR	0x0008
#define POLLHUP	0x0010
#define POLLNVAL	0x0020

struct pollfd {
    int fd;
    short events;
    short revents;
};
typedef unsigned long int nfds_t;

13.4.55. sys/resource.h


#define RUSAGE_CHILDREN	(-1)
#define RLIM_INFINITY	(~0UL)
#define RLIM_SAVED_CUR	-1
#define RLIM_SAVED_MAX	-1
#define RLIMIT_CPU	0
#define RUSAGE_SELF	0
#define RLIMIT_FSIZE	1
#define RLIMIT_DATA	2
#define RLIMIT_STACK	3
#define RLIMIT_CORE	4
#define RLIMIT_NOFILE	7
#define RLIMIT_AS	9

typedef unsigned long int rlim_t;
typedef unsigned long long int rlim64_t;
typedef int __rlimit_resource_t;

struct rlimit {
    rlim_t rlim_cur;
    rlim_t rlim_max;
};
struct rlimit64 {
    rlim64_t rlim_cur;
    rlim64_t rlim_max;
};

struct rusage {
    struct timeval ru_utime;
    struct timeval ru_stime;
    long int ru_maxrss;
    long int ru_ixrss;
    long int ru_idrss;
    long int ru_isrss;
    long int ru_minflt;
    long int ru_majflt;
    long int ru_nswap;
    long int ru_inblock;
    long int ru_oublock;
    long int ru_msgsnd;
    long int ru_msgrcv;
    long int ru_nsignals;
    long int ru_nvcsw;
    long int ru_nivcsw;
};

enum __priority_which {
    PRIO_PROCESS = 0,
    PRIO_PGRP = 1,
    PRIO_USER = 2
};

#define PRIO_PGRP	PRIO_PGRP
#define PRIO_PROCESS	PRIO_PROCESS
#define PRIO_USER	PRIO_USER

typedef enum __priority_which __priority_which_t;
extern int getpriority(__priority_which_t, id_t);
extern int getrlimit64(id_t, struct rlimit64 *);
extern int setpriority(__priority_which_t, id_t, int);
extern int setrlimit(__rlimit_resource_t, const struct rlimit *);
extern int setrlimit64(__rlimit_resource_t, const struct rlimit64 *);
extern int getrlimit(__rlimit_resource_t, struct rlimit *);
extern int getrusage(int, struct rusage *);

13.4.56. sys/sem.h


#define SEM_UNDO	0x1000
#define GETPID	11
#define GETVAL	12
#define GETALL	13
#define GETNCNT	14
#define GETZCNT	15
#define SETVAL	16
#define SETALL	17

struct sembuf {
    short sem_num;
    short sem_op;
    short sem_flg;
};
extern int semctl(int, int, int, ...);
extern int semget(key_t, int, int);
extern int semop(int, struct sembuf *, size_t);

13.4.57. sys/shm.h


#define SHM_RDONLY	010000
#define SHM_W	0200
#define SHM_RND	020000
#define SHM_R	0400
#define SHM_REMAP	040000
#define SHM_LOCK	11
#define SHM_UNLOCK	12

extern int __getpagesize(void);
extern void *shmat(int, const void *, int);
extern int shmctl(int, int, struct shmid_ds *);
extern int shmdt(const void *);
extern int shmget(key_t, size_t, int);

13.4.58. sys/socket.h


#define CMSG_LEN(len)	(CMSG_ALIGN(sizeof(struct cmsghdr))+(len))
#define SCM_RIGHTS	0x01
#define SOL_SOCKET	1
#define SOMAXCONN	128
#define SOL_RAW	255
#define CMSG_ALIGN(len)	\
	(((len)+sizeof(size_t)-1)&(size_t)~(sizeof(size_t)-1))
#define CMSG_DATA(cmsg)	\
	((unsigned char *) (cmsg) + CMSG_ALIGN(sizeof(struct cmsghdr)))
#define CMSG_SPACE(len)	\
	(CMSG_ALIGN(sizeof(struct cmsghdr))+CMSG_ALIGN(len))
#define CMSG_FIRSTHDR(msg)	\
           ((msg)->msg_controllen >= sizeof(struct cmsghdr) ? \
            (struct cmsghdr *)(msg)->msg_control : \
            (struct cmsghdr *)NULL)
#define CMSG_NXTHDR(mhdr,cmsg)	\
        (((cmsg) == NULL) ? CMSG_FIRSTHDR(mhdr) : \
         (((u_char *)(cmsg) + CMSG_ALIGN((cmsg)->cmsg_len) \
                            + CMSG_ALIGN(sizeof(struct cmsghdr)) > \
           (u_char *)((mhdr)->msg_control) + (mhdr)->msg_controllen) ? \
          (struct cmsghdr *)NULL : \
          (struct cmsghdr *)((u_char *)(cmsg) + CMSG_ALIGN((cmsg)->cmsg_len))))

struct linger {
    int l_onoff;
    int l_linger;
};
struct cmsghdr {
    size_t cmsg_len;
    int cmsg_level;
    int cmsg_type;
};
struct iovec {
    void *iov_base;
    size_t iov_len;
};

typedef unsigned short sa_family_t;
typedef unsigned int socklen_t;

struct sockaddr {
    sa_family_t sa_family;
    char sa_data[14];
};
struct sockaddr_storage {
    sa_family_t ss_family;
    __ss_aligntype __ss_align;
    char __ss_padding[(128 - (2 * sizeof(__ss_aligntype)))];
};

struct msghdr {
    void *msg_name;
    int msg_namelen;
    struct iovec *msg_iov;
    size_t msg_iovlen;
    void *msg_control;
    size_t msg_controllen;
    unsigned int msg_flags;
};

#define AF_UNSPEC	0
#define AF_UNIX	1
#define AF_INET6	10
#define AF_INET	2

#define PF_INET	AF_INET
#define PF_INET6	AF_INET6
#define PF_UNIX	AF_UNIX
#define PF_UNSPEC	AF_UNSPEC

#define SOCK_STREAM	1
#define SOCK_PACKET	10
#define SOCK_DGRAM	2
#define SOCK_RAW	3
#define SOCK_RDM	4
#define SOCK_SEQPACKET	5

#define SO_DEBUG	1
#define SO_OOBINLINE	10
#define SO_NO_CHECK	11
#define SO_PRIORITY	12
#define SO_LINGER	13
#define SO_REUSEADDR	2
#define SO_TYPE	3
#define SO_ACCEPTCONN	30
#define SO_ERROR	4
#define SO_DONTROUTE	5
#define SO_BROADCAST	6
#define SO_SNDBUF	7
#define SO_RCVBUF	8
#define SO_KEEPALIVE	9

#define SIOCGIFNAME	0x8910
#define SIOCGIFCONF	0x8912
#define SIOCGIFFLAGS	0x8913
#define SIOCGIFADDR	0x8915
#define SIOCGIFDSTADDR	0x8917
#define SIOCGIFBRDADDR	0x8919
#define SIOCGIFNETMASK	0x891b
#define SIOCGIFMTU	0x8921
#define SIOCGIFHWADDR	0x8927

#define SHUT_RD	0
#define SHUT_WR	1
#define SHUT_RDWR	2
#define MSG_DONTROUTE	4

#define MSG_WAITALL	0x100
#define MSG_TRUNC	0x20
#define MSG_EOR	0x80
#define MSG_OOB	1
#define MSG_PEEK	2
#define MSG_CTRUNC	8

extern int bind(int, const struct sockaddr *, socklen_t);
extern int getnameinfo(const struct sockaddr *, socklen_t, char *,
		       socklen_t, char *, socklen_t, unsigned int);
extern int getsockname(int, struct sockaddr *, socklen_t *);
extern int listen(int, int);
extern int setsockopt(int, int, int, const void *, socklen_t);
extern int accept(int, struct sockaddr *, socklen_t *);
extern int connect(int, const struct sockaddr *, socklen_t);
extern ssize_t recv(int, void *, size_t, int);
extern ssize_t recvfrom(int, void *, size_t, int, struct sockaddr *,
			socklen_t *);
extern ssize_t recvmsg(int, struct msghdr *, int);
extern ssize_t send(int, const void *, size_t, int);
extern ssize_t sendmsg(int, const struct msghdr *, int);
extern ssize_t sendto(int, const void *, size_t, int,
		      const struct sockaddr *, socklen_t);
extern int getpeername(int, struct sockaddr *, socklen_t *);
extern int getsockopt(int, int, int, void *, socklen_t *);
extern int shutdown(int, int);
extern int socket(int, int, int);
extern int socketpair(int, int, int, int);
extern int sockatmark(int);

13.4.59. sys/stat.h


#define S_ISBLK(m)	(((m)&S_IFMT)==S_IFBLK)
#define S_ISCHR(m)	(((m)&S_IFMT)==S_IFCHR)
#define S_ISDIR(m)	(((m)&S_IFMT)==S_IFDIR)
#define S_ISFIFO(m)	(((m)&S_IFMT)==S_IFIFO)
#define S_ISLNK(m)	(((m)&S_IFMT)==S_IFLNK)
#define S_ISREG(m)	(((m)&S_IFMT)==S_IFREG)
#define S_ISSOCK(m)	(((m)&S_IFMT)==S_IFSOCK)
#define S_TYPEISMQ(buf)	((buf)->st_mode - (buf)->st_mode)
#define S_TYPEISSEM(buf)	((buf)->st_mode - (buf)->st_mode)
#define S_TYPEISSHM(buf)	((buf)->st_mode - (buf)->st_mode)
#define S_IRWXU	(S_IREAD|S_IWRITE|S_IEXEC)
#define S_IROTH	(S_IRGRP>>3)
#define S_IRGRP	(S_IRUSR>>3)
#define S_IRWXO	(S_IRWXG>>3)
#define S_IRWXG	(S_IRWXU>>3)
#define S_IWOTH	(S_IWGRP>>3)
#define S_IWGRP	(S_IWUSR>>3)
#define S_IXOTH	(S_IXGRP>>3)
#define S_IXGRP	(S_IXUSR>>3)
#define S_ISVTX	01000
#define S_IXUSR	0x0040
#define S_IWUSR	0x0080
#define S_IRUSR	0x0100
#define S_ISGID	0x0400
#define S_ISUID	0x0800
#define S_IFIFO	0x1000
#define S_IFCHR	0x2000
#define S_IFDIR	0x4000
#define S_IFBLK	0x6000
#define S_IFREG	0x8000
#define S_IFLNK	0xa000
#define S_IFSOCK	0xc000
#define S_IFMT	0xf000
#define st_atime	st_atim.tv_sec
#define st_ctime	st_ctim.tv_sec
#define st_mtime	st_mtim.tv_sec
#define S_IREAD	S_IRUSR
#define S_IWRITE	S_IWUSR
#define S_IEXEC	S_IXUSR

extern int __fxstat(int, int, struct stat *);
extern int __fxstat64(int, int, struct stat64 *);
extern int __lxstat(int, char *, struct stat *);
extern int __lxstat64(int, const char *, struct stat64 *);
extern int __xmknod(int, const char *, mode_t, dev_t *);
extern int __xstat(int, const char *, struct stat *);
extern int __xstat64(int, const char *, struct stat64 *);
extern int mkfifo(const char *, mode_t);
extern int chmod(const char *, mode_t);
extern int fchmod(int, mode_t);
extern mode_t umask(mode_t);

13.4.60. sys/statfs.h


#define NFS_SUPER_MAGIC	0x6969

struct statfs {
    int f_type;
    int f_bsize;
    fsblkcnt_t f_blocks;
    fsblkcnt_t f_bfree;
    fsblkcnt_t f_bavail;
    fsblkcnt_t f_files;
    fsblkcnt_t f_ffree;
    fsid_t f_fsid;
    int f_namelen;
    int f_spare[6];
};
struct statfs64 {
    int f_type;
    int f_bsize;
    fsblkcnt64_t f_blocks;
    fsblkcnt64_t f_bfree;
    fsblkcnt64_t f_bavail;
    fsblkcnt64_t f_files;
    fsblkcnt64_t f_ffree;
    fsid_t f_fsid;
    int f_namelen;
    int f_spare[6];
};
extern int fstatfs64(int, struct statfs64 *);
extern int statfs64(const char *, struct stat64 *);
extern int fstatfs(int, struct statfs *);
extern int statfs(const char *, struct statfs *);

13.4.61. sys/statvfs.h


extern int fstatvfs(int, struct statvfs *);
extern int fstatvfs64(int, struct statvfs64 *);
extern int statvfs(const char *, struct statvfs *);
extern int statvfs64(const char *, struct statvfs64 *);

13.4.62. sys/time.h


#define ITIMER_REAL	0
#define ITIMER_VIRTUAL	1
#define ITIMER_PROF	2

struct timezone {
    int tz_minuteswest;
    int tz_dsttime;
};

typedef int __itimer_which_t;

struct timespec {
    time_t tv_sec;
    long int tv_nsec;
};

struct timeval {
    time_t tv_sec;
    suseconds_t tv_usec;
};

struct itimerval {
    struct timeval it_interval;
    struct timeval it_value;
};
extern int getitimer(__itimer_which_t, struct itimerval *);
extern int setitimer(__itimer_which_t, const struct itimerval *,
		     struct itimerval *);
extern int adjtime(const struct timeval *, struct timeval *);
extern int gettimeofday(struct timeval *, struct timezone *);
extern int utimes(const char *, const struct timeval *);

13.4.63. sys/timeb.h


struct timeb {
    time_t time;
    unsigned short millitm;
    short timezone;
    short dstflag;
};
extern int ftime(struct timeb *);

13.4.64. sys/times.h


struct tms {
    clock_t tms_utime;
    clock_t tms_stime;
    clock_t tms_cutime;
    clock_t tms_cstime;
};
extern clock_t times(struct tms *);

13.4.65. sys/types.h


#define FALSE	0
#define TRUE	1
#define FD_SETSIZE	1024
#define FD_ZERO(fdsetp)	bzero(fdsetp, sizeof(*(fdsetp)))
#define FD_ISSET(d,set)	\
	((set)->fds_bits[((d)/(8*sizeof(long)))]&(1<<((d)%(8*sizeof(long)))))
#define FD_CLR(d,set)	\
	((set)->fds_bits[((d)/(8*sizeof(long)))]&=~(1<<((d)%(8*sizeof(long)))))
#define FD_SET(d,set)	\
	((set)->fds_bits[((d)/(8*sizeof(long)))]|=(1<<((d)%(8*sizeof(long)))))

typedef signed char int8_t;
typedef short int16_t;
typedef int int32_t;
typedef unsigned char u_int8_t;
typedef unsigned short u_int16_t;
typedef unsigned int u_int32_t;
typedef unsigned int uid_t;
typedef int pid_t;
typedef long int off_t;
typedef int key_t;
typedef long int suseconds_t;
typedef unsigned int u_int;
typedef struct {
    int __val[2];
} fsid_t;
typedef unsigned int useconds_t;
typedef long int blksize_t;
typedef long int fd_mask;
typedef int timer_t;
typedef int clockid_t;

typedef unsigned int id_t;

typedef unsigned long long int ino64_t;
typedef long long int loff_t;
typedef long int blkcnt_t;
typedef unsigned long int fsblkcnt_t;
typedef unsigned long int fsfilcnt_t;
typedef long long int blkcnt64_t;
typedef unsigned long long int fsblkcnt64_t;
typedef unsigned long long int fsfilcnt64_t;
typedef unsigned char u_char;
typedef unsigned short u_short;
typedef unsigned long int u_long;

typedef unsigned long int ino_t;
typedef unsigned int gid_t;
typedef unsigned long long int dev_t;
typedef unsigned int mode_t;
typedef unsigned long int nlink_t;
typedef char *caddr_t;

typedef struct {
    unsigned long int fds_bits[__FDSET_LONGS];
} fd_set;

typedef long int clock_t;
typedef long int time_t;

13.4.66. sys/uio.h


extern ssize_t readv(int, const struct iovec *, int);
extern ssize_t writev(int, const struct iovec *, int);

13.4.67. sys/un.h


#define UNIX_PATH_MAX	108

struct sockaddr_un {
    sa_family_t sun_family;
    char sun_path[UNIX_PATH_MAX];
};

13.4.68. sys/utsname.h


#define SYS_NMLN	65

struct utsname {
    char sysname[65];
    char nodename[65];
    char release[65];
    char version[65];
    char machine[65];
    char domainname[65];
};
extern int uname(struct utsname *);

13.4.69. sys/wait.h


#define WIFSIGNALED(status)	(!WIFSTOPPED(status) && !WIFEXITED(status))
#define WIFSTOPPED(status)	(((status) & 0xff) == 0x7f)
#define WEXITSTATUS(status)	(((status) & 0xff00) >> 8)
#define WTERMSIG(status)	((status) & 0x7f)
#define WCOREDUMP(status)	((status) & 0x80)
#define WIFEXITED(status)	(WTERMSIG(status) == 0)
#define WNOHANG	0x00000001
#define WUNTRACED	0x00000002
#define WCOREFLAG	0x80
#define WSTOPSIG(status)	WEXITSTATUS(status)

typedef enum {
    P_ALL,
    P_PID,
    P_PGID
} idtype_t;
extern pid_t wait(int *);
extern pid_t waitpid(pid_t, int *, int);
extern pid_t wait4(pid_t, int *, int, struct rusage *);

13.4.70. syslog.h


#define LOG_EMERG	0
#define LOG_PRIMASK	0x07
#define LOG_ALERT	1
#define LOG_CRIT	2
#define LOG_ERR	3
#define LOG_WARNING	4
#define LOG_NOTICE	5
#define LOG_INFO	6
#define LOG_DEBUG	7

#define LOG_KERN	(0<<3)
#define LOG_AUTHPRIV	(10<<3)
#define LOG_FTP	(11<<3)
#define LOG_USER	(1<<3)
#define LOG_MAIL	(2<<3)
#define LOG_DAEMON	(3<<3)
#define LOG_AUTH	(4<<3)
#define LOG_SYSLOG	(5<<3)
#define LOG_LPR	(6<<3)
#define LOG_NEWS	(7<<3)
#define LOG_UUCP	(8<<3)
#define LOG_CRON	(9<<3)
#define LOG_FACMASK	0x03f8

#define LOG_LOCAL0	(16<<3)
#define LOG_LOCAL1	(17<<3)
#define LOG_LOCAL2	(18<<3)
#define LOG_LOCAL3	(19<<3)
#define LOG_LOCAL4	(20<<3)
#define LOG_LOCAL5	(21<<3)
#define LOG_LOCAL6	(22<<3)
#define LOG_LOCAL7	(23<<3)

#define LOG_UPTO(pri)	((1 << ((pri)+1)) - 1)
#define LOG_MASK(pri)	(1 << (pri))

#define LOG_PID	0x01
#define LOG_CONS	0x02
#define LOG_ODELAY	0x04
#define LOG_NDELAY	0x08
#define LOG_NOWAIT	0x10
#define LOG_PERROR	0x20

extern void closelog(void);
extern void openlog(const char *, int, int);
extern int setlogmask(int);
extern void syslog(int, const char *, ...);
extern void vsyslog(int, const char *, va_list);

13.4.71. termios.h


#define TCIFLUSH	0
#define TCOOFF	0
#define TCSANOW	0
#define BS0	0000000
#define CR0	0000000
#define FF0	0000000
#define NL0	0000000
#define TAB0	0000000
#define VT0	0000000
#define OPOST	0000001
#define OCRNL	0000010
#define ONOCR	0000020
#define ONLRET	0000040
#define OFILL	0000100
#define OFDEL	0000200
#define NL1	0000400
#define TCOFLUSH	1
#define TCOON	1
#define TCSADRAIN	1
#define TCIOFF	2
#define TCIOFLUSH	2
#define TCSAFLUSH	2
#define TCION	3

typedef unsigned int speed_t;
typedef unsigned char cc_t;
typedef unsigned int tcflag_t;

#define NCCS	32

struct termios {
    tcflag_t c_iflag;
    tcflag_t c_oflag;
    tcflag_t c_cflag;
    tcflag_t c_lflag;
    cc_t c_line;
    cc_t c_cc[NCCS];
    speed_t c_ispeed;
    speed_t c_ospeed;
};

#define VINTR	0
#define VQUIT	1
#define VLNEXT	15
#define VERASE	2
#define VKILL	3
#define VEOF	4

#define IGNBRK	0000001
#define BRKINT	0000002
#define IGNPAR	0000004
#define PARMRK	0000010
#define INPCK	0000020
#define ISTRIP	0000040
#define INLCR	0000100
#define IGNCR	0000200
#define ICRNL	0000400
#define IXANY	0004000
#define IMAXBEL	0020000

#define CS5	0000000

#define ECHO	0000010

#define B0	0000000
#define B50	0000001
#define B75	0000002
#define B110	0000003
#define B134	0000004
#define B150	0000005
#define B200	0000006
#define B300	0000007
#define B600	0000010
#define B1200	0000011
#define B1800	0000012
#define B2400	0000013
#define B4800	0000014
#define B9600	0000015
#define B19200	0000016
#define B38400	0000017

extern speed_t cfgetispeed(const struct termios *);
extern speed_t cfgetospeed(const struct termios *);
extern void cfmakeraw(struct termios *);
extern int cfsetispeed(struct termios *, speed_t);
extern int cfsetospeed(struct termios *, speed_t);
extern int cfsetspeed(struct termios *, speed_t);
extern int tcflow(int, int);
extern int tcflush(int, int);
extern pid_t tcgetsid(int);
extern int tcsendbreak(int, int);
extern int tcsetattr(int, int, const struct termios *);
extern int tcdrain(int);
extern int tcgetattr(int, struct termios *);

13.4.72. time.h


#define CLK_TCK	((clock_t)__sysconf(2))
#define CLOCK_REALTIME	0
#define TIMER_ABSTIME	1
#define CLOCKS_PER_SEC	1000000l

struct tm {
    int tm_sec;
    int tm_min;
    int tm_hour;
    int tm_mday;
    int tm_mon;
    int tm_year;
    int tm_wday;
    int tm_yday;
    int tm_isdst;
    long int tm_gmtoff;
    char *tm_zone;
};
struct itimerspec {
    struct timespec it_interval;
    struct timespec it_value;
};

extern int __daylight;
extern long int __timezone;
extern char *__tzname[];
extern char *asctime(const struct tm *);
extern clock_t clock(void);
extern char *ctime(const time_t *);
extern char *ctime_r(const time_t *, char *);
extern double difftime(time_t, time_t);
extern struct tm *getdate(const char *);
extern int getdate_err;
extern struct tm *gmtime(const time_t *);
extern struct tm *localtime(const time_t *);
extern time_t mktime(struct tm *);
extern int stime(const time_t *);
extern size_t strftime(char *, size_t, const char *, const struct tm *);
extern char *strptime(const char *, const char *, struct tm *);
extern time_t time(time_t *);
extern int nanosleep(const struct timespec *, struct timespec *);
extern int daylight;
extern long int timezone;
extern char *tzname[];
extern void tzset(void);
extern char *asctime_r(const struct tm *, char *);
extern struct tm *gmtime_r(const time_t *, struct tm *);
extern struct tm *localtime_r(const time_t *, struct tm *);
extern int clock_getcpuclockid(pid_t, clockid_t *);
extern int clock_getres(clockid_t, struct timespec *);
extern int clock_gettime(clockid_t, struct timespec *);
extern int clock_nanosleep(clockid_t, int, const struct timespec *,
			   struct timespec *);
extern int clock_settime(clockid_t, const struct timespec *);
extern int timer_create(clockid_t, struct sigevent *, timer_t *);
extern int timer_delete(timer_t);
extern int timer_getoverrun(timer_t);
extern int timer_gettime(timer_t, struct itimerspec *);
extern int timer_settime(timer_t, int, const struct itimerspec *,
			 struct itimerspec *);

13.4.73. ucontext.h


extern int getcontext(ucontext_t *);
extern int makecontext(ucontext_t *, void (*)(void)
		       , int, ...);
extern int setcontext(const struct ucontext *);
extern int swapcontext(ucontext_t *, const struct ucontext *);

13.4.74. ulimit.h


#define UL_GETFSIZE	1
#define UL_SETFSIZE	2

extern long int ulimit(int, ...);

13.4.75. unistd.h


#define SEEK_SET	0
#define STDIN_FILENO	0
#define SEEK_CUR	1
#define STDOUT_FILENO	1
#define SEEK_END	2
#define STDERR_FILENO	2

typedef long long int off64_t;

#define F_OK	0
#define X_OK	1
#define W_OK	2
#define R_OK	4

#define _POSIX_VDISABLE	'\0'
#define _POSIX_CHOWN_RESTRICTED	1
#define _POSIX_JOB_CONTROL	1
#define _POSIX_NO_TRUNC	1
#define _POSIX_SHELL	1
#define _POSIX_FSYNC	200112
#define _POSIX_MAPPED_FILES	200112
#define _POSIX_MEMLOCK	200112
#define _POSIX_MEMLOCK_RANGE	200112
#define _POSIX_MEMORY_PROTECTION	200112
#define _POSIX_SEMAPHORES	200112
#define _POSIX_SHARED_MEMORY_OBJECTS	200112
#define _POSIX_TIMERS	200112
#define _POSIX2_C_BIND	200112L
#define _POSIX_THREADS	200112L

#define _PC_LINK_MAX	0
#define _PC_MAX_CANON	1
#define _PC_ASYNC_IO	10
#define _PC_PRIO_IO	11
#define _PC_FILESIZEBITS	13
#define _PC_REC_INCR_XFER_SIZE	14
#define _PC_REC_MIN_XFER_SIZE	16
#define _PC_REC_XFER_ALIGN	17
#define _PC_ALLOC_SIZE_MIN	18
#define _PC_MAX_INPUT	2
#define _PC_2_SYMLINKS	20
#define _PC_NAME_MAX	3
#define _PC_PATH_MAX	4
#define _PC_PIPE_BUF	5
#define _PC_CHOWN_RESTRICTED	6
#define _PC_NO_TRUNC	7
#define _PC_VDISABLE	8
#define _PC_SYNC_IO	9

#define _SC_ARG_MAX	0
#define _SC_CHILD_MAX	1
#define _SC_PRIORITY_SCHEDULING	10
#define _SC_TIMERS	11
#define _SC_ASYNCHRONOUS_IO	12
#define _SC_XBS5_ILP32_OFF32	125
#define _SC_XBS5_ILP32_OFFBIG	126
#define _SC_XBS5_LP64_OFF64	127
#define _SC_XBS5_LPBIG_OFFBIG	128
#define _SC_XOPEN_LEGACY	129
#define _SC_PRIORITIZED_IO	13
#define _SC_XOPEN_REALTIME	130
#define _SC_XOPEN_REALTIME_THREADS	131
#define _SC_ADVISORY_INFO	132
#define _SC_BARRIERS	133
#define _SC_CLOCK_SELECTION	137
#define _SC_CPUTIME	138
#define _SC_THREAD_CPUTIME	139
#define _SC_SYNCHRONIZED_IO	14
#define _SC_MONOTONIC_CLOCK	149
#define _SC_FSYNC	15
#define _SC_READER_WRITER_LOCKS	153
#define _SC_SPIN_LOCKS	154
#define _SC_REGEXP	155
#define _SC_SHELL	157
#define _SC_SPAWN	159
#define _SC_MAPPED_FILES	16
#define _SC_SPORADIC_SERVER	160
#define _SC_THREAD_SPORADIC_SERVER	161
#define _SC_TIMEOUTS	164
#define _SC_TYPED_MEMORY_OBJECTS	165
#define _SC_2_PBS_ACCOUNTING	169
#define _SC_MEMLOCK	17
#define _SC_2_PBS_LOCATE	170
#define _SC_2_PBS_MESSAGE	171
#define _SC_2_PBS_TRACK	172
#define _SC_SYMLOOP_MAX	173
#define _SC_2_PBS_CHECKPOINT	175
#define _SC_V6_ILP32_OFF32	176
#define _SC_V6_ILP32_OFFBIG	177
#define _SC_V6_LP64_OFF64	178
#define _SC_V6_LPBIG_OFFBIG	179
#define _SC_MEMLOCK_RANGE	18
#define _SC_HOST_NAME_MAX	180
#define _SC_TRACE	181
#define _SC_TRACE_EVENT_FILTER	182
#define _SC_TRACE_INHERIT	183
#define _SC_TRACE_LOG	184
#define _SC_MEMORY_PROTECTION	19
#define _SC_CLK_TCK	2
#define _SC_MESSAGE_PASSING	20
#define _SC_SEMAPHORES	21
#define _SC_SHARED_MEMORY_OBJECTS	22
#define _SC_AIO_LISTIO_MAX	23
#define _SC_AIO_MAX	24
#define _SC_AIO_PRIO_DELTA_MAX	25
#define _SC_DELAYTIMER_MAX	26
#define _SC_MQ_OPEN_MAX	27
#define _SC_MQ_PRIO_MAX	28
#define _SC_VERSION	29
#define _SC_NGROUPS_MAX	3
#define _SC_PAGESIZE	30
#define _SC_PAGE_SIZE	30
#define _SC_RTSIG_MAX	31
#define _SC_SEM_NSEMS_MAX	32
#define _SC_SEM_VALUE_MAX	33
#define _SC_SIGQUEUE_MAX	34
#define _SC_TIMER_MAX	35
#define _SC_BC_BASE_MAX	36
#define _SC_BC_DIM_MAX	37
#define _SC_BC_SCALE_MAX	38
#define _SC_BC_STRING_MAX	39
#define _SC_OPEN_MAX	4
#define _SC_COLL_WEIGHTS_MAX	40
#define _SC_EXPR_NEST_MAX	42
#define _SC_LINE_MAX	43
#define _SC_RE_DUP_MAX	44
#define _SC_2_VERSION	46
#define _SC_2_C_BIND	47
#define _SC_2_C_DEV	48
#define _SC_2_FORT_DEV	49
#define _SC_STREAM_MAX	5
#define _SC_2_FORT_RUN	50
#define _SC_2_SW_DEV	51
#define _SC_2_LOCALEDEF	52
#define _SC_TZNAME_MAX	6
#define _SC_IOV_MAX	60
#define _SC_THREADS	67
#define _SC_THREAD_SAFE_FUNCTIONS	68
#define _SC_GETGR_R_SIZE_MAX	69
#define _SC_JOB_CONTROL	7
#define _SC_GETPW_R_SIZE_MAX	70
#define _SC_LOGIN_NAME_MAX	71
#define _SC_TTY_NAME_MAX	72
#define _SC_THREAD_DESTRUCTOR_ITERATIONS	73
#define _SC_THREAD_KEYS_MAX	74
#define _SC_THREAD_STACK_MIN	75
#define _SC_THREAD_THREADS_MAX	76
#define _SC_THREAD_ATTR_STACKADDR	77
#define _SC_THREAD_ATTR_STACKSIZE	78
#define _SC_THREAD_PRIORITY_SCHEDULING	79
#define _SC_SAVED_IDS	8
#define _SC_THREAD_PRIO_INHERIT	80
#define _SC_THREAD_PRIO_PROTECT	81
#define _SC_THREAD_PROCESS_SHARED	82
#define _SC_ATEXIT_MAX	87
#define _SC_PASS_MAX	88
#define _SC_XOPEN_VERSION	89
#define _SC_REALTIME_SIGNALS	9
#define _SC_XOPEN_UNIX	91
#define _SC_XOPEN_CRYPT	92
#define _SC_XOPEN_ENH_I18N	93
#define _SC_XOPEN_SHM	94
#define _SC_2_CHAR_TERM	95
#define _SC_2_C_VERSION	96
#define _SC_2_UPE	97

#define _CS_PATH	0
#define _POSIX_REGEXP	1
#define _CS_XBS5_ILP32_OFF32_CFLAGS	1100
#define _CS_XBS5_ILP32_OFF32_LDFLAGS	1101
#define _CS_XBS5_ILP32_OFF32_LIBS	1102
#define _CS_XBS5_ILP32_OFF32_LINTFLAGS	1103
#define _CS_XBS5_ILP32_OFFBIG_CFLAGS	1104
#define _CS_XBS5_ILP32_OFFBIG_LDFLAGS	1105
#define _CS_XBS5_ILP32_OFFBIG_LIBS	1106
#define _CS_XBS5_ILP32_OFFBIG_LINTFLAGS	1107
#define _CS_XBS5_LP64_OFF64_CFLAGS	1108
#define _CS_XBS5_LP64_OFF64_LDFLAGS	1109
#define _CS_XBS5_LP64_OFF64_LIBS	1110
#define _CS_XBS5_LP64_OFF64_LINTFLAGS	1111
#define _CS_XBS5_LPBIG_OFFBIG_CFLAGS	1112
#define _CS_XBS5_LPBIG_OFFBIG_LDFLAGS	1113
#define _CS_XBS5_LPBIG_OFFBIG_LIBS	1114
#define _CS_XBS5_LPBIG_OFFBIG_LINTFLAGS	1115

#define _XOPEN_XPG4	1

#define F_ULOCK	0
#define F_LOCK	1
#define F_TLOCK	2
#define F_TEST	3

extern char **__environ;
extern pid_t __getpgid(pid_t);
extern void _exit(int);
extern int acct(const char *);
extern unsigned int alarm(unsigned int);
extern int chown(const char *, uid_t, gid_t);
extern int chroot(const char *);
extern size_t confstr(int, char *, size_t);
extern int creat(const char *, mode_t);
extern int creat64(const char *, mode_t);
extern char *ctermid(char *);
extern char *cuserid(char *);
extern int daemon(int, int);
extern int execl(const char *, const char *, ...);
extern int execle(const char *, const char *, ...);
extern int execlp(const char *, const char *, ...);
extern int execv(const char *, char *const);
extern int execvp(const char *, char *const);
extern int fdatasync(int);
extern int ftruncate64(int, off64_t);
extern long int gethostid(void);
extern char *getlogin(void);
extern int getlogin_r(char *, size_t);
extern int getopt(int, char *const, const char *);
extern pid_t getpgrp(void);
extern pid_t getsid(pid_t);
extern char *getwd(char *);
extern int lockf(int, int, off_t);
extern int mkstemp(char *);
extern int nice(int);
extern char *optarg;
extern int opterr;
extern int optind;
extern int optopt;
extern int rename(const char *, const char *);
extern int setegid(gid_t);
extern int seteuid(uid_t);
extern int sethostname(const char *, size_t);
extern int setpgrp(void);
extern void swab(const void *, void *, ssize_t);
extern void sync(void);
extern pid_t tcgetpgrp(int);
extern int tcsetpgrp(int, pid_t);
extern int truncate(const char *, off_t);
extern int truncate64(const char *, off64_t);
extern char *ttyname(int);
extern unsigned int ualarm(useconds_t, useconds_t);
extern int usleep(useconds_t);
extern int close(int);
extern int fsync(int);
extern off_t lseek(int, off_t, int);
extern int open(const char *, int, ...);
extern int pause(void);
extern ssize_t read(int, void *, size_t);
extern ssize_t write(int, const void *, size_t);
extern char *crypt(char *, char *);
extern void encrypt(char *, int);
extern void setkey(const char *);
extern int access(const char *, int);
extern int brk(void *);
extern int chdir(const char *);
extern int dup(int);
extern int dup2(int, int);
extern int execve(const char *, char *const, char *const);
extern int fchdir(int);
extern int fchown(int, uid_t, gid_t);
extern pid_t fork(void);
extern gid_t getegid(void);
extern uid_t geteuid(void);
extern gid_t getgid(void);
extern int getgroups(int, gid_t);
extern int gethostname(char *, size_t);
extern pid_t getpgid(pid_t);
extern pid_t getpid(void);
extern uid_t getuid(void);
extern int lchown(const char *, uid_t, gid_t);
extern int link(const char *, const char *);
extern int mkdir(const char *, mode_t);
extern long int pathconf(const char *, int);
extern int pipe(int);
extern int readlink(const char *, char *, size_t);
extern int rmdir(const char *);
extern void *sbrk(ptrdiff_t);
extern int select(int, fd_set *, fd_set *, fd_set *, struct timeval *);
extern int setgid(gid_t);
extern int setpgid(pid_t, pid_t);
extern int setregid(gid_t, gid_t);
extern int setreuid(uid_t, uid_t);
extern pid_t setsid(void);
extern int setuid(uid_t);
extern unsigned int sleep(unsigned int);
extern int symlink(const char *, const char *);
extern long int sysconf(int);
extern int unlink(const char *);
extern pid_t vfork(void);
extern ssize_t pread(int, void *, size_t, off_t);
extern ssize_t pwrite(int, const void *, size_t, off_t);
extern char **_environ;
extern long int fpathconf(int, int);
extern int ftruncate(int, off_t);
extern char *getcwd(char *, size_t);
extern int getpagesize(void);
extern pid_t getppid(void);
extern int isatty(int);
extern loff_t lseek64(int, loff_t, int);
extern int open64(const char *, int, ...);
extern ssize_t pread64(int, void *, size_t, off64_t);
extern ssize_t pwrite64(int, const void *, size_t, off64_t);
extern int ttyname_r(int, char *, size_t);

13.4.76. utime.h


struct utimbuf {
    time_t actime;
    time_t modtime;
};
extern int utime(const char *, const struct utimbuf *);

13.4.77. utmp.h


#define UT_HOSTSIZE	256
#define UT_LINESIZE	32
#define UT_NAMESIZE	32

struct exit_status {
    short e_termination;
    short e_exit;
};

#define EMPTY	0
#define RUN_LVL	1
#define BOOT_TIME	2
#define NEW_TIME	3
#define OLD_TIME	4
#define INIT_PROCESS	5
#define LOGIN_PROCESS	6
#define USER_PROCESS	7
#define DEAD_PROCESS	8
#define ACCOUNTING	9

extern void endutent(void);
extern struct utmp *getutent(void);
extern void setutent(void);
extern int getutent_r(struct utmp *, struct utmp **);
extern int utmpname(const char *);
extern int login_tty(int);
extern void login(const struct utmp *);
extern int logout(const char *);
extern void logwtmp(const char *, const char *, const char *);

13.4.78. utmpx.h


extern void endutxent(void);
extern struct utmpx *getutxent(void);
extern struct utmpx *getutxid(const struct utmpx *);
extern struct utmpx *getutxline(const struct utmpx *);
extern struct utmpx *pututxline(const struct utmpx *);
extern void setutxent(void);

13.4.79. wchar.h


#define WEOF	(0xffffffffu)
#define WCHAR_MAX	0x7FFFFFFF
#define WCHAR_MIN	0x80000000

extern double __wcstod_internal(const wchar_t *, wchar_t * *, int);
extern float __wcstof_internal(const wchar_t *, wchar_t * *, int);
extern long int __wcstol_internal(const wchar_t *, wchar_t * *, int, int);
extern long double __wcstold_internal(const wchar_t *, wchar_t * *, int);
extern unsigned long int __wcstoul_internal(const wchar_t *, wchar_t * *,
					    int, int);
extern wchar_t *wcscat(wchar_t *, const wchar_t *);
extern wchar_t *wcschr(const wchar_t *, wchar_t);
extern int wcscmp(const wchar_t *, const wchar_t *);
extern int wcscoll(const wchar_t *, const wchar_t *);
extern wchar_t *wcscpy(wchar_t *, const wchar_t *);
extern size_t wcscspn(const wchar_t *, const wchar_t *);
extern wchar_t *wcsdup(const wchar_t *);
extern wchar_t *wcsncat(wchar_t *, const wchar_t *, size_t);
extern int wcsncmp(const wchar_t *, const wchar_t *, size_t);
extern wchar_t *wcsncpy(wchar_t *, const wchar_t *, size_t);
extern wchar_t *wcspbrk(const wchar_t *, const wchar_t *);
extern wchar_t *wcsrchr(const wchar_t *, wchar_t);
extern size_t wcsspn(const wchar_t *, const wchar_t *);
extern wchar_t *wcsstr(const wchar_t *, const wchar_t *);
extern wchar_t *wcstok(wchar_t *, const wchar_t *, wchar_t * *);
extern int wcswidth(const wchar_t *, size_t);
extern size_t wcsxfrm(wchar_t *, const wchar_t *, size_t);
extern int wctob(wint_t);
extern int wcwidth(wchar_t);
extern wchar_t *wmemchr(const wchar_t *, wchar_t, size_t);
extern int wmemcmp(const wchar_t *, const wchar_t *, size_t);
extern wchar_t *wmemcpy(wchar_t *, const wchar_t *, size_t);
extern wchar_t *wmemmove(wchar_t *, const wchar_t *, size_t);
extern wchar_t *wmemset(wchar_t *, wchar_t, size_t);
extern size_t mbrlen(const char *, size_t, mbstate_t *);
extern size_t mbrtowc(wchar_t *, const char *, size_t, mbstate_t *);
extern int mbsinit(const mbstate_t *);
extern size_t mbsnrtowcs(wchar_t *, const char **, size_t, size_t,
			 mbstate_t *);
extern size_t mbsrtowcs(wchar_t *, const char **, size_t, mbstate_t *);
extern wchar_t *wcpcpy(wchar_t *, const wchar_t *);
extern wchar_t *wcpncpy(wchar_t *, const wchar_t *, size_t);
extern size_t wcrtomb(char *, wchar_t, mbstate_t *);
extern size_t wcslen(const wchar_t *);
extern size_t wcsnrtombs(char *, const wchar_t * *, size_t, size_t,
			 mbstate_t *);
extern size_t wcsrtombs(char *, const wchar_t * *, size_t, mbstate_t *);
extern double wcstod(const wchar_t *, wchar_t * *);
extern float wcstof(const wchar_t *, wchar_t * *);
extern long int wcstol(const wchar_t *, wchar_t * *, int);
extern long double wcstold(const wchar_t *, wchar_t * *);
extern long long int wcstoq(const wchar_t *, wchar_t * *, int);
extern unsigned long int wcstoul(const wchar_t *, wchar_t * *, int);
extern unsigned long long int wcstouq(const wchar_t *, wchar_t * *, int);
extern wchar_t *wcswcs(const wchar_t *, const wchar_t *);
extern int wcscasecmp(const wchar_t *, const wchar_t *);
extern int wcsncasecmp(const wchar_t *, const wchar_t *, size_t);
extern size_t wcsnlen(const wchar_t *, size_t);
extern long long int wcstoll(const wchar_t *, wchar_t * *, int);
extern unsigned long long int wcstoull(const wchar_t *, wchar_t * *, int);
extern wint_t btowc(int);
extern wint_t fgetwc(FILE *);
extern wint_t fgetwc_unlocked(FILE *);
extern wchar_t *fgetws(wchar_t *, int, FILE *);
extern wint_t fputwc(wchar_t, FILE *);
extern int fputws(const wchar_t *, FILE *);
extern int fwide(FILE *, int);
extern int fwprintf(FILE *, const wchar_t *, ...);
extern int fwscanf(FILE *, const wchar_t *, ...);
extern wint_t getwc(FILE *);
extern wint_t getwchar(void);
extern wint_t putwc(wchar_t, FILE *);
extern wint_t putwchar(wchar_t);
extern int swprintf(wchar_t *, size_t, const wchar_t *, ...);
extern int swscanf(const wchar_t *, const wchar_t *, ...);
extern wint_t ungetwc(wint_t, FILE *);
extern int vfwprintf(FILE *, const wchar_t *, va_list);
extern int vfwscanf(FILE *, const wchar_t *, va_list);
extern int vswprintf(wchar_t *, size_t, const wchar_t *, va_list);
extern int vswscanf(const wchar_t *, const wchar_t *, va_list);
extern int vwprintf(const wchar_t *, va_list);
extern int vwscanf(const wchar_t *, va_list);
extern size_t wcsftime(wchar_t *, size_t, const wchar_t *,
		       const struct tm *);
extern int wprintf(const wchar_t *, ...);
extern int wscanf(const wchar_t *, ...);

13.4.80. wctype.h


typedef unsigned long int wctype_t;
typedef unsigned int wint_t;
typedef const int32_t *wctrans_t;
typedef struct {
    int count;
    wint_t value;
} __mbstate_t;

typedef __mbstate_t mbstate_t;
extern int iswblank(wint_t);
extern wint_t towlower(wint_t);
extern wint_t towupper(wint_t);
extern wctrans_t wctrans(const char *);
extern int iswalnum(wint_t);
extern int iswalpha(wint_t);
extern int iswcntrl(wint_t);
extern int iswctype(wint_t, wctype_t);
extern int iswdigit(wint_t);
extern int iswgraph(wint_t);
extern int iswlower(wint_t);
extern int iswprint(wint_t);
extern int iswpunct(wint_t);
extern int iswspace(wint_t);
extern int iswupper(wint_t);
extern int iswxdigit(wint_t);
extern wctype_t wctype(const char *);
extern wint_t towctrans(wint_t, wctrans_t);

13.4.81. wordexp.h


enum {
    WRDE_DOOFFS = 1,
    WRDE_APPEND = 2,
    WRDE_NOCMD = 4,
    WRDE_REUSE = 8,
    WRDE_SHOWERR = 16,
    WRDE_UNDEF = 32
};

typedef struct {
    size_t we_wordc;
    char **we_wordv;
    size_t we_offs;
} wordexp_t;

enum {
    WRDE_NOSYS = -1,
    WRDE_NOSPACE = 1,
    WRDE_BADCHAR = 2,
    WRDE_BADVAL = 3,
    WRDE_CMDSUB = 4,
    WRDE_SYNTAX = 5
};
extern int wordexp(const char *, wordexp_t *, int);
extern void wordfree(wordexp_t *);

13.5. Interface Definitions for libc

Table of Contents
_IO_feof -- alias for feof
_IO_getc -- alias for getc
_IO_putc -- alias for putc
_IO_puts -- alias for puts
__assert_fail -- abort the program after false assertion
__ctype_b_loc -- accessor function for __ctype_b array for ctype functions
__ctype_get_mb_cur_max -- maximum length of a multibyte character in the current locale
__ctype_tolower_loc -- accessor function for __ctype_b_tolower array for ctype tolower() function
__ctype_toupper_loc -- accessor function for __ctype_b_toupper() array for ctype toupper() function
__cxa_atexit -- register a function to be called by exit or when a shared library is unloaded
__daylight -- daylight savings time flag
__environ -- alias for environ - user environment
__errno_location -- address of errno variable
__fpending -- returns in bytes the amount of output pending on a stream
__getpagesize -- alias for getpagesize - get current page size
__getpgid -- get the process group id
__h_errno_location -- address of h_errno variable
__isinf -- test for infinity
__isinff -- test for infinity
__isinfl -- test for infinity
__isnan -- test for infinity
__isnanf -- test for infinity
__isnanl -- test for infinity
__libc_current_sigrtmax -- return number of available real-time signal with lowest priority
__libc_current_sigrtmin -- return number of available real-time signal with highest priority
__libc_start_main -- initialization routine
__lxstat -- inline wrapper around call to lxstat
__mempcpy -- copy given number of bytes of source to destination
__rawmemchr -- scan memory
__register_atfork -- alias for register_atfork
__sigsetjmp -- save stack context for non-local goto
__stpcpy -- alias for stpcpy
__strdup -- alias for strdup
__strtod_internal -- underlying function for strtod
__strtof_internal -- underlying function for strtof
__strtok_r -- alias for strtok_r
__strtol_internal -- alias for strtol
__strtold_internal -- underlying function for strtold
__strtoll_internal -- underlying function for strtoll
__strtoul_internal -- underlying function for strtoul
__strtoull_internal -- underlying function for strtoull
__sysconf -- get configuration information at runtime
__sysv_signal -- signal handling
__timezone -- global variable containing timezone
__tzname -- global variable containing the timezone
__wcstod_internal -- underlying function for wcstod
__wcstof_internal -- underlying function for wcstof
__wcstol_internal -- underlying function for wcstol
__wcstold_internal -- underlying function for wcstold
__wcstoul_internal -- underlying function for wcstoul
__xmknod -- make block or character special file
__xstat -- get File Status
__xstat64 -- get File Status
_environ -- alias for environ - user environment
_nl_msg_cat_cntr -- new catalog load counter
_sys_errlist -- array containing the "C" locale strings used by strerror()
_sys_siglist -- array containing the names of the signal names
acct -- switch process accounting on or off
adjtime -- correct the time to allow synchronization of the system clock
asprintf -- write formatted output to a dynamically allocated string
bind_textdomain_codeset -- specify encoding for message retrieval
bindresvport -- bind socket to privileged IP port
bindtextdomain -- specify the location of a message catalog
cfmakeraw -- get and set terminal attributes
cfsetspeed -- set terminal input and output data rate
daemon -- run in the background
dcgettext -- perform domain and category specific lookup in message catalog
dcngettext -- perform domain and category specific lookup in message catalog with plural
dgettext -- perform lookup in message catalog for the current LC_MESSAGES locale
dngettext -- perform lookup in message catalog for the current locale
duplocale -- provide new handle for selection of locale
endutent -- access utmp file entries
err -- display formatted error messages
error -- print error message
errx -- display formatted error message and exit
fcntl -- file control
fflush_unlocked -- non thread safe fflush
fgetwc_unlocked -- non thread safe fgetwc
flock -- apply or remove an advisory lock on an open file
freelocale -- free a locale object
fscanf -- convert formatted input
fstatfs -- (deprecated)
fstatfs64 -- (deprecated)
fwscanf -- convert formatted input
getgrouplist -- get network group entry
getloadavg -- get system load averages
getopt -- parse command line options
getopt_long -- parse command line options
getopt_long_only -- parse command line options
getsockopt -- get socket options
gettext -- search message catalogs for a string
getutent -- access user accounting database entries
getutent_r -- access user accounting database entries
glob64 -- find pathnames matching a pattern (Large File Support)
globfree64 -- free memory from glob64() (Large File Support)
initgroups -- initialize the supplementary group access list
ioctl -- control device
sockio -- socket ioctl commands
ttyio -- tty ioctl commands
kill -- send a signal
link -- create a link to a file
mbsnrtowcs -- convert a multibyte string to a wide character string
memmem -- locate bytes
memrchr -- scan memory for a character
newlocale -- allocate a locale object
ngettext -- search message catalogs for plural string
pmap_getport -- find the port number assigned to a service registered with a portmapper.
pmap_set -- establishes mapping to machine's RPC Bind service.
pmap_unset --  destroys RPC Binding
psignal -- print signal message
regexec -- regular expression matching
scanf -- convert formatted input
setbuffer -- stream buffering operation
setgroups -- set list of supplementary group IDs
sethostname -- set host name
setsockopt -- set socket options
setutent -- access user accounting database entries
sigandset -- build a new signal set by combining the two input sets using logical AND
sigisemptyset -- check for empty signal set
sigorset -- build a new signal set by combining the two input sets using logical OR
sigreturn -- return from signal handler and cleanup stack frame
sscanf -- convert formatted input
statfs -- (deprecated)
statfs64 -- (deprecated)
stime -- set time
stpcpy -- copy a string returning a pointer to its end
stpncpy -- copy a fixed-size string, returning a pointer to its end
strcasestr -- locate a substring ignoring case
strerror_r -- reentrant version of strerror
strndup -- return a malloc'd copy of at most the specified number of bytes of a string
strnlen -- determine the length of a fixed-size string
strptime -- parse a time string
strsep -- extract token from string
strsignal -- return string describing signal
strtoq -- convert string value to a long or quad_t integer
strtouq -- convert a string to an unsigned long long
svc_register -- register Remote Procedure Call interface
svc_run -- waits for RPC requests to arrive and calls service procedure
svc_sendreply -- called by RPC service's dispatch routine
svctcp_create -- create a TCP/IP-based RPC service transport
svcudp_create --  create a UDP-based RPC service transport
swscanf -- convert formatted input
system -- execute a shell command
textdomain -- set the current default message domain
unlink -- remove a directory entry
uselocale -- set locale for thread
utmpname -- set user accounting database
vasprintf -- write formatted output to a dynamically allocated string
vdprintf -- write formatted output to a file descriptor
verrx -- display formatted error message and exit
vfscanf -- convert formatted input
vfwscanf -- convert formatted input
vscanf -- convert formatted input
vsscanf -- convert formatted input
vswscanf -- convert formatted input
vsyslog -- log to system log
vwscanf -- convert formatted input
wait4 -- wait for process termination, BSD style
waitpid -- wait for child process
warn -- formatted error messages
warnx -- formatted error messages
wcpcpy -- copy a wide character string, returning a pointer to its end
wcpncpy -- copy a fixed-size string of wide characters, returning a pointer to its end
wcscasecmp -- compare two wide-character strings, ignoring case
wcsdup -- duplicate a wide-character string
wcsncasecmp -- compare two fixed-size wide-character strings, ignoring case
wcsnlen -- determine the length of a fixed-size wide-character string
wcsnrtombs -- convert a wide character string to a multi-byte string
wcstoq -- convert wide string to long long int representation
wcstouq -- convert wide string to unsigned long long int representation
wscanf -- convert formatted input
xdr_u_int -- library routines for external data representation

The interfaces defined on the following pages are included in libc and are defined by this specification. Unless otherwise noted, these interfaces shall be included in the source standard.

Other interfaces listed in Section 13.3 shall behave as described in the referenced base document.

_IO_feof

Name

_IO_feof -- alias for feof

Synopsis

int _IO_feof(_IO_FILE * __fp);

Description

_IO_feof() tests the end-of-file indicator for the stream pointed to by __fp, returning a non-zero value if it is set.

_IO_feof() is not in the source standard; it is only in the binary standard.

_IO_getc

Name

_IO_getc -- alias for getc

Synopsis

int _IO_getc(_IO_FILE * __fp);

Description

_IO_getc() reads the next character from __fp and returns it as an unsigned char cast to an int, or EOF on end-of-file or error.

_IO_getc() is not in the source standard; it is only in the binary standard.

_IO_putc

Name

_IO_putc -- alias for putc

Synopsis

int _IO_putc(int __c, _IO_FILE * __fp);

Description

_IO_putc() writes the character __c, cast to an unsigned char, to __fp.

_IO_putc() is not in the source standard; it is only in the binary standard.

_IO_puts

Name

_IO_puts -- alias for puts

Synopsis

int _IO_puts(const char * __c);

Description

_IO_puts() writes the string __s and a trailing newline to stdout.

_IO_puts() is not in the source standard; it is only in the binary standard.

__assert_fail

Name

__assert_fail -- abort the program after false assertion

Synopsis

void __assert_fail(const char * assertion, const char * file, unsigned int line, const char * function);

Description

The __assert_fail() function is used to implement the assert() interface of ISO POSIX (2003). The __assert_fail() function shall print the given file filename, line line number, function function name and a message on the standard error stream in an unspecified format, and abort program execution via the abort() function. For example:

a.c:10: foobar: Assertion a == b failed.

If function is NULL, __assert_fail() shall omit information about the function.

assertion, file, and line shall be non-NULL.

The __assert_fail() function is not in the source standard; it is only in the binary standard. The assert() interface is not in the binary standard; it is only in the source standard. The assert() may be implemented as a macro.

__ctype_b_loc

Name

__ctype_b_loc -- accessor function for __ctype_b array for ctype functions

Synopsis

#include <ctype.h>

const unsigned short * * __ctype_b_loc (void);

Description

The __ctype_b_loc() function shall return a pointer into an array of characters in the current locale that contains characteristics for each character in the current character set. The array shall contain a total of 384 characters, and can be indexed with any signed or unsigned char (i.e. with an index value between -128 and 255). If the application is multithreaded, the array shall be local to the current thread.

This interface is not in the source standard; it is only in the binary standard.

Return Value

The __ctype_b_loc() function shall return a pointer to the array of characters to be used for the ctype() family of functions (see <ctype.h>).

__ctype_get_mb_cur_max

Name

__ctype_get_mb_cur_max -- maximum length of a multibyte character in the current locale

Synopsis

size_t __ctype_get_mb_cur_max(void);

Description

__ctype_get_mb_cur_max() returns the maximum length of a multibyte character in the current locale.

__ctype_get_mb_cur_max() is not in the source standard; it is only in the binary standard.

__ctype_tolower_loc

Name

__ctype_tolower_loc -- accessor function for __ctype_b_tolower array for ctype tolower() function

Synopsis

#include <ctype.h>

int32_t * * __ctype_tolower_loc(void);

Description

The __ctype_tolower_loc() function shall return a pointer into an array of characters in the current locale that contains lower case equivalents for each character in the current character set. The array shall contain a total of 384 characters, and can be indexed with any signed or unsigned char (i.e. with an index value between -128 and 255). If the application is multithreaded, the array shall be local to the current thread.

This interface is not in the source standard; it is only in the binary standard.

Return Value

The __ctype_tolower_loc() function shall return a pointer to the array of characters to be used for the ctype() family of functions (see <ctype.h>).

__ctype_toupper_loc

Name

__ctype_toupper_loc -- accessor function for __ctype_b_toupper() array for ctype toupper() function

Synopsis

#include <ctype.h>

int32_t * * __ctype_toupper_loc(void);

Description

The __ctype_toupper_loc() function shall return a pointer into an array of characters in the current locale that contains upper case equivalents for each character in the current character set. The array shall contain a total of 384 characters, and can be indexed with any signed or unsigned char (i.e. with an index value between -128 and 255). If the application is multithreaded, the array shall be local to the current thread.

This interface is not in the source standard; it is only in the binary standard.

Return Value

The __ctype_toupper_loc() function shall return a pointer to the array of characters to be used for the ctype() family of functions (see <ctype.h>).

__cxa_atexit

Name

__cxa_atexit -- register a function to be called by exit or when a shared library is unloaded

Synopsis

int __cxa_atexit(void (*func) (void *), void * arg, void * dso_handle);

Description

As described in the Itanium™ C++ ABI, __cxa_atexit() registers a destructor function to be called by exit() or when a shared library is unloaded. When a shared library is unloaded, any destructor function associated with that shared library, identified by dso_handle, shall be called with the single argument arg, and then that function shall be removed, or marked as complete, from the list of functions to run at exit(). On a call to exit(), any remaining functions registered shall be called with the single argument arg. Destructor functions shall always be called in the reverse order to their registration (i.e. the most recently registered function shall be called first),

The __cxa_atexit() function is used to implement atexit(), as described in ISO POSIX (2003). Calling atexit(func) from the statically linked part of an application shall be equivalent to __cxa_atexit(func, NULL, NULL).

__cxa_atexit() is not in the source standard; it is only in the binary standard.

Note: atexit() is not in the binary standard; it is only in the source standard.

__daylight

Name

__daylight -- daylight savings time flag

Synopsis

int __daylight;

Description

The integer variable __daylight shall implement the daylight savings time flag daylight as specified in the ISO POSIX (2003) header file <time.h>.

__daylight is not in the source standard; it is only in the binary standard. daylight is not in the binary standard; it is only in the source standard.

__environ

Name

__environ -- alias for environ - user environment

Synopsis

extern char * *__environ;

Description

__environ is an alias for environ - user environment.

__environ has the same specification as environ.

__environ is not in the source standard; it is only in the binary standard.

__errno_location

Name

__errno_location -- address of errno variable

Synopsis

int * __errno_location(void);

Description

The __errno_location() function shall return the address of the errno variable for the current thread.

__errno_location() is not in the source standard; it is only in the binary standard.

__fpending

Name

__fpending -- returns in bytes the amount of output pending on a stream

Synopsis

size_t __fpending(FILE * stream);

Description

__fpending() returns the amount of output in bytes pending on a stream.

__fpending() is not in the source standard; it is only in the binary standard.

__getpagesize

Name

__getpagesize -- alias for getpagesize - get current page size

Synopsis

int __getpagesize(void);

Description

__getpagesize() is an alias for getpagesize() - get current page size.

__getpagesize() has the same specification as getpagesize().

__getpagesize() is not in the source standard; it is only in the binary standard.

__getpgid

Name

__getpgid -- get the process group id

Synopsis

pid_t __getpgid(pid_t pid);

Description

__getpgid() has the same specification as getpgid().

__getpgid() is not in the source standard; it is only in the binary standard.

__h_errno_location

Name

__h_errno_location -- address of h_errno variable

Synopsis

int * __h_errno_location(void);

Description

__h_errno_location() returns the address of the h_errno variable, where h_errno is as specified in ISO POSIX (2003).

__h_errno_location() is not in the source standard; it is only in the binary standard. Note that h_errno itself is only in the source standard; it is not in the binary standard.

__isinf

Name

__isinf -- test for infinity

Synopsis

int __isinf(double arg);

Description

__isinf() has the same specification as isinf() in ISO POSIX (2003), except that the argument type for __isinf() is known to be double.

__isinf() is not in the source standard; it is only in the binary standard.

__isinff

Name

__isinff -- test for infinity

Synopsis

int __isinff(float arg);

Description

__isinff() has the same specification as isinf() in ISO POSIX (2003) except that the argument type for __isinff() is known to be float.

__isinff() is not in the source standard; it is only in the binary standard.

__isinfl

Name

__isinfl -- test for infinity

Synopsis

int __isinfl(long double arg);

Description

__isinfl() has the same specification as isinf() in the ISO POSIX (2003), except that the argument type for __isinfl() is known to be long double.

__isinfl() is not in the source standard; it is only in the binary standard.

__isnan

Name

__isnan -- test for infinity

Synopsis

int __isnan(double arg);

Description

__isnan() has the same specification as isnan() in ISO POSIX (2003), except that the argument type for __isnan() is known to be double.

__isnan() is not in the source standard; it is only in the binary standard.

__isnanf

Name

__isnanf -- test for infinity

Synopsis

int __isnanf(float arg);

Description

__isnanf() has the same specification as isnan() in ISO POSIX (2003), except that the argument type for __isnanf() is known to be float.

__isnanf() is not in the source standard; it is only in the binary standard.

__isnanl

Name

__isnanl -- test for infinity

Synopsis

int __isnanl(long double arg);

Description

__isnanl() has the same specification as isnan() in ISO POSIX (2003), except that the argument type for __isnanl() is known to be long double.

__isnanl() is not in the source standard; it is only in the binary standard.

__libc_current_sigrtmax

Name

__libc_current_sigrtmax -- return number of available real-time signal with lowest priority

Synopsis

int __libc_current_sigrtmax(void);

Description

__libc_current_sigrtmax() returns the number of an available real-time signal with the lowest priority.

__libc_current_sigrtmax() is not in the source standard; it is only in the binary standard.

__libc_current_sigrtmin

Name

__libc_current_sigrtmin -- return number of available real-time signal with highest priority

Synopsis

int __libc_current_sigrtmin(void);

Description

__libc_current_sigrtmin() returns the number of an available real-time signal with the highest priority.

__libc_current_sigrtmin() is not in the source standard; it is only in the binary standard.

__libc_start_main

Name

__libc_start_main -- initialization routine

Synopsis

int __libc_start_main(int (*main) (int, char * *, char * *), int argc, char * * ubp_av, void (*init) (void), void (*fini) (void), void (*rtld_fini) (void), void (* stack_end));

Description

The __libc_start_main() function shall perform any necessary initialization of the execution environment, call the main function with appropriate arguments, and handle the return from main(). If the main() function returns, the return value shall be passed to the exit() function.

Note: While this specification is intended to be implementation independent, process and library initialization may include:

  • performing any necessary security checks if the effective user ID is not the same as the real user ID.

  • initialize the threading subsystem.

  • registering the rtld_fini to release resources when this dynamic shared object exits (or is unloaded).

  • registering the fini handler to run at program exit.

  • calling the initializer function (*init)().

  • calling main() with appropriate arguments.

  • calling exit() with the return value from main().

This list is an example only.

__libc_start_main() is not in the source standard; it is only in the binary standard.

See Also

The section on Process Initialization in each of the architecture specific parts of ISO/IEC 23360.

__lxstat

Name

__lxstat -- inline wrapper around call to lxstat

Synopsis

#include <ctype.h>

int __lxstat(int version, char * __path, struct stat __statbuf);

Description

__lxstat() is an inline wrapper around call to lxstat().

__lxstat() is not in the source standard; it is only in the binary standard.

__mempcpy

Name

__mempcpy -- copy given number of bytes of source to destination

Synopsis

#include <string.h>

void * __mempcpy(void * restrict dest, const void * restrict src, size_t n);

Description

__mempcpy() copies n bytes of src to dest, returning a pointer to the byte after the last written byte.

__mempcpy() is not in the source standard; it is only in the binary standard.

__rawmemchr

Name

__rawmemchr -- scan memory

Synopsis

#include <string.h>

void * __rawmemchr(const void * s, int c);

Description

__rawmemchr() searches in s for c.

__rawmemchr() is a weak alias to rawmemchr(). It is similar to memchr(), but it has no length limit.

__rawmemchr() is not in the source standard; it is only in the binary standard.

__register_atfork

Name

__register_atfork -- alias for register_atfork

Synopsis

int __register_atfork(void (*prepare) (void), void (*parent) (void), void (*child) (void), void * __dso_handle);

Description

__register_atfork() implements pthread_atfork() as specified in ISO POSIX (2003). The additional parameter __dso_handle allows a shared object to pass in it's handle so that functions registered by __register_atfork() can be unregistered by the runtime when the shared object is unloaded.

__sigsetjmp

Name

__sigsetjmp -- save stack context for non-local goto

Synopsis

int __sigsetjmp(jmp_buf env, int savemask);

Description

__sigsetjmp() has the same behavior as sigsetjmp() as specified by ISO POSIX (2003).

__sigsetjmp() is not in the source standard; it is only in the binary standard.

__stpcpy

Name

__stpcpy -- alias for stpcpy

Synopsis

#include <string.h>

char * __stpcpy(char * dest, const char * src);

Description

The __stpcpy() function has the same specification as the stpcpy().

__stpcpy() is not in the source standard; it is only in the binary standard.

__strdup

Name

__strdup -- alias for strdup

Synopsis

char * __strdup(const char * string);

Description

__strdup() has the same specification as strdup().

__strdup() is not in the source standard; it is only in the binary standard.

__strtod_internal

Name

__strtod_internal -- underlying function for strtod

Synopsis

double __strtod_internal(const char * __nptr, char * * __endptr, int __group);

Description

__group shall be 0 or the behavior of __strtod_internal() is undefined.

__strtod_internal(__nptr, __endptr, 0)() has the same specification as strtod(__nptr, __endptr)().

__strtod_internal() is not in the source standard; it is only in the binary standard.

__strtof_internal

Name

__strtof_internal -- underlying function for strtof

Synopsis

float __strtof_internal(const char * __nptr, char * * __endptr, int __group);

Description

__group shall be 0 or the behavior of __strtof_internal() is undefined.

__strtof_internal(__nptr, __endptr, 0)() has the same specification as strtof(__nptr, __endptr)().

__strtof_internal() is not in the source standard; it is only in the binary standard.

__strtok_r

Name

__strtok_r -- alias for strtok_r

Synopsis

char * __strtok_r(char * restrict s, const char * restrict delim, char * * restrict save_ptr);

Description

__strtok_r() has the same specification as strtok_r().

__strtok_r() is not in the source standard; it is only in the binary standard.

__strtol_internal

Name

__strtol_internal -- alias for strtol

Synopsis

long int __strtol_internal(const char * __nptr, char * * __endptr, int __base, int __group);

Description

__group shall be 0 or the behavior of __strtol_internal() is undefined.

__strtol_internal(__nptr, __endptr, __base, 0) has the same specification as strtol(__nptr, __endptr, __base).

__strtol_internal() is not in the source standard; it is only in the binary standard.

__strtold_internal

Name

__strtold_internal -- underlying function for strtold

Synopsis

long double __strtold_internal(const char * __nptr, char * * __endptr, int __group);

Description

__group shall be 0 or the behavior of __strtold_internal() is undefined.

__strtold_internal(__nptr, __endptr, 0) has the same specification as strtold(__nptr, __endptr).

__strtold_internal() is not in the source standard; it is only in the binary standard.

__strtoll_internal

Name

__strtoll_internal -- underlying function for strtoll

Synopsis

long long __strtoll_internal(const char * __nptr, char * * __endptr, int __base, int __group);

Description

__group shall be 0 or the behavior of __strtoll_internal() is undefined.

__strtoll_internal(__nptr, __endptr, __base, 0) has the same specification as strtoll(__nptr, __endptr, __base).

__strtoll_internal() is not in the source standard; it is only in the binary standard.

__strtoul_internal

Name

__strtoul_internal -- underlying function for strtoul

Synopsis

unsigned long int __strtoul_internal(const char * __nptr, char * * __endptr, int __base, int __group);

Description

__group shall be 0 or the behavior of __strtoul_internal() is undefined.

__strtoul_internal(__nptr, __endptr, __base, 0) has the same specification as strtoul(__nptr, __endptr, __base).

__strtoul_internal() is not in the source standard; it is only in the binary standard.

__strtoull_internal

Name

__strtoull_internal -- underlying function for strtoull

Synopsis

unsigned long long __strtoull_internal(const char * __nptr, char * * __endptr, int __base, int __group);

Description

__group shall be 0 or the behavior of __strtoull_internal() is undefined.

__strtoull_internal(__nptr, __endptr, __base, 0) has the same specification as strtoull(__nptr, __endptr, __base).

__strtoull_internal() is not in the source standard; it is only in the binary standard.

__sysconf

Name

__sysconf -- get configuration information at runtime

Synopsis

#include <unistd.h>

long __sysconf(int name);

Description

__sysconf() gets configuration information at runtime.

__sysconf() is weak alias to sysconf().

__sysconf() has the same specification as sysconf().

__sysconf() is not in the source standard; it is only in the binary standard.

__sysv_signal

Name

__sysv_signal -- signal handling

Synopsis

__sighandler_t __sysv_signal(int sig, __sighandler_t handler);

Description

__sysv_signal() has the same behavior as signal() as specified by ISO POSIX (2003).

__sysv_signal() is not in the source standard; it is only in the binary standard.

__timezone

Name

 -- global variable containing timezone

Synopsis

long int __timezone;

Description

__timezone() has the same specification as timezone() in the ISO POSIX (2003)

__tzname

Name

 -- global variable containing the timezone

Synopsis

char * __tzname[2];

Description

__tzname has the same specification as tzname in the ISO POSIX (2003).

Note that the array size of 2 is explicit in the ISO POSIX (2003), but not in the SUSv2.

__wcstod_internal

Name

__wcstod_internal -- underlying function for wcstod

Synopsis

double __wcstod_internal(const wchar_t * nptr, wchar_t * * endptr, int group);

Description

group shall be 0 or the behavior of __wcstod_internal() is undefined.

__wcstod_internal(nptr, endptr, 0) shall behave as wcstod(nptr, endptr) as specified by ISO POSIX (2003).

__wcstod_internal() is not in the source standard; it is only in the binary standard.

__wcstof_internal

Name

__wcstof_internal -- underlying function for wcstof

Synopsis

float __wcstof_internal(const wchar_t * nptr, wchar_t * * endptr, int group);

Description

group shall be 0 or the behavior of __wcstof_internal() is undefined.

__wcstof_internal(nptr, endptr, 0) shall behave as wcstof(nptr, endptr) as specified in ISO POSIX (2003).

__wcstof_internal() is not in the source standard; it is only in the binary standard.

__wcstol_internal

Name

__wcstol_internal -- underlying function for wcstol

Synopsis

long __wcstol_internal(const wchar_t * nptr, wchar_t * * endptr, int base, int group);

Description

group shall be 0 or the behavior of __wcstol_internal() is undefined.

__wcstol_internal(nptr, endptr, base, 0) shall behave as wcstol(nptr, endptr, base) as specified by ISO POSIX (2003).

__wcstol_internal() is not in the source standard; it is only in the binary standard.

__wcstold_internal

Name

__wcstold_internal -- underlying function for wcstold

Synopsis

long double __wcstold_internal(const wchar_t * nptr, wchar_t * * endptr, int group);

Description

group shall be 0 or the behavior of __wcstold_internal() is undefined.

__wcstold_internal(nptr, endptr, 0) shall behave as wcstold(nptr, endptr) as specified by ISO POSIX (2003).

__wcstold_internal() is not in the source standard; it is only in the binary standard.

__wcstoul_internal

Name

__wcstoul_internal -- underlying function for wcstoul

Synopsis

unsigned long __wcstoul_internal(const wchar_t * restrict nptr, wchar_t * * restrict endptr, int base, int group);

Description

group shall be 0 or the behavior of __wcstoul_internal() is undefined.

__wcstoul_internal(nptr, endptr, base, 0)() shall behave as wcstoul(nptr, endptr, base)() as specified by ISO POSIX (2003).

__wcstoul_internal() is not in the source standard; it is only in the binary standard.

__xmknod

Name

__xmknod -- make block or character special file

Synopsis

int __xmknod(int ver, const char * path, mode_t mode, dev_t * dev);

Description

The __xmknod() function shall implement the mknod() interface from ISO POSIX (2003).

The value of ver shall be 1 or the behavior of __xmknod() is undefined.

__xmknod(1, path, mode, dev) shall behave as mknod(path, mode, dev) as specified by ISO POSIX (2003).

The __xmknod() function is not in the source standard; it is only in the binary standard.

Note: The mknod() function is not in the binary standard; it is only in the source standard.

__xstat

Name

__xstat -- get File Status

Synopsis

#include <sys/stat.h>
#include <unistd.h>

int __xstat(int ver, const char * path, struct stat * stat_buf);

int __lxstat(int ver, const char * path, struct stat * stat_buf);

int __fxstat(int ver, int fildes, struct stat * stat_buf);

Description

The functions __xstat(), __lxstat(), and __fxstat() shall implement the ISO POSIX (2003) functions stat(), lstat(), and fstat() respectively.

ver shall be 3 or the behavior of these functions is undefined.

__xstat(3, path, stat_buf) shall implement stat(path, stat_buf) as specified by ISO POSIX (2003).

__lxstat(3, path, stat_buf) shall implement lstat(path, stat_buf) as specified by ISO POSIX (2003).

__fxstat(3, fildes, stat_buf) shall implement fstat(fildes, stat_buf) as specified by ISO POSIX (2003).

__xstat(), __lxstat(), and __fxstat() are not in the source standard; they are only in the binary standard.

stat(), lstat(), and fstat() are not in the binary standard; they are only in the source standard.

__xstat64

Name

__xstat64 -- get File Status

Synopsis

#define _LARGEFILE_SOURCE 1
#include <sys/stat.h>
#include <unistd.h>

int __xstat64(int ver, const char * path, struct stat64 * stat_buf);

int __lxstat64(int ver, const char * path, struct stat64 * stat_buf);

int __fxstat64(int ver, int fildes, struct stat64 * stat_buf);

Description

The functions __xstat64(), __lxstat64(), and __fxstat64() shall implement the Large File Support functions stat64(), lstat64(), and fstat64() respectively.

ver shall be 3 or the behavior of these functions is undefined.

__xstat64(3, path, stat_buf) shall behave as stat(path, stat_buf) as specified by Large File Support.

__lxstat64(3, path, stat_buf) shall behave as lstat(path, stat_buf) as specified by Large File Support.

__fxstat64(3, fildes, stat_buf) shall behave as fstat(fildes, stat_buf) as specified by Large File Support.

__xstat64(), __lxstat64(), and __fxstat64() are not in the source standard; they are only in the binary standard.

stat64(), lstat64(), and fstat64() are not in the binary standard; they are only in the source standard.

_environ

Name

_environ -- alias for environ - user environment

Synopsis

extern char * *_environ;

Description

_environ is an alias for environ - user environment.

_nl_msg_cat_cntr

Name

_nl_msg_cat_cntr -- new catalog load counter

Synopsis

#include <libintl.h>

extern int _nl_msg_cat_cntr;

Description

The global variable _nl_msg_cat_cntr is incremented each time a new catalog is loaded. This variable is only in the binary standard; it is not in the source standard.

_sys_errlist

Name

_sys_errlist -- array containing the "C" locale strings used by strerror()

Synopsis

#include <stdio.h>

extern const char *const _sys_errlist[];

Description

_sys_errlist is an array containing the "C" locale strings used by strerror(). This normally should not be used directly. strerror() provides all of the needed functionality.

_sys_siglist

Name

_sys_siglist -- array containing the names of the signal names

Synopsis

#include <signal.h>

extern const char *const _sys_siglist[NSIG];

Description

_sys_siglist is an array containing the names of the signal names.

The _sys_siglist array is only in the binary standard; it is not in the source standard. Applications wishing to access the names of signals should use the strsignal() function.

acct

Name

acct -- switch process accounting on or off

Synopsis

#include <dirent.h>

int acct(const char * filename);

Description

When filename is the name of an existing file, acct() turns accounting on and appends a record to filename for each terminating process. When filename is NULL, acct() turns accounting off.

Return Value

On success, 0 is returned. On error, -1 is returned and the global variable errno is set appropriately.

Errors

ENOSYS 

BSD process accounting has not been enabled when the operating system kernel was compiled. The kernel configuration parameter controlling this feature is CONFIG_BSD_PROCESS_ACCT.

ENOMEM 

Out of memory.

EPERM 

The calling process has no permission to enable process accounting.

EACCES 

filename is not a regular file.

EIO 

Error writing to the filename.

EUSERS 

There are no more free file structures or we run out of memory.

adjtime

Name

adjtime -- correct the time to allow synchronization of the system clock

Synopsis

#include <time.h>

int adjtime(const struct timeval * delta, struct timeval * olddelta);

Description

adjtime() makes small adjustments to the system time as returned by gettimeofday()(2), advancing or retarding it by the time specified by the timeval delta. If delta is negative, the clock is slowed down by incrementing it more slowly than normal until the correction is complete. If delta is positive, a larger increment than normal is used. The skew used to perform the correction is generally a fraction of one percent. Thus, the time is always a monotonically increasing function. A time correction from an earlier call to adjtime() may not be finished when adjtime() is called again. If olddelta is non-NULL, the structure pointed to will contain, upon return, the number of microseconds still to be corrected from the earlier call.

adjtime() may be used by time servers that synchronize the clocks of computers in a local area network. Such time servers would slow down the clocks of some machines and speed up the clocks of others to bring them to the average network time.

Appropriate privilege is required to adjust the system time.

Return Value

On success, 0 is returned. On error, -1 is returned and the global variable errno is set appropriately.

Errors

EFAULT 

An argument points outside the process's allocated address space.

EPERM 

The process does not have appropriate privilege.

asprintf

Name

asprintf -- write formatted output to a dynamically allocated string

Synopsis

#include <stdio.h>

int asprintf(char ** restrict ptr, const char * restrict format, ...);

Description

The asprintf() function shall behave as sprintf(), except that the output string shall be dynamically allocated space of sufficient length to hold the resulting string. The address of this dynamically allocated string shall be stored in the location referenced by ptr.

Return Value

Refer to fprintf().

Errors

Refer to fprintf().

bind_textdomain_codeset

Name

bind_textdomain_codeset -- specify encoding for message retrieval

Synopsis

#include <libintl.h>

char * bind_textdomain_codeset (const char * domainname , const char * codeset );

Description

The bind_textdomain_codeset() function can be used to specify the output codeset for message catalogs for domain domainname. The codeset argument shall be a valid codeset name which can be used tor the iconv_open function, or a null pointer. If the codeset argument is the null pointer, then function returns the currently selected codeset for the domain with the name domainname. It shall return a null pointer if no codeset has yet been selected.

Each successive call to bind_textdomain_codeset() function overrrides the settings made by the preceding call with the same domainname.

The bind_textdomain_codeset() function shall return a pointer to a string containing the name of the selected codeset. The string shall be allocated internally in the function and shall not be changed or freed by the user.

Parameters

domainname 

The domainname argument is applied to the currently active LC_MESSAGE locale. It is equivalent in syntax and meaning to the domainname argument to textdomain, except that the selection of the domain is valid only for the duration of the call.

codeset 

The name of the output codeset for the selected domain, or NULL to select the current codeset.

If domainname is the null pointer, or is an empty string, bind_textdomain_codeset() shall fail, but need not set errno.

Return Value

Returns the currently selected codeset name. It returns a null pointer if no codeset has yet been selected.

Errors

ENOMEM 

Insufficient memory available to allocate return value.

See Also

gettext, dgettext, ngettext, dngettext, dcgettext, dcngettext, textdomain, bindtextdomain

bindresvport

Name

bindresvport -- bind socket to privileged IP port

Synopsis

#include <sys/types.h>
#include <rpc/rpc.h>

int bindresvport(int sd, struct sockaddr_in * sin);

Description

If the process has appropriate privilege, the bindresvport() function shall bind a socket to a privileged IP port.

Return Value

On success, 0 is returned. On error, -1 is returned and the global variable errno is set appropriately.

Errors

EPERM 

The process did not have appropriate privilege.

EPFNOSUPPORT 

Address of sin did not match address family of sd.

bindtextdomain

Name

bindtextdomain -- specify the location of a message catalog

Synopsis

#include <libintl.h>

char * bindtextdomain(const char * domainname, const char * dirname);

Description

The bindtextdomain() shall set the the base directory of the hierarchy containing message catalogs for a given message domain.

The bindtextdomain() function specifies that the domainname message catalog can be found in the dirname directory hierarchy, rather than in the system default locale data base.

If dirname is not NULL, the base directory for message catalogs belonging to domain domainname shall be set to dirname. If dirname is NULL, the base directory for message catalogs shall not be altered.

The function shall make copies of the argument strings as needed.

dirname can be an absolute or relative pathname.

Note: Applications that wish to use chdir() should always use absolute pathnames to avoid misadvertently selecting the wrong or non-existant directory.

If domainname is the null pointer, or is an empty string, bindtextdomain() shall fail, but need not set errno.

The bindtextdomain() function shall return a pointer to a string containing the name of the selected directory. The string shall be allocated internally in the function and shall not be changed or freed by the user.

Return Value

On success, bindtextdomain() shall return a pointer to a string containing the directory pathname currently bound to the domain. On failure, a NULL pointer is returned, and the global variable errno may be set to indicate the error.

Errors

ENOMEM 

Insufficient memory was available.

See Also

gettext, dgettext, ngettext, dngettext, dcgettext, dcngettext, textdomain, bind_textdomain_codeset

cfmakeraw

Name

cfmakeraw -- get and set terminal attributes

Synopsis

#include <termios.h>

void cfmakeraw(struct termios * termios_p);

Description

The cfmakeraw() function shall set the attributes of the termios structure referenced by termios_p as follows:

  termios_p->c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
                          |INLCR|IGNCR|ICRNL|IXON);

  termios_p->c_oflag &= ~OPOST;

  termios_p->c_lflag &= ~(ECHO|ECHONL|ICANON|ISIG|IEXTEN);

  termios_p->c_cflag &= ~(CSIZE|PARENB);

  termios_p->c_cflag |= CS8;

termios_p shall point to a termios structure that contains the following members:

  tcflag_t c_iflag;      /* input modes */
  tcflag_t c_oflag;      /* output modes */
  tcflag_t c_cflag;      /* control modes */
  tcflag_t c_lflag;      /* local modes */
  cc_t c_cc[NCCS];       /* control chars */

cfsetspeed

Name

cfsetspeed -- set terminal input and output data rate

Synopsis

#include <termios.h>

int cfsetspeed(struct termios *t, speed_t speed);

Description

The cfsetspeed() function shall set the input and output speeds in t to the value specified by speed. The effects of the function on the terminal as described below do not become effective, nor are all errors detected, until the tcsetattr() function is called. Certain values for baud rates set in termios and passed to tcsetattr() have special meanings.

Return Value

On success, 0 is returned. On error, -1 is returned and the global variable errno is set appropriately.

Errors

EINVAL 

Invalid speed argument

daemon

Name

daemon -- run in the background

Synopsis

#include <unistd.h>

int daemon(int nochdir, int noclose);

Description

The daemon() function shall create a new process, detached from the controlling terminal. If successful, the calling process shall exit and the new process shall continue to execute the application in the background. If nochdir evaluates to true, the current directory shall not be changed. Otherwise, daemon() shall change the current working directory to the root (`/'). If noclose evaluates to true the standard input, standard output, and standard error file descriptors shall not be altered. Otherwise, daemon() shall close the standard input, standard output and standard error file descriptors and reopen them attached to /dev/null.

Return Value

On error, -1 is returned, and the global variable errno is set to any of the errors specified for the library functions fork() and setsid().

dcgettext

Name

dcgettext -- perform domain and category specific lookup in message catalog

Synopsis

#include <libintl.h>
#include <locale.h>

char * dcgettext(const char * domainname, const char * msgid, int category);

Description

The dcgettext() function is a domain specified version of gettext().

The dcgettext() function shall lookup the translation in the current locale of the message identified by msgid in the domain specified by domainname and in the locale category specified by category. If domainname is NULL, the current default domain shall be used. The msgid argument shall be a NULL-terminated string to be matched in the catalogue. category shall specify the locale category to be used for retrieving message strings. The category parameter shall be one of LC_CTYPE, LC_COLLATE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC, or LC_TIME. The default domain shall not be changed by a call to dcgettext().

Return Value

If a translation was found in one of the specified catalogs, it shall be converted to the current locale's codeset and returned. The resulting NULL-terminated string shall be allocated by the dcgettext function, and must not be modified or freed. If no translation was found, or category was invalid, msgid shall be returned.

Errors

dcgettext() shall not modify the errno global variable.

See Also

gettext, dgettext, ngettext, dngettext, dcngettext, textdomain, bindtextdomain, bind_textdomain_codeset

dcngettext

Name

dcngettext -- perform domain and category specific lookup in message catalog with plural

Synopsis

#include <libintl.h>
#include <locale.h>

char * dcngettext(const char * domainname, const char * msgid1, const char * msgid2, unsigned long int n, int category);

Description

The dcngettext() function is a domain specific version of gettext, capable of returning either a singular or plural form of the message. The dcngettext() function shall lookup the translation in the current locale of the message identified by msgid1 in the domain specified by domainname and in the locale category specified by category. If domainname is NULL, the current default domain shall be used. The msgid1 argument shall be a NULL-terminated string to be matched in the catalogue. category shall specify the locale category to be used for retrieving message strings. The category parameter shall be one of LC_CTYPE, LC_COLLATE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC, or LC_TIME. The default domain shall not be changed by a call to dcngettext(). If n is 1 then the singular version of the message is returned, otherwise one of the plural forms is returned, depending on the value of n and the current locale settings.

Return Value

If a translation corresponding to the value of n was found in one of the specified catalogs for msgid1, it shall be converted to the current locale's codeset and returned. The resulting NULL-terminated string shall be allocated by the dcngettext() function, and must not be modified or freed. If no translation was found, or category was invalid, msgid1 shall be returned if n has the value 1, otherwise msgid2 shall be returned.

Errors

dcngettext() shall not modify the errno global variable.

See Also

gettext, dgettext, ngettext, dngettext, dcgettext, textdomain, bindtextdomain, bind_textdomain_codeset

dgettext

Name

dgettext -- perform lookup in message catalog for the current LC_MESSAGES locale

Synopsis

#include <libintl.h>

char * dgettext(const char * domainname, const char * msgid);

Description

dgettext() is a domain specified version of gettext().

The dgettext() function shall search the currently selected message catalogs in the domain domainname for a string identified by the string msgid. If a string is located, that string shall be returned. The domain specified by domainname applies to the currently active LC_MESSAGE locale. The default domain shall not be changed by a call to dgettext().

Note: The usage of domainanme is equivalent in syntax and meaning to the textdomain() function's application of domainname, except that the selection of the domain in dgettext() is valid only for the duration of the call.

The dgettext() function is equivalent to dcgettext(domainname, msgid, LC_MESSAGES).

Return Value

On success of a msgid query, the translated NULL-terminated string is returned. On error, the original msgid is returned. The length of the string returned is undetermined until dgettext() is called.

Errors

dgettext() shall not modify the errno global variable.

See Also

gettext, dgettext, ngettext, dngettext, dcgettext, dcngettext, textdomain, bindtextdomain, bind_textdomain_codeset

dngettext

Name

dngettext -- perform lookup in message catalog for the current locale

Synopsis

#include <libintl.h>

char * dngettext(const char * domainname, const char * msgid1, const char * msgid2, unsigned long int n);

Description

dngettext() shall be equivalent to a call to

dcngettext(domainname, msgid1, msgid2, n, LC_MESSAGES)
See dcngettext() for more information.

See Also

gettext, dgettext, ngettext, dcgettext, dcngettext, textdomain, bindtextdomain, bind_textdomain_codeset

duplocale

Name

duplocale -- provide new handle for selection of locale

Synopsis

#include <locale.h>

locale_t duplocale(locale_t locale);

Description

The duplocale() function shall provide a new locale object based on the locale object provided in locale, suitable for use in the newlocale() or uselocale() functions. The new object may be released by calling freelocale().

Return Value

On success, the duplocale() function shall return a locale object. Otherwise, it shall return NULL, and set errno to indicate the error.

Errors

The duplocale() function shall fail if:

ENOMEM 

Insufficient memory.

See Also

setlocale(), freelocale(), newlocale(), uselocale()

endutent

Name

endutent -- access utmp file entries

Synopsis

#include <utmp.h>

void endutent(void);

Description

endutent() closes the utmp file. It should be called when the user code is done accessing the file with the other functions.

err

Name

err -- display formatted error messages

Synopsis

#include <err.h>

void err(int eval, const char * fmt, ...);

Description

The err() function shall display a formatted error message on the standard error stream. First, err() shall write the last component of the program name, a colon character, and a space character. If fmt is non-NULL, it shall be used as a format string for the printf() family of functions, and err() shall write the formatted message, a colon character, and a space. Finally, the error message string affiliated with the current value of the global variable errno shall be written, followed by a newline character.

The err() function shall not return, the program shall terminate with the exit value of eval.

See Also

error(), errx()

Return Value

None.

Errors

None.

error

Name

error -- print error message

Synopsis

#include <err.h>

void error(int exitstatus, int errnum, const char * format, ...);

Description

error() shall print a message to standard error.

error() shall build the message from the following elements in their specified order:

  1. the program name. If the application has provided a function named error_print_progname(), error() shall call this to supply the program name; otherwise, error() uses the content of the global variable program_name.

  2. the colon and space characters, then the result of using the printf-style format and the optional arguments.

  3. if errnum is nonzero, error() shall add the colon and space characters, then the result of strerror(errnum).

  4. a newline.

If exitstatus is nonzero, error() shall call exit(exitstatus).

See Also

err(), errx()

errx

Name

errx -- display formatted error message and exit

Synopsis

#include <err.h>

void errx(int eval, const char * fmt, ...);

Description

The errx() function shall display a formatted error message on the standard error stream. The last component of the program name, a colon character, and a space shall be output. If fmt is non-NULL, it shall be used as the format string for the printf() family of functions, and the formatted error message, a colon character, and a space shall be output. The output shall be followed by a newline character.

errx() does not return, but shall exit with the value of eval.

Return Value

None.

Errors

None.

See Also

error(), err()

fcntl

Name

fcntl -- file control

Description

fcntl() is as specified in ISO POSIX (2003), but with differences as listed below.

Implementation may set O_LARGEFILE

According to ISO POSIX (2003), only an application sets fcntl() flags, for example O_LARGEFILE. However, this specification also allows an implementation to set the O_LARGEFILE flag in the case where the programming environment is one of _POSIX_V6_ILP32_OFFBIG, _POSIX_V6_LP64_OFF64, _POSIX_V6_LPBIG_OFFBIG. See getconf and c99 in ISO POSIX (2003) for a description of these environments. Thus, calling fcntl() with the F_GETFL command may return O_LARGEFILE as well as flags explicitly set by the application in the case that both the implementation and the application support an off_t of at least 64 bits.

fflush_unlocked

Name

fflush_unlocked -- non thread safe fflush

Description

fflush_unlocked() is the same as fflush() except that it need not be thread safe. That is, it may only be invoked in the ways which are legal for getc_unlocked().

fgetwc_unlocked

Name

fgetwc_unlocked -- non thread safe fgetwc

Description

fgetwc_unlocked() is the same as fgetwc() except that it need not be thread safe. That is, it may only be invoked in the ways which are legal for getc_unlocked().

flock

Name

flock -- apply or remove an advisory lock on an open file

Synopsis

int flock(int fd, int operation);

Description

flock() applies or removes an advisory lock on the open file fd. Valid operation types are:

LOCK_SH 

Shared lock. More than one process may hold a shared lock for a given file at a given time.

LOCK_EX 

Exclusive lock. Only one process may hold an exclusive lock for a given file at a given time.

LOCK_UN 

Unlock.

LOCK_NB 

Don't block when locking. May be specified (by oring) along with one of the other operations.

A single file may not simultaneously have both shared and exclusive locks.

Return Value

On success, 0 is returned. On error, -1 is returned and the global variable errno is set appropriately.

Errors

EWOULDBLOCK 

The file is locked and the LOCK_NB flag was selected.

EBADF 

fd is not a not an open file descriptor.

EINTR 

While waiting to acquire a lock, the call was interrupted by delivery of a signal caught by a handler.

EINVAL 

The operation is invalid.

EWOULDBLOCK 

The implementation ran out of memory for allocating lock records.

freelocale

Name

freelocale -- free a locale object

Synopsis

#include <locale.h>

void freelocale(locale_t locale);

Description

The freelocale() function shall free the locale object locale, and release any resources associated with it.

Return Value

None.

Errors

None defined.

See Also

setlocale(), newlocale(), duplocale(), uselocale()

fscanf

Name

fscanf -- convert formatted input

Description

The scanf() family of functions shall behave as described in ISO POSIX (2003), except as noted below.

Differences

The %s, %S and %[ conversion specifiers shall accept an option length modifier a, which shall cause a memory buffer to be allocated to hold the string converted. In such a case, the argument corresponding to the conversion specifier should be a reference to a pointer value that will receive a pointer to the allocated buffer. If there is insufficient memory to allocate a buffer, the function may set errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion specifier for hexadecimal float values. While this conversion specifier should be supported, a format specifier such as "%aseconds" will have a different meaning on an LSB conforming system.

fstatfs

Name

fstatfs -- (deprecated)

Synopsis

#include <sys/statfs.h>

int fstatfs(int fd, struct statfs * buf);

Description

The fstatfs() function returns information about a mounted file system. The file system is identified by fd, a file descriptor of an open file within the mounted filesystem. The results are placed in the structure pointed to by buf.

Fields that are undefined for a particular file system shall be set to 0.

Note: Application developers should use the fstatvfs() function to obtain general file system information. Applications should only use the fstatfs() function if they must determine the file system type, which need not be provided by fstatvfs().

Return Value

On success, the fstatfs() function shall return 0 and set the fields of the structure idenfitied by buf accordingly. On error, the fstatfs() function shall return -1 and set errno accordingly.

Errors

EBADF 

fd is not a valid open file descriptor.

EFAULT 

buf points to an invalid address.

EIO 

An I/O error occurred while reading from or writing to the file system.

ENOSYS 

The filesystem fd is open on does not support statfs().

fstatfs64

Name

fstatfs64 -- (deprecated)

Synopsis

#include <sys/statfs.h>

int fstatfs64(int fd, struct statfs64 * buf);

Description

The fstatfs64() function returns information about a mounted file system. The file system is identified by fd, a file descriptor of an open file within the mounted filesystem. The results are placed in the structure pointed to by buf.

Fields that are undefined for a particular file system shall be set to 0.

fstatfs64() is the 64-bit version of fstatfs().

Note: Application developers should use the fstatvfs64() function to obtain general file system information. Applications should only use the fstatfs64() function if they must determine the file system type, which need not be provided by fstatvfs64().

Return Value

On success, the fstatfs64() function shall return 0 and set the fields of the structure idenfitied by buf accordingly. On error, the fstatfs64() function shall return -1 and set errno accordingly.

Errors

See fstatfs().

fwscanf

Name

fwscanf -- convert formatted input

Description

The scanf() family of functions shall behave as described in ISO POSIX (2003), except as noted below.

Differences

The %s, %S and %[ conversion specifiers shall accept an option length modifier a, which shall cause a memory buffer to be allocated to hold the string converted. In such a case, the argument corresponding to the conversion specifier should be a reference to a pointer value that will receive a pointer to the allocated buffer. If there is insufficient memory to allocate a buffer, the function may set errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion specifier for hexadecimal float values. While this conversion specifier should be supported, a format specifier such as "%aseconds" will have a different meaning on an LSB conforming system.

getgrouplist

Name

getgrouplist -- get network group entry

Synopsis

#include <grp.h>

int getgrouplist(const char * user, gid_t group, gid_t * groups, int * ngroups);

Description

The getgrouplist() function shall fill in the array groups with the supplementary groups for the user specified by user. On entry, ngroups shall refer to an integer containing the maximum number of gid_t members in the groups array. The group group shall also be included. On success, the value referred to by ngroups shall be updated to contain the number of gid_t objects copied.

Return Value

On success, if there was sufficient room to copy all the supplementatry group identifiers to the array identified by groups, getgrouplist() shall return the number of gid_t objects copied, and the value referenced by ngroups shall be updated. If there was not sufficient room to copy all the supplementary group identifiers, grouplist() shall return -1, and update the value referenced by ngroups to the number actually copied.

If user does not refer to a valid user on the system, getgrouplist() shall return 0, and set the value referenced by ngroups to 0.

Errors

None defined.

See Also

getgroups()

getloadavg

Name

getloadavg -- get system load averages

Synopsis

#include <stdlib.h>

int getloadavg(double loadavg[], int nelem);

Description

getloadavg() returns the number of processes in the system run queue averaged over various periods of time. Up to nelem samples are retrieved and assigned to successive elements of loadavg[]. The system imposes a maximum of 3 samples, representing averages over the last 1, 5, and 15 minutes, respectively.

getopt

Name

getopt -- parse command line options

Synopsis

#include <unistd.h>

int getopt(int argc, char * const argv[], const char * optstring);

extern char *optarg;
extern int optind, opterr, optopt;

Description

The getopt() function shall parse command line arguments as described in ISO POSIX (2003), with the following exceptions, where LSB and POSIX specifications vary. LSB systems shall implement the modified behaviors described below.

Argument Ordering

The getopt() function can process command line arguments referenced by argv in one of three ways:

PERMUTE 

the order of arguments in argv is altered so that all options (and their arguments) are moved in front of all of the operands. This is the default behavior.

Note: This behavior has undefined results if argv is not modifiable. This is to support historic behavior predating the use of const and ISO C (1999). The function prototype was aligned with ISO POSIX (2003) despite the fact that it modifies argv, and the library maintainers are unwilling to change this.

REQUIRE_ORDER 

The arguments in argv are processed in exactly the order given, and option processing stops when the first non-option argument is reached, or when the element of argv is "--". This ordering can be enforced either by setting the environment variable POSIXLY_CORRECT, or by setting the first character of optstring to '+'.

RETURN_IN_ORDER 

The order of arguments is not altered, and all arguments are processed. Non-option arguments (operands) are handled as if they were the argument to an option with the value 1 ('\001'). This ordering is selected by setting the first character of optstring to '-';

Option Characteristics

LSB specifies that:

  • an element of argv that starts with "-" (and is not exactly "-" or "--") is an option element.

  • characters of an option element, aside from the initial "-", are option characters.

POSIX specifies that:

  • applications using getopt() shall obey the following syntax guidelines:

    • option name is a single alphanumeric character from the portable character set

    • option is preceded by the '-' delimiter character

    • options without option-arguments should be accepted when grouped behind one '-' delimiter

    • each option and option-argument is a separate argument

    • option-arguments are not optional

    • all options should precede operands on the command line

    • the argument "--" is accepted as a delimiter indicating the end of options and the consideration of subsequent arguments, if any, as operands

  • historical implementations of getopt() support other characters as options as an allowed extension, but applications that use extensions are not maximally portable.

  • support for multi-byte option characters is only possible when such characters can be represented as type int.

  • applications that call any utility with a first operand starting with '-' should usually specify "--" to mark the end of the options. Standard utilities that do not support this guideline indicate that fact in the OPTIONS section of the utility description.

Extensions

LSB specifies that:

  • if a character is followed by two colons, the option takes an optional argument; if there is text in the current argv element, it is returned in optarg, otherwise optarg is set to 0.

  • if optstring contains W followed by a semi-colon (;), then -W foo is treated as the long option --foo.

    Note: See getopt_long() for a description of long options.

  • The first character of optstring shall modify the behavior of getopt() as follows:

    • if the first character is '+', then REQUIRE_ORDER processing shall be in effect (see above)

    • if the first character is '-', then RETURN_IN_ORDER processing shall be in effect (see above)

    • if the first character is ':', then getopt() shall return ':' instead of '?' to indicate a missing option argument, and shall not print any diagnostic message to stderr.

POSIX specifies that:

  • the -W option is reserved for implementation extensions.

Return Values

LSB specifies the following additional getopt() return values:

  • '\001' is returned if RETURN_IN_ORDER argument ordering is in effect, and the next argument is an operand, not an option. The argument is available in optarg.

Any other return value has the same meaning as for POSIX.

POSIX specifies the following getopt() return values:

  • the next option character is returned, if found successfully.

  • ':' is returned if a parameter is missing for one of the options and the first character of optstring is ':'.

  • '?' is returned if an unknown option character not in optstring is encountered, or if getopt() detects a missing argument and the first character of optstring is not ':'.

  • -1 is returned for the end of the option list.

Environment Variables

LSB specifies that:

  • if the variable POSIXLY_CORRECT is set, option processing stops as soon as a non-option argument is encountered.

  • the variable _[PID]_GNU_nonoption_argv_flags_ (where [PID] is the process ID for the current process), contains a space separated list of arguments that should not be treated as arguments even though they appear to be so.

    Rationale: This was used by bash 2.0 to communicate to GNU libc which arguments resulted from wildcard expansion and so should not be considered as options. This behavior was removed in bash version 2.01, but the support remains in GNU libc.

    This behavior is DEPRECATED in this version of the LSB; future revisions of this specification may not include this requirement.

getopt_long

Name

getopt_long -- parse command line options

Synopsis

#define _GNU_SOURCE
#include <getopt.h>

int getopt_long(int argc, char * const argv[], const char * opstring, const struct option * longopts, int * longindex);

Description

getopt_long() works like getopt() except that it also accepts long options, started out by two dashes. Long option names may be abbreviated if the abbreviation is unique or is an exact match for some defined option. A long option may take a parameter, of the form --arg=param or --arg param.

longopts is a pointer to the first element of an array of struct option declared in getopt.h as:

  struct option {
             const char *name;
             int has_arg;
             int *flag;
             int val;
  };

The fields in this structure have the following meaning:

name 

The name of the long option.

has_arg 

One of:

no_argument (or 0) if the option does not take an argument,
required_argument (or 1) if the option requires an argument, or
optional_argument (or 2) if the option takes an optional argument.

flag 

specifies how results are returned for a long option. If flag is NULL, then getopt_long() shall return val. (For example, the calling program may set val to the equivalent short option character.) Otherwise, getopt_long() returns 0, and flag shall point to a variable which shall be set to val if the option is found, but left unchanged if the option is not found.

val 

The value to return, or to load into the variable pointed to by flag.

If longindex is not NULL, it points to a variable which is set to the index of the long option relative to longopts.

Return Value

getopt_long() returns the option character if a short option was found successfully, or ":" if there was a missing parameter for one of the options, or "?" for an unknown option character, or -1 for the end of the option list.

For a long option, getopt_long() returns val if flag is NULL, and 0 otherwise. Error and -1 returns are the same as for getopt(), plus "?" for an ambiguous match or an extraneous parameter.

getopt_long_only

Name

getopt_long_only -- parse command line options

Synopsis

#define _GNU_SOURCE
#include <getopt.h>

int getopt_long_only(int argc, char * const argv[], const char * optstring, const struct option * longopts, int * longindex);

Description

getopt_long_only() is like getopt_long(), but "-" as well as "--" can indicate a long option. If an option that starts with "-" (not "--") doesn't match a long option, but does match a short option, it is parsed as a short option instead.

Note: The getopt_long_only() function is intended only for supporting certain programs whose command line syntax was designed before the Utility Syntax Guidelines of ISO POSIX (2003) were developed. New programs should generally call getopt_long() instead, which provides the --option syntax for long options, which is preferred by GNU and consistent with ISO POSIX (2003).

Return Value

getopt_long_only() returns the option character if the option was found successfully, or ":" if there was a missing parameter for one of the options, or "?" for an unknown option character, or -1 for the end of the option list.

getopt_long_only() also returns the option character when a short option is recognized. For a long option, they return val if flag is NULL, and 0 otherwise. Error and -1 returns are the same as for getopt(), plus "?" for an ambiguous match or an extraneous parameter.

getsockopt

Name

getsockopt -- get socket options

Synopsis

#include <sys/socket.h>
#include <netinet/ip.h>

int getsockopt(int socket, int level, int option_name, void * restrict option_value, socklen_t * restrict option_len);

Description

The getsockopt() function shall behave as specified in ISO POSIX (2003), with the following extensions.

IP Protocol Level Options

If the level parameter is IPPROTO_IP, the following values shall be supported for option_name (see RFC 791:Internet Protocol for further details):

IP_OPTIONS 

Get the Internet Protocol options sent with every packet from this socket. The option_value shall point to a memory buffer in which the options shall be placed; on entry option_len shall point to an integer value indicating the maximum size of the memory buffer, in bytes. On successful return, the value referenced by option_len shall be updated to the size of data copied to the buffer. For IPv4, the maximum length of options is 40 bytes.

IP_TTL 

Get the current unicast Internet Protocol Time To Live value used when sending packets with this socket. The option_value shall point to a buffer large enough to hold the time to live value (at least 1 byte), and option_len shall point to an integer value holding the maximum size of that buffer. On successful return, the value referenced by option_len shall be updated to contain the number of bytes copied into the buffer, which shall be no larger than the initial value, and option_value shall point to an integer containing the time to live value.

IP_TOS 

Get the Internet Protocol type of service indicator used when sending packets with this socket. The option_value shall point to a buffer large enough to hold the type of service indicator (at least 1 byte), and option_len shall point to an integer value holding the maximum size of that buffer. On successful return, the value referenced by option_len shall be updated to contain the number of bytes copied into the buffer, which shall be no larger than the initial value, and option_value shall point to an integer containing the time to live value.

gettext

Name

gettext -- search message catalogs for a string

Synopsis

#include <libintl.h>

char * gettext(const char * msgid);

Description

The gettext() function shall search the currently selected message catalogs for a string identified by the string msgid. If a string is located, that string shall be returned.

The gettext() function is equivalent to dcgettext(NULL, msgid, LC_MESSAGES).

Return Value

If a string is found in the currently selected message catalogs for msgid, then a pointer to that string shall be returned. Otherwise, a pointer to msgid shall be returned.

Applications shall not modify the string returned by gettext().

Errors

None.

The gettext() function shall not modify errno.

See Also

dgettext, ngettext, dngettext, dcgettext, dcngettext, textdomain, bindtextdomain, bind_textdomain_codeset

getutent

Name

getutent -- access user accounting database entries

Synopsis

#include <utmp.h>

struct utmp *getutent(void);

Description

The getutent() function shall read the next entry from the user accounting database.

Return Value

Upon successful completion, getutent() shall return a pointer to a utmp structure containing a copy of the requested entry in the user accounting database. Otherwise, a null pointer shall be returned. The return value may point to a static area which is overwritten by a subsequent call to getutent().

Errors

None defined.

getutent_r

Name

getutent_r -- access user accounting database entries

Synopsis

int getutent_r(struct utmp * buffer, struct utmp ** result);

Description

The getutent_r() function is a reentrant version of the getutent() function. On entry, buffer should point to a user supplied buffer to which the next entry in the database will be copied, and result should point to a location where the result will be stored.

Return Value

On success, getutent_r() shall return 0 and set the location referenced by result to a pointer to buffer. Otherwise, getutent_r() shall return -1 and set the location referenced by result to NULL.

glob64

Name

glob64 -- find pathnames matching a pattern (Large File Support)

Synopsis

#include <glob.h>

int glob64(const char * pattern, int flags, int (*errfunc) (const char *, int), glob64_t * pglob);

Description

The glob64() function is a large-file version of the glob() defined in ISO POSIX (2003). It shall search for pathnames matching pattern according to the rules used by the shell, /bin/sh. No tilde expansion or parameter substitution is done; see wordexp().

The results of a glob64() call are stored in the structure pointed to by pglob, which is a glob64_t declared in glob.h with the following members:

typedef struct
{
  size_t gl_pathc;
  char **gl_pathv;
  size_t gl_offs;
  int gl_flags;
  void (*gl_closedir) (void *);
  struct dirent64 *(*gl_readdir64) (void *);
  void *(*gl_opendir) (const char *);
  int (*gl_lstat) (const char *, struct stat *);
  int (*gl_stat) (const char *, struct stat *);
}
glob64_t;

Structure members with the same name as corresponding members of a glob_t as defined in ISO POSIX (2003) shall have the same purpose.

Other members are defined as follows:

gl_flags 

reserved for internal use

gl_closedir 

pointer to a function capable of closing a directory opened by gl_opendir

gl_readdir64 

pointer to a function capable of reading entries in a large directory

gl_opendir 

pointer to a function capable of opening a large directory

gl_stat 

pointer to a function capable of returning file status for a large file

gl_lstat 

pointer to a function capable of returning file status information for a large file or symbolic link

A large file or large directory is one with a size which cannot be represented by a variable of type off_t.

Return Value

On success, 0 is returned. Other possible returns are:

GLOB_NOSPACE 

out of memory

GLOB_ABORTED 

read error

GLOB_NOMATCH 

no match found

globfree64

Name

globfree64 -- free memory from glob64() (Large File Support)

Synopsis

#include <glob.h>

void globfree64(glob64_t * pglob);

Description

globfree64() frees the dynamically allocated storage from an earlier call to glob64().

globfree64() is a 64-bit version of globfree().

initgroups

Name

initgroups -- initialize the supplementary group access list

Synopsis

#include <grp.h>
#include <sys/types.h>

int initgroups(const char * user, gid_t group);

Description

If the process has appropriate privilege, the initgroups() function shall initialize the Supplementary Group IDs for the current process by reading the group database and using all groups of which user is a member. The additional group group is also added to the list.

Return Value

On success, 0 is returned. On error, -1 is returned and the global variable errno is set appropriately.

Errors

EPERM 

The calling process does not have sufficient privileges.

ENOMEM 

Insufficient memory to allocate group information structure.

See Also

setgroups()

ioctl

Name

ioctl -- control device

Synopsis

#include <sys/ioctl.h>

int ioctl (int fildes , int request , ...);

Description

The ioctl() function shall manipulate the underlying device parameters of special files. fildes shall be an open file descriptor referring to a special file. The ioctl() function shall take three parameters; the type and value of the third parameter is dependent on the device and request.

Conforming LSB applications shall not call ioctl() except in situations explicitly stated in this specification.

Return Value

On success, 0 is returned. An ioctl() may use the return value as an output parameter and return a non-negative value on success. On error, -1 is returned and the global variable errno is set appropriately.

Errors

EBADF 

fildes is not a valid descriptor.

EFAULT 

The third parameter references an inaccessible memory area.

ENOTTY 

fildes is not associated with a character special device.

ENOTTY  

The specified request does not apply to the kind of object that fildes references.

EINVAL  

request or the third parameter is not valid.

Relationship to POSIX (Informative)

It should be noted that ISO POSIX (2003) contains an interface named ioctl(). The LSB only defines behavior when fildes refers to a socket (see sockio) or terminal device (see ttyio), while ISO POSIX (2003) only defines behavior when fildes refers to a STREAMS device. An implementation may support both behaviors; the LSB does not require any STREAMS support.

sockio

Name

sockio -- socket ioctl commands

Synopsis

#include <sys/ioctl.h>
#include <sys/socket.h>
#include <net/if.h>
#include <netinet/in.h>

int ioctl(int sockfd, int request, void * argp);

Description

Socket ioctl() commands are a subset of the ioctl() calls, which can perform a variety of functions on sockets. sockfd shall be an open file descriptor referring to a socket (see the socket() or accept() functions).

Socket ioctl() commands apply to the underlying network interfaces, and affect the entire system, not just the file descriptor used to issue the ioctl().

The following values for request are accepted:

SIOCGIFCONF (Deprecated)

Get the interface configuration list for the system.

Note: The SIOCGIFCONF interface is superceded by the if_nameindex() family of functions (see ISO POSIX (2003)). A future version of this specification may withdraw this value for request.

argp shall point to a ifconf structure, as described in <net/if.h>. Before calling, the caller shall set the ifc_ifcu.ifcu_req field to point to an array of ifreq structures, and set ifc_len to the size in bytes of this allocated array. Upon return, ifc_len will contain the size in bytes of the array which was actually used. If it is the same as the length upon calling, the caller should assume that the array was too small and try again with a larger array.

On success, SIOCGIFCONF shall return a nonnegative value.

Rationale: Historical UNIX systems disagree on the meaning of the return value.

SIOCGIFFLAGS

Get the interface flags for the indicated interface. argp shall point to a ifreq structure. Before calling, the caller should fill in the ifr_name field with the interface name, and upon return, the ifr_ifru.ifru_flags field is set with the interface flags.

SIOCGIFADDR

Get the interface address for the given interface. argp shall point to a ifreq structure. Before calling, the caller should fill in the ifr_name field with the interface name, and upon return, the ifr_ifru.ifru_addr field is set with the interface address.

SIOCGIFBRDADDR

Get the interface broadcast address for the given interface. argp shall point to a ifreq structure. Before calling, the caller should fill in the ifr_name field with the interface name, and upon return, the ifr_ifru.ifru_broadcast field is set with the interface broadcast address.

SIOCGIFDSTADDR

Get the point-to-point address for the given interface. argp shall point to a ifreq structure. Before calling, the caller should fill in the ifr_name field with the interface name, and upon return, the ifr_dstaddr field is set with the point-to-point address.

SIOCGIFNAME

Get the name of an interface. argp shall point to a ifreq structure. Before calling, the caller should fill in the ifr_ifindex field with the number (index) of the interface, and upon return, the ifr_name field is set with the interface name.

SIOCGIFNETMASK

Get the network mask for the given interface. argp shall point to a ifreq structure. Before calling, the caller should fill in the ifr_name field with the interface name, and upon return, the ifr_ifru.ifru_netmask field is set with the network mask.

SIOCGIFMTU

Get the Maximum Transmission Unit (MTU) size for the given interface. argp shall point to a ifreq structure. Before calling, the caller should fill in the ifr_name field with the interface name, and upon return, the ifr_ifru.ifru_mtu field is set with the MTU. Note: The range of valid values for MTU varies for an interface depending on the interface type.

FIONREAD

Get the amount of queued unread data in the receive buffer. argp shall point to an integer where the result is to be placed.

Note: Some implementations may also support the use of FIONREAD on other types of file descriptor. However, the LSB only specifies its behavior for a socket related file descriptor.

Return Value

On success, if request is SIOCGIFCONF, a non-negative integer shall be returned. If request is not SIOCGIFCONF, on success 0 is returned. On error, -1 is returned and the global variable errno is set appropriately.

Errors

EBADF 

sockfd is not a valid descriptor.

EFAULT 

argp references an inaccessible memory area.

ENOTTY 

The specified request does not apply to the kind of object that the descriptor sockfd references.

EINVAL 

Either request or argp is invalid.

ENOTCONN 

The operation is only defined on a connected socket, but the socket wasn't connected.

ttyio

Name

ttyio -- tty ioctl commands

Synopsis

#include <sys/ioctl.h>
#include <fcntl.h>

int ioctl(int fd, unsigned long request, int * argp);

Description

Tty ioctl commands are a subset of the ioctl() calls, which can perform a variety of functions on tty devices. fd shall be an open file descriptor referring to a terminal device.

The following ioctl()s are provided:

TIOCGWINSZ 

Get the size attributes of the terminal or pseudo-terminal identified by fd. On entry, argp shall reference a winsize structure. On return, the structure will have ws_row set to the number of rows of text (i.e. lines of text) that can be viewed on the device, and ws_col set to the number of columns (i.e. text width).

Note: The number of columns stored in ws_col assumes that the terminal device is using a mono-spaced font.

Return Value

On success, 0 is returned. On error, -1 is returned and the global variable errno is set appropriately.

Errors

EBADF 

fd is not a valid descriptor.

EFAULT 

argp references an inaccessible memory area.

EINVAL 

request and argp are not valid.

kill

Name

kill -- send a signal

Synopsis

#include <signal.h>

int kill(pid_t pid, int sig);

Description

kill() is as specified in the ISO POSIX (2003), but with differences as listed below.

Process ID -1 doesn't affect calling process

If pid is specified as -1, sig shall not be sent to the calling process. Other than this, the rules in the ISO POSIX (2003) apply.

Rationale: This was a deliberate Linus decision after an unpopular experiment in including the calling process in the 2.5.1 kernel. See "What does it mean to signal everybody?", Linux Weekly News, 20 December 2001, http://lwn.net/2001/1220/kernel.php3

link

Name

link -- create a link to a file

Synopsis

#include <unistd.h>

int link(const char * path1, const char * path2);

Description

The link() function shall behave as specified in ISO POSIX (2003), except with differences as listed below.

Need Not Follow Symlinks

ISO POSIX (2003) specifies that pathname resolution shall follow symbolic links during pathname resolution unless the function is required to act on the symbolic link itself, or certain arguments direct that the function act on the symbolic link itself. The link() function in ISO POSIX (2003) contains no such requirement to operate on a symbolic link. However, a conforming LSB implementation need not follow a symbolic link for the path1 argument.

mbsnrtowcs

Name

mbsnrtowcs -- convert a multibyte string to a wide character string

Synopsis

#include <wchar.h>

size_t mbsnrtowcs(wchar_t * dest, const char * * src, size_t nms, size_t len, mbstate_t * ps);

Description

mbsnrtowcs() is like mbsrtowcs(), except that the number of bytes to be converted, starting at src, is limited to nms.

If dest is not a NULL pointer, mbsnrtowcs() converts at most nms bytes from the multibyte string src to a wide-character string starting at dest. At most, len wide characters are written to dest. The state ps is updated.

The conversion is effectively performed by repeatedly calling:

 
mbrtowc(dest, *src, n, ps)
where n is some positive number, as long as this call succeeds, and then incrementing dest by one and src by the number of bytes consumed.

The conversion can stop for three reasons:

  • An invalid multibyte sequence has been encountered. In this case src is left pointing to the invalid multibyte sequence, (size_t)(-1) is returned, and errno is set to EILSEQ.

  • The nms limit forces a stop, or len non-L'\0' wide characters have been stored at dest. In this case, src is left pointing to the next multibyte sequence to be converted, and the number of wide characters written to dest is returned.

  • The multibyte string has been completely converted, including the terminating '\0' (which has the side effect of bringing back ps to the initial state). In this case, src is set to NULL, and the number of wide characters written to dest, excluding the terminating L'\0' character, is returned.

If dest is NULL, len is ignored, and the conversion proceeds as above, except that the converted wide characters are not written out to memory, and that no destination length limit exists.

In both of the above cases, if ps is a NULL pointer, a static anonymous state only known to mbsnrtowcs() is used instead.

The programmer shall ensure that there is room for at least len wide characters at dest.

Return Value

mbsnrtowcs() returns the number of wide characters that make up the converted part of the wide character string, not including the terminating null wide character. If an invalid multibyte sequence was encountered, (size_t)(-1) is returned, and the global variable errno is set to EILSEQ.

Notes

The behavior of mbsnrtowcs() depends on the LC_CTYPE category of the current locale.

Passing NULL as ps is not multi-thread safe.

memmem

Name

memmem -- locate bytes

Synopsis

#define _GNU_SOURCE
#include <string.h>

void * memmem(const void * haystack, size_t haystacklen, const void * needle, size_t needlelen);

Description

memmem() finds the start of the first occurrence of the byte array referenced by needle of length needlelen in the memory area haystack of length haystacklen.

Return Value

memmem() returns a pointer to the beginning of the byte array, or NULL if the byte array is not found.

Notes

Earlier versions of the C library (prior to glibc 2.1) contained a memmem() with various problems, and application developers should treat this function with care.

memrchr

Name

memrchr -- scan memory for a character

Synopsis

#include <string.h>

void * memrchr(const void * s, int c, size_t n);

Description

The memrchr() function shall locate the last occurence of c (converted to an unsigned char) in the initial n bytes (each interpreted as an unsigned char) of the object pointed to by s.

Return Value

The memrchr() shall return a pointer to the located byte, or a null pointer if the byte does not occur in the object.

Errors

No errors are defined.

See Also

memchr()

newlocale

Name

newlocale -- allocate a locale object

Synopsis

#include <locale.h>

locale_t newlocale(int category_mask, const char * locale, locale_t base);

Description

The newlocale() function shall initialize a locale object. If base is NULL, then newlocale() shall first allocate the object; otherwise it shall use the locale object referenced by base.

The object shall be initialized for the locale named by locale, and for the categories selected in category_mask. The category_mask value is a bitwise inclusive OR of the required LC_name_MASK values, or the value LC_ALL_MASK.

Return Value

On success, the newlocale() function shall return the initialized locale object. Otherwise, it shall return NULL, and set errno to indicate the error.

Errors

The newlocale() function shall fail if:

ENOMEM 

Insufficient memory.

EINVAL 

An invalid category_mask was provided, or the locale was NULL.

ENOENT 

For any of the categories in category_mask, the locale data is not available.

Application Usage (Informative)

The only portable way to allocate a locale object is to call newlocale() with a NULL base. The allocated object may be reinitialized to a new locale by passing it back to newlocale(). The new object may be released by calling freelocale().

See Also

setlocale(), freelocale(), duplocale(), uselocale()

ngettext

Name

ngettext -- search message catalogs for plural string

Synopsis

#include <libintl.h>

char * ngettext(const char * msgid1, const char * msgid2, unsigned long int n);

Description

The ngettext() function shall search the currently selected message catalogs for a string matching the singular string msgid1. If a string is located, and if n is 1, that string shall be returned. If n is not 1, a pluralized version (dependent on n) of the string shall be returned.

The ngettext() function is equivalent to dcngettext(NULL, msgid1, msgid2, n, LC_MESSAGES)().

Return Value

If a string is found in the currently selected message catalogs for msgid1, then if n is 1 a pointer to the located string shall be returned. If n is not 1, a pointer to an appropriately pluralized version of the string shall be returned. If no message could be found in the currently selected mesage catalogs, then if n is 1, a pointer to msgid1 shall be returned, otherwise a pointer to msgid2 shall be returned.

Applications shall not modify the string returned by ngettext().

Errors

None.

The ngettext() function shall not modify errno.

See Also

gettext, dgettext, ngettext, dngettext, dcgettext, dcngettext, textdomain, bindtextdomain, bind_textdomain_codeset

pmap_getport

Name

pmap_getport -- find the port number assigned to a service registered with a portmapper.

Synopsis

#include <rpc/pmap_clnt.h>

u_short * pmap_getport(struct sockaddr_in * address, const u_long program, const u_long * version, u_int protocol);

Description

The pmap_getport() function shall return the port number assigned to a service registered with a RPC Binding service running on a given target system, using the protocol described in RFC 1833: Binding Protocols for ONC RPC Version 2. The pmap_getport() function shall be called given the RPC program number program, the program version version, and transport protocol protocol. Conforming implementations shall support both IPPROTO_UDP and IPPROTO_TCP protocols. On entry, address shall specify the address of the system on which the portmapper to be contacted resides. The value of address->sin_port shall be ignored, and the standard value for the portmapper port shall always be used.

Note: Security and network restrictions may prevent a conforming application from contacting a remote RPC Binding Service.

Return Value

On success, the pmap_getport() function shall return the port number in host byte order of the RPC application registered with the remote portmapper. On failure, if either the program was not registered or the remote portmapper service could not be reached, the pmap_getport() function shall return 0. If the remote portmap service could not be reached, the status is left in the global variable rpc_createerr.

pmap_set

Name

pmap_set -- establishes mapping to machine's RPC Bind service.

Synopsis

#include <rpc/pmap_clnt.h>

bool_t pmap_set(const u_long program, const u_long version, int protocol, u_short port);

Description

pmap_set() establishes a mapping between the triple [program,version,protocol] and port on the machine's RPC Bind service. The value of protocol is most likely IPPROTO_UDP or IPPROTO_TCP. Automatically done by svc_register().

Return Value

pmap_set() returns non-zero if it suceeds, 0 otherwise.

pmap_unset

Name

pmap_unset --  destroys RPC Binding

Synopsis


#include <rpc/pmap_clnt.h>

bool_t pmap_unset(u_long prognum, u_long versnum);

Description

As a user interface to the RPC Bind service, pmap_unset() destroys all mapping between the triple [prognum,versnum, *] and ports on the machine's RPC Bind service.

Return Value

pmap_unset() returns non-zero if it succeeds, zero otherwise.

psignal

Name

psignal -- print signal message

Synopsis

#include <signal.h>

void psignal(int sig, const char * s);

extern const char *const sys_siglist[]

Description

The psignal() function shall display a message on the stderr stream. If s is not the null pointer, and does not point to an empty string (e.g. "\0"), the message shall consist of the string s, a colon, a space, and a string describing the signal number sig; otherwise psignal() shall display only a message describing the signal number sig. If sig is invalid, the message displayed shall indicate an unknown signal.

The array sys_siglist holds the signal description strings indexed by signal number.

Return Value

psignal() returns no value.

regexec

Name

regexec -- regular expression matching

Description

The regexec() function shall behave as specified in ISO POSIX (2003), except with differences as listed below.

Differences

Certain aspects of regular expression matching are optional; see Regular Expressions.

scanf

Name

scanf -- convert formatted input

Description

The scanf() family of functions shall behave as described in ISO POSIX (2003), except as noted below.

Differences

The %s, %S and %[ conversion specifiers shall accept an option length modifier a, which shall cause a memory buffer to be allocated to hold the string converted. In such a case, the argument corresponding to the conversion specifier should be a reference to a pointer value that will receive a pointer to the allocated buffer. If there is insufficient memory to allocate a buffer, the function may set errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion specifier for hexadecimal float values. While this conversion specifier should be supported, a format specifier such as "%aseconds" will have a different meaning on an LSB conforming system.

setbuffer

Name

setbuffer -- stream buffering operation

Synopsis

#include <stdio.h>

void setbuffer(FILE * stream, char * buf, size_t size);

Description

setbuffer() is an alias for the call to setvbuf(). It works the same, except that the size of the buffer in setbuffer() is up to the caller, rather than being determined by the default BUFSIZ.

setgroups

Name

setgroups -- set list of supplementary group IDs

Synopsis

#include <grp.h>

int setgroups(size_t size, const gid_t * list);

Description

If the process has appropriate privilege, the setgroups() function shall set the supplementary group IDs for the current process. list shall reference an array of size group IDs. A process may have at most NGROUPS_MAX supplementary group IDs.

Return Value

On successful completion, 0 is returned. On error, -1 is returned and the errno is set to indicate the error.

Errors

EFAULT 

list has an invalid address.

EPERM 

The process does not have appropriate privileges.

EINVAL 

size is greater than NGROUPS_MAX.

sethostname

Name

sethostname -- set host name

Synopsis

#include <unistd.h>
#include <sys/param.h.h>
#include <sys/utsname.h>

int sethostname(const char * name, size_t len);

Description

If the process has appropriate privileges, the sethostname() function shall change the host name for the current machine. The name shall point to a null-terminated string of at most len bytes that holds the new hostname.

If the symbol HOST_NAME_MAX is defined, or if sysconf(_SC_HOST_NAME_MAX)() returns a value greater than 0, this value shall represent the maximum length of the new hostname. Otherwise, if the symbol MAXHOSTLEN is defined, this value shall represent the maximum length for the new hostname. If none of these values are defined, the maximum length shall be the size of the nodename field of the utsname structure.

Return Value

On success, 0 is returned. On error, -1 is returned and the global variable errno is set appropriately.

Errors

EINVAL 

len is negative or larger than the maximum allowed size.

EPERM 

the process did not have appropriate privilege.

EFAULT 

name is an invalid address.

Rationale

ISO POSIX (2003) guarantees that:

Maximum length of a host name (not including the terminating null) as returned from the gethostname() function shall be at least 255 bytes.

The glibc C library does not currently define HOST_NAME_MAX, and although it provides the name _SC_HOST_NAME_MAX a call to sysconf() returns -1 and does not alter errno in this case (indicating that there is no restriction on the hostname length). However, the glibc manual idicates that some implementations may have MAXHOSTNAMELEN as a means of detecting the maximum length, while the Linux kernel at release 2.4 and 2.6 stores this hostname in the utsname structure. While the glibc manual suggests simply shortening the name until sethostname() succeeds, the LSB requires that one of the first four mechanisms works. Future versions of glibc may provide a more reasonable result from sysconf(_SC_HOST_NAME_MAX).

setsockopt

Name

setsockopt -- set socket options

Synopsis

#include <sys/socket.h>
#include <netinet/ip.h>

int setsockopt(int socket, int level, int option_name, const void * option_value, socklen_t option_len);

Description

The setsockopt() function shall behave as specified in ISO POSIX (2003), with the following extensions.

IP Protocol Level Options

If the level parameter is IPPROTO_IP, the following values shall be supported for option_name (see RFC 791:Internet Protocol for further details):

IP_OPTIONS 

Set the Internet Protocol options sent with every packet from this socket. The option_value shall point to a memory buffer containing the options and option_len shall contain the size in bytes of that buffer. For IPv4, the maximum length of options is 40 bytes.

IP_TOS 

Set the Type of Service flags to use when sending packets with this socket. The option_value shall point to a value containing the type of service value. The least significant two bits of the value shall contain the new Type of Service indicator. Use of other bits in the value is unspecified. The option_len parameter shall hold the size, in bytes, of the buffer referred to by option_value.

IP_TTL 

Set the current unicast Internet Protocol Time To Live value used when sending packets with this socket. The option_value shall point to a value containing the time to live value, which shall be between 1 and 255. The option_len parameter shall hold the size, in bytes, of the buffer referred to by option_value.

IP_MULTICAST_TTL 

Sets the Time To Live value of outgoing multicast packets for this socket. optval shall point to an integer which contains the new TTL value. If the new TTL value is -1, the implementation should use an unspecified default TTL value. If the new TTL value is out of the range of acceptable values (0-255), setsockopt() shall return -1 and set errno to indicate the error.

IP_MULTICAST_LOOP 

Sets a boolean flag indicating whether multicast packets originating locally should be looped back to the local sockets. optval shall point to an integer which contains the new flag value.

IP_ADD_MEMBERSHIP 

Join a multicast group. optval shall point to a ip_mreq structure. Before calling, the caller should fill in the imr_multiaddr field with the multicast group address and the imr_address field with the address of the local interface. If imr_address is set to INADDR_ANY, then an appropriate interface is chosen by the system.

IP_DROP_MEMBERSHIP 

Leave a multicast group. optval shall point to a ip_mreq structure containing the same values as were used with IP_ADD_MEMBERSHIP.

IP_MULTICAST_IF 

Set the local device for a multicast socket. optval shall point to a ip_mreq structure initialized in the same manner as with IP_ADD_MEMBERSHIP.

The ip_mreq structure contains two struct in_addr fields: imr_multiaddr and imr_address.

Return Value

On success, 0 is returned. On error, -1 is returned and the global variable errno is set appropriately.

Errors

As defined in ISO POSIX (2003).

setutent

Name

setutent -- access user accounting database entries

Synopsis

#include <utmp.h>

void setutent(void);

Description

The setutent() function shall reset the user accounting database such that the next call to getutent() shall return the first record in the database. It is recommended to call it before any of the other functions that operate on the user accounting databases (e.g. getutent())

Return Value

None.

sigandset

Name

sigandset -- build a new signal set by combining the two input sets using logical AND

Synopsis

#include <signal.h>

int sigandset(sigset_t * set, const sigset_t * left, const sigset_t * right);

Description

The sigandset() shall combine the two signal sets referenced by left and right, using a logical AND operation, and shall place the result in the location referenced by set, The resulting signal set shall contain only signals that are in both the set referenced by left and the set referenced by right.

Return Value

On success, sigandset() shall return 0. Otherise, sigandset() shall return -1 and set errno to indicate the error.

Errors

EINVAL 

One or more of set, left, or right was a null pointer.

See Also

sigorset()

sigisemptyset

Name

sigisemptyset -- check for empty signal set

Synopsis

#include <signal.h>

int sigisemptyset(const sigset_t * set);

Description

The sigisemptyset() function shall check for empty signal set referenced by set.

Return Value

The sigisemptyset() function shall return a positive non-zero value if the signal set referenced by set is empty, or zero if this set is empty. On error, sigisemptyset() shall return -1 and set errno to indicate the error.

Errors

EINVAL 

set is a null pointer.

sigorset

Name

sigorset -- build a new signal set by combining the two input sets using logical OR

Synopsis

#include <signal.h>

int sigorset(sigset_t * set, const sigset_t * left, const sigset_t * right);

Description

The sigorset() shall combine the two signal sets referenced by left and right, using a logical OR operation, and shall place the result in the location referenced by set, The resulting signal set shall contain only signals that are in either the set referenced by left or the set referenced by right.

Return Value

On success, sigorset() shall return 0. Otherise, sigorset() shall return -1 and set errno to indicate the error.

Errors

EINVAL 

One or more of set, left, or right was a null pointer.

See Also

sigandset()

sigreturn

Name

sigreturn -- return from signal handler and cleanup stack frame

Synopsis

int sigreturn(struct sigcontext * scp);

Description

The sigreturn() function is used by the system to cleanup after a signal handler has returned. This function is not in the source standard; it is only in the binary standard.

Return Value

sigreturn() never returns.

sscanf

Name

sscanf -- convert formatted input

Description

The scanf() family of functions shall behave as described in ISO POSIX (2003), except as noted below.

Differences

The %s, %S and %[ conversion specifiers shall accept an option length modifier a, which shall cause a memory buffer to be allocated to hold the string converted. In such a case, the argument corresponding to the conversion specifier should be a reference to a pointer value that will receive a pointer to the allocated buffer. If there is insufficient memory to allocate a buffer, the function may set errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion specifier for hexadecimal float values. While this conversion specifier should be supported, a format specifier such as "%aseconds" will have a different meaning on an LSB conforming system.

statfs

Name

statfs -- (deprecated)

Synopsis

#include <sys/statfs.h>

int statfs(const char *path, (struct statfs * buf));

Description

The statfs() function returns information about a mounted file system. The file system is identified by path, a path name of a file within the mounted filesystem. The results are placed in the structure pointed to by

Fields that are undefined for a particular file system shall be set to 0.

Note: Application developers should use the statvfs() function to obtain general file system information. Applications should only use the statfs() function if they must determine the file system type, which need not be provided by statvfs().

Return Value

On success, the statfs() function shall return 0 and set the fields of the structure idenfitied by buf accordingly. On error, the statfs() function shall return -1 and set errno accordingly.

Errors

ENOTDIR 

A component of the path prefix of path is not a directory.

ENAMETOOLONG 

path is too long.

ENOENT 

The file referred to by path does not exist.

EACCES 

Search permission is denied for a component of the path prefix of path.

ELOOP 

Too many symbolic links were encountered in translating path.

EFAULT 

buf or path points to an invalid address.

EIO 

An I/O error occurred while reading from or writing to the file system.

ENOMEM 

Insufficient kernel memory was available.

ENOSYS 

The filesystem path is on does not support statfs().

statfs64

Name

statfs64 -- (deprecated)

Synopsis

#include <sys/statfs.h>

int statfs64(const char * path, (struct statfs64 * buf));

Description

The statfs64() function returns information about a mounted file system. The file system is identified by path, a path name of a file within the mounted filesystem. The results are placed in the structure pointed to by buf.

statfs64() is the 64-bit version of statfs().

Fields that are undefined for a particular file system shall be set to 0.

Note: Application developers should use the statvfs64() function to obtain general file system information. Applications should only use the statfs64() function if they must determine the file system type, which need not be provided by statvfs64().

Return Value

On success, the statfs64() function shall return 0 and set the fields of the structure idenfitied by buf accordingly. On error, the statfs64() function shall return -1 and set errno accordingly.

Errors

See fstatfs().

stime

Name

stime -- set time

Synopsis

#define _SVID_SOURCE
#include <time.h>

int stime(const time_t * t);

Description

If the process has appropriate privilege, the stime() function shall set the system's idea of the time and date. Time, referenced by t, is measured in seconds from the epoch (defined in ISO POSIX (2003) as 00:00:00 UTC January 1, 1970).

Return Value

On success, stime() shall return 0. Otherwise, stime() shall return -1 and errno shall be set to indicate the error.

Errors

EPERM 

The process does not have appropriate privilege.

EINVAL 

t is a null pointer.

stpcpy

Name

stpcpy -- copy a string returning a pointer to its end

Synopsis

#include <string.h>

char * stpcpy(char * restrict dest, const char * restrict src);

Description

The stpcpy() function shall copy the string pointed to by src (including the terminating null character) to the array pointed to by dest. The strings may not overlap, and the destination string dest shall be large enough to receive the copy.

Return Value

stpcpy() returns a pointer to the end of the string dest (that is, the address of the terminating null character) rather than the beginning.

Example

This program uses stpcpy() to concatenate foo and bar to produce foobar, which it then prints.

  #include <string.h>

  int
  main (void)
  {
    char buffer[256];
    char *to = buffer;
    to = stpcpy (to, "foo");
    to = stpcpy (to, "bar");
    printf ("%s\n", buffer);
  }

stpncpy

Name

stpncpy -- copy a fixed-size string, returning a pointer to its end

Synopsis

#include <string.h>

char * stpncpy(char * restrict dest, const char * restrict src, size_t n);

Description

The stpncpy() function shall copy at most n characters from the string pointed to by src, including the terminating null character, to the array pointed to by dest. Exactly n characters are written at dest. If the length strlen()(src) is smaller than n, the remaining characters in dest are filled with '\0' characters. If the length strlen(src) is greater than or equal to n, dest will not be null terminated.

The strings may not overlap.

The programmer shall ensure that there is room for at least n characters at dest.

Return Value

The stpncpy() function shall return a pointer to the terminating NULL in dest, or, if dest is not NULL-terminated, dest + n.

strcasestr

Name

strcasestr -- locate a substring ignoring case

Synopsis

#include <string.h>

char * strcasestr(const char * s1, const char * s2);

Description

The strcasestr() shall behave as strstr(), except that it shall ignore the case of both strings. The strcasestr() function shall be locale aware; that is strcasestr() shall behave as if both strings had been converted to lower case in the current locale before the comparison is performed.

Return Value

Upon successful completion, strcasestr() shall return a pointer to the located string or a null pointer if the string is not found. If s2 points to a string with zero length, the function shall return s1.

strerror_r

Name

strerror_r -- reentrant version of strerror

Synopsis

#include <string.h>

char * strerror_r(int errnum, char * buf, size_t buflen);

Description

The strerror_r() shall behave as specified in ISO POSIX (2003), except as described below.

Returns String, not Error Value

The strerror_r() function shall return a pointer to the string corresponding to errno. The returned pointer may point within the buffer buf (at most buflen bytes).

Return Value

On success, strerror_r() shall return a pointer to the generated message string (determined by the setting of the LC_MESSAGES category in the current locale). Otherwise, strerror_r() shall return the string corresponding to "Unknown error".

strndup

Name

strndup -- return a malloc'd copy of at most the specified number of bytes of a string

Synopsis

#include <string.h>

char * strndup(const char * string, size_t n);

Description

The strndup() function shall return a malloc()'d copy of at most n bytes of string. The resultant string shall be terminated even if no NULL terminator appears before string+n.

Return Value

On success, strndup() shall return a pointer to a newly allocated block of memory containing a copy of at most n bytes of string. Otherwise, strndup() shall return NULL and set errno to indicate the error.

Errors

ENOMEM 

Insufficient memory available.

strnlen

Name

strnlen -- determine the length of a fixed-size string

Synopsis

#include <string.h>

size_t strnlen(const char * s, size_t maxlen);

Description

The strnlen() function shall compute the number of bytes in the array to which s points, stopping at maxlen bytes. A null byte and any bytes following it are not counted.

Return Value

The strnlen() function shall return the length of s if that is less than maxlen, or maxlen if there is no null byte in the first maxlen bytes.

Errors

No errors are defined.

strptime

Name

strptime -- parse a time string

Description

The strptime() shall behave as specified in the ISO POSIX (2003) with differences as listed below.

Number of leading zeroes may be limited

The ISO POSIX (2003) specifies fields for which "leading zeros are permitted but not required"; however, applications shall not expect to be able to supply more leading zeroes for these fields than would be implied by the range of the field. Implementations may choose to either match an input with excess leading zeroes, or treat this as a non-matching input. For example, %j has a range of 001 to 366, so 0, 00, 000, 001, and 045 are acceptable inputs, but inputs such as 0000, 0366 and the like are not.

Rationale

glibc developers consider it appropriate behavior to forbid excess leading zeroes. When trying to parse a given input against several format strings, forbidding excess leading zeroes could be helpful. For example, if one matches 0011-12-26 against %m-%d-%Y and then against %Y-%m-%d, it seems useful for the first match to fail, as it would be perverse to parse that date as November 12, year 26. The second pattern parses it as December 26, year 11.

The ISO POSIX (2003) is not explicit that an unlimited number of leading zeroes are required, although it may imply this. The LSB explicitly allows implementations to have either behavior. Future versions of this standard may require implementations to forbid excess leading zeroes.

An Interpretation Request is currently pending against ISO POSIX (2003) for this matter.

strsep

Name

strsep -- extract token from string

Synopsis

#include <string.h>

char * strsep(char * * stringp, const char * delim);

Description

The strsep() function shall find the first token in the string referenced by the pointer stringp, using the characters in delim as delimiters.

If stringp is NULL, strsep() shall return NULL and do nothing else.

If stringp is non-NULL, strsep() shall find the first token in the string referenced by stringp, where tokens are delimited by characters in the string delim. This token shall be terminated with a \0 character by overwriting the delimiter, and stringp shall be updated to point past the token. In case no delimiter was found, the token is taken to be the entire string referenced by stringp, and the location referenced by stringp is made NULL.

Return Value

strsep() shall return a pointer to the beginning of the token.

Notes

The strsep() function was introduced as a replacement for strtok(), since the latter cannot handle empty fields. However, strtok() conforms to ISO C (1999) and to ISO POSIX (2003) and hence is more portable.

See Also

strtok(), strtok_r().

strsignal

Name

strsignal -- return string describing signal

Synopsis

#define _GNU_SOURCE
#include <string.h>

char * strsignal(int sig);

extern const char * const sys_siglist[];

Description

The strsignal() function shall return a pointer to a string describing the signal number sig. The string can only be used until the next call to strsignal().

The array sys_siglist holds the signal description strings indexed by signal number. This array should not be accessed directly by applications.

Return Value

If sig is a valid signal number, strsignal() shall return a pointer to the appropriate description string. Otherwise, strsignal() shall return either a pointer to the string "unknown signal", or a null pointer.

Although the function is not declared as returning a pointer to a constant character string, applications shall not modify the returned string.

strtoq

Name

strtoq -- convert string value to a long or quad_t integer

Synopsis

#include <sys/types.h>
#include <stdlib.h>
#include <limits.h>

long long strtoq(const char * nptr, char * * endptr, int base);

Description

strtoq() converts the string nptr to a quadt value. The conversion is done according to the given base, which shall be between 2 and 36 inclusive, or be the special value 0.

nptr may begin with an arbitrary amount of white space (as determined by isspace()), followed by a single optional + or - sign character. If base is 0 or 16, the string may then include a 0x prefix, and the number will be read in base 16; otherwise, a 0 base is taken as 10 (decimal), unless the next character is 0, in which case it is taken as 8 (octal).

The remainder of the string is converted to a long value in the obvious manner, stopping at the first character which is not a valid digit in the given base. (In bases above 10, the letter A in either upper or lower case represents 10, B represents 11, and so forth, with Z representing 35.)

Return Value

strtoq() returns the result of the conversion, unless the value would underflow or overflow. If an underflow occurs, strtoq() returns QUAD_MIN. If an overflow occurs, strtoq() returns QUAD_MAX. In both cases, the global variable errno is set to ERANGE.

Errors

ERANGE 

The given string was out of range; the value converted has been clamped.

strtouq

Name

strtouq -- convert a string to an unsigned long long

Synopsis

#include <sys/types.h>
#include <stdlib.h>
#include <limits.h>

unsigned long long strtouq(const char * nptr, char * * endptr, int base);

Description

strtouq() converts the string nptr to an unsigned long long value. The conversion is done according to the given base, which shall be between 2 and 36 inclusive, or be the special value 0.

nptr may begin with an arbitrary amount of white space (as determined by isspace()), followed by a single optional + or - sign character. If base is 0 or 16, the string may then include a 0x prefix, and the number will be read in base 16; otherwise, a 0 base is taken as 10 (decimal), unless the next character is 0, in which case it is taken as 8 (octal).

The remainder of the string is converted to an unsigned long value in the obvious manner, stopping at the end of the string or at the first character that does not produce a valid digit in the given base. (In bases above 10, the letter A in either upper or lower case represents 10, B represents 11, and so forth, with Z representing 35.)

Return Value

On success, strtouq() returns either the result of the conversion or, if there was a leading minus sign, the negation of the result of the conversion, unless the original (non-negated) value would overflow. In the case of an overflow the function returns UQUAD_MAX and the global variable errno is set to ERANGE.

Errors

ERANGE 

The given string was out of range; the value converted has been clamped.

svc_register

Name

svc_register -- register Remote Procedure Call interface

Synopsis

#include <rpc/rpc.h>

bool_t svc_register(SVCXPRT * xprt, rpcprog_t prognum, rpcvers_t versnum, __dispatch_fn_t dispatch, rpcprot_t protocol);

Description

The svc_register() function shall associate the program identified by prognum at version versnum with the service dispatch procedure, dispatch. If protocol is zero, the service is not registered with the portmap service. If protocol is non-zero, then a mapping of the triple [prognum, versnum, protocol] to xprt->xp_port is established with the local portmap service. The procedure dispatch has the following form:

int dispatch(struct svc_req * request, SVCXPRT * xprt);

Return Value

svc_register() returns 1 if it succeeds, and zero otherwise.

svc_run

Name

svc_run -- waits for RPC requests to arrive and calls service procedure

Synopsis

#include <rpc/svc.h>

void svc_run(void);

Description

The svc_run() function shall wait for RPC requests to arrive, read and unpack each request, and dispatch it to the appropriate registered handler. Under normal conditions, svc_run() shall not return; it shall only return if serious errors occur that prevent further processing.

svc_sendreply

Name

svc_sendreply -- called by RPC service's dispatch routine

Synopsis

bool_t svc_sendreply(SVCXPRT *xprt, xdrproc_t outproc, caddr_t out);

Description

Called by an RPC service's dispatch routine to send the results of a remote procedure call. The parameter xprt is the request's associated transport handle; outproc is the XDR routine which is used to encode the results; and out is the address of the results. This routine returns one if it succeeds, zero otherwise.

svctcp_create

Name

svctcp_create -- create a TCP/IP-based RPC service transport

Synopsis

#include <rpc/rpc.h>

SVCXPRT * svctcp_create(int sock, u_int send_buf_size, u_int recv_buf_size);

Description

svctcp_create() creates a TCP/IP-based RPC service transport, to which it returns a pointer. The transport is associated with the socket sock, which may be RPC_ANYSOCK, in which case a new socket is created. If the socket is not bound to a local TCP port, then this routine binds it to an arbitrary port. Upon completion, xprt->xp_sock is the transport's socket descriptor, and xprt->xp_port is the transport's port number. Since TCP-based RPC uses buffered I/O, users may specify the size of buffers; values of zero choose suitable defaults.

Return Value

svctcp_create() returns NULL if it fails, or a pointer to the RPC service transport otherwise.

svcudp_create

Name

svcudp_create --  create a UDP-based RPC service transport

Synopsis

SVCXPRT *

svcudp_create(int sock);

Description

The svcudp_create() function shall create a UDP/IP-based RPC service transport, and return a pointer to its descriptor. The transport is associated with the socket sock, which may be RPC_ANYSOCK, in which case a new socket shall be created. If the socket is not bound to a local UDP port, then svcudp_create() shall bind it to an arbitrary port.

If svcudp_create() returns successfully, then the xp_sock field in the result shall be the transport's socket descriptor, and the xp_port field shall be the transport's port number.

Return Value

Upon successful completion, svcudp_create() shall return a pointer to a RPC service transport; otherwise, a null pointer shall be returned.

swscanf

Name

swscanf -- convert formatted input

Description

The scanf() family of functions shall behave as described in ISO POSIX (2003), except as noted below.

Differences

The %s, %S and %[ conversion specifiers shall accept an option length modifier a, which shall cause a memory buffer to be allocated to hold the string converted. In such a case, the argument corresponding to the conversion specifier should be a reference to a pointer value that will receive a pointer to the allocated buffer. If there is insufficient memory to allocate a buffer, the function may set errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion specifier for hexadecimal float values. While this conversion specifier should be supported, a format specifier such as "%aseconds" will have a different meaning on an LSB conforming system.

system

Name

system -- execute a shell command

Synopsis

#include <stdlib.h>

int system(const char * string);

Description

The system() function shall behave as described in ISO POSIX (2003).

Notes

The fact that system() ignores interrupts is often not what a program wants. ISO POSIX (2003) describes some of the consequences; an additional consequence is that a program calling system() from a loop cannot be reliably interrupted. Many programs will want to use the exec() family of functions instead.

Do not use system() from a program with suid or sgid privileges, because unexpected values for some environment variables might be used to subvert system integrity. Use the exec() family of functions instead, but not execlp() or execvp(). system() will not, in fact, work properly from programs with suid or sgid privileges on systems on which /bin/sh is bash version 2, since bash 2 drops privileges on startup. (Debian uses a modified bash which does not do this when invoked as sh.)

The check for the availability of /bin/sh is not actually performed; it is always assumed to be available. ISO C (1999) specifies the check, but ISO POSIX (2003) specifies that the return shall always be nonzero, since a system without the shell is not conforming, and it is this that is implemented.

It is possible for the shell command to return 127, so that code is not a sure indication that the execve() call failed; check the global variable errno to make sure.

textdomain

Name

textdomain -- set the current default message domain

Synopsis

#include <libintl.h>

char * textdomain(const char * domainname);

Description

The textdomain() function shall set the current default message domain to domainname. Subsequent calls to gettext() and ngettext() use the default message domain.

If domainname is NULL, the default message domain shall not be altered.

If domainname is "", textdomain() shall reset the default domain to the system default of "messages".

Return

On success, textdomain() shall return the currently selected domain. Otherwise, a null pointer shall be returned, and errno is set to indicate the error.

Errors

ENOMEM 

Insufficent memory available.

unlink

Name

unlink -- remove a directory entry

Synopsis

int unlink(const char * path);

Description

unlink() is as specified in ISO POSIX (2003), but with differences as listed below.

See also Section 18.1, Additional behaviors: unlink/link on directory.

May return EISDIR on directories

If path specifies a directory, the implementation may return EISDIR instead of EPERM as specified by ISO POSIX (2003).

Rationale: The Linux kernel has deliberately chosen EISDIR for this case and does not expect to change.

uselocale

Name

uselocale -- set locale for thread

Synopsis

#include <locale.h>

locale_t uselocale(locale_t newloc);

Description

The uselocale() function shall set the locale for the calling thread to the locale specified by newloc.

If newloc is the value LC_GLOBAL_LOCALE, the thread's locale shall be set to the process current global locale, as set by setlocale(). If newloc is NULL, the thread's locale is not altered.

Return Value

The uselocale() function shall return the previous locale, or LC_GLOBAL_LOCALE if the thread local locale has not been previously set.

Errors

None defined.

See Also

setlocale(), freelocale(), duplocale(), newlocale()

utmpname

Name

utmpname -- set user accounting database

Synopsis

#include <utmp.h>

int utmpname(const char * dbname);

Description

The utmpname() function shall cause the user accounting database used by the getutent(), getutent_r(), getutxent(), getutxid(), getutxline(), and pututxline() functions to be that named by dbname, instead of the system default database. See Section 16.3 for further information.

Note: The LSB does not specify the format of the user accounting database, nor the names of the file or files that may contain it.

Return Value

None.

Errors

None defined.

vasprintf

Name

vasprintf -- write formatted output to a dynamically allocated string

Synopsis

#include <stdarg.h>
#include <stdio.h>

int vasprintf(char * * restrict ptr, const char * restrict format, va_list arg);

Description

The vasprintf() function shall write formatted output to a dynamically allocated string, and store the address of that string in the location referenced by ptr. It shall behave as asprintf(), except that instead of being called with a variable number of arguments, it is called with an argument list as defined by <stdarg.h>.

Return Value

Refer to fprintf().

Errors

Refer to fprintf().

vdprintf

Name

vdprintf -- write formatted output to a file descriptor

Synopsis

#include <stdio.h>

int vdprintf(int fd, const char * restrict format, va_list arg);

Description

The vdprintf() function shall behave as vfprintf(), except that vdprintf() shall write output to the file associated with the file descriptor specified by the fd argument, rather than place output on a stream (as defined by ISO POSIX (2003)).

Return Value

Refer to fprintf().

Errors

Refer to fprintf().

verrx

Name

verrx -- display formatted error message and exit

Synopsis

#include <stdarg.h>
#include <err.h>

void verrx(int eval, const char * fmt, va_list args);

Description

The verrx() shall behave as errx() except that instead of being called with a variable number of arguments, it is called with an argument list as defined by <stdarg.h>.

verrx() does not return, but exits with the value of eval.

Return Value

None.

Errors

None.

vfscanf

Name

vfscanf -- convert formatted input

Description

The scanf() family of functions shall behave as described in ISO POSIX (2003), except as noted below.

Differences

The %s, %S and %[ conversion specifiers shall accept an option length modifier a, which shall cause a memory buffer to be allocated to hold the string converted. In such a case, the argument corresponding to the conversion specifier should be a reference to a pointer value that will receive a pointer to the allocated buffer. If there is insufficient memory to allocate a buffer, the function may set errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion specifier for hexadecimal float values. While this conversion specifier should be supported, a format specifier such as "%aseconds" will have a different meaning on an LSB conforming system.

vfwscanf

Name

vfwscanf -- convert formatted input

Description

The scanf() family of functions shall behave as described in ISO POSIX (2003), except as noted below.

Differences

The %s, %S and %[ conversion specifiers shall accept an option length modifier a, which shall cause a memory buffer to be allocated to hold the string converted. In such a case, the argument corresponding to the conversion specifier should be a reference to a pointer value that will receive a pointer to the allocated buffer. If there is insufficient memory to allocate a buffer, the function may set errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion specifier for hexadecimal float values. While this conversion specifier should be supported, a format specifier such as "%aseconds" will have a different meaning on an LSB conforming system.

vscanf

Name

vscanf -- convert formatted input

Description

The scanf() family of functions shall behave as described in ISO POSIX (2003), except as noted below.

Differences

The %s, %S and %[ conversion specifiers shall accept an option length modifier a, which shall cause a memory buffer to be allocated to hold the string converted. In such a case, the argument corresponding to the conversion specifier should be a reference to a pointer value that will receive a pointer to the allocated buffer. If there is insufficient memory to allocate a buffer, the function may set errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion specifier for hexadecimal float values. While this conversion specifier should be supported, a format specifier such as "%aseconds" will have a different meaning on an LSB conforming system.

vsscanf

Name

vsscanf -- convert formatted input

Description

The scanf() family of functions shall behave as described in ISO POSIX (2003), except as noted below.

Differences

The %s, %S and %[ conversion specifiers shall accept an option length modifier a, which shall cause a memory buffer to be allocated to hold the string converted. In such a case, the argument corresponding to the conversion specifier should be a reference to a pointer value that will receive a pointer to the allocated buffer. If there is insufficient memory to allocate a buffer, the function may set errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion specifier for hexadecimal float values. While this conversion specifier should be supported, a format specifier such as "%aseconds" will have a different meaning on an LSB conforming system.

vswscanf

Name

vswscanf -- convert formatted input

Description

The scanf() family of functions shall behave as described in ISO POSIX (2003), except as noted below.

Differences

The %s, %S and %[ conversion specifiers shall accept an option length modifier a, which shall cause a memory buffer to be allocated to hold the string converted. In such a case, the argument corresponding to the conversion specifier should be a reference to a pointer value that will receive a pointer to the allocated buffer. If there is insufficient memory to allocate a buffer, the function may set errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion specifier for hexadecimal float values. While this conversion specifier should be supported, a format specifier such as "%aseconds" will have a different meaning on an LSB conforming system.

vsyslog

Name

vsyslog -- log to system log

Synopsis

#include <stdarg.h>
#include <syslog.h>

void vsyslog(int priority, char * message, va_list arglist);

Description

The vsyslog() function is identical to syslog() as specified in ISO POSIX (2003), except that arglist (as defined by stdarg.h) replaces the variable number of arguments.

vwscanf

Name

vwscanf -- convert formatted input

Description

The scanf() family of functions shall behave as described in ISO POSIX (2003), except as noted below.

Differences

The %s, %S and %[ conversion specifiers shall accept an option length modifier a, which shall cause a memory buffer to be allocated to hold the string converted. In such a case, the argument corresponding to the conversion specifier should be a reference to a pointer value that will receive a pointer to the allocated buffer. If there is insufficient memory to allocate a buffer, the function may set errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion specifier for hexadecimal float values. While this conversion specifier should be supported, a format specifier such as "%aseconds" will have a different meaning on an LSB conforming system.

wait4

Name

wait4 -- wait for process termination, BSD style

Synopsis

#include <sys/types.h>
#include <sys/resource.h>
#include <sys/wait.h>

pid_t wait4(pid_t pid, int * status, int options, struct rusage * rusage);

Description

wait4() suspends execution of the current process until a child (as specified by pid) has exited, or until a signal is delivered whose action is to terminate the current process or to call a signal handling function. If a child (as requested by pid) has already exited by the time of the call (a so-called "zombie" process), the function returns immediately. Any system resources used by the child are freed.

The value of pid can be one of:

< -1 

wait for any child process whose process group ID is equal to the absolute value of pid.

-1 

wait for any child process; this is equivalent to calling wait3().

0 

wait for any child process whose process group ID is equal to that of the calling process.

> 0 

wait for the child whose process ID is equal to the value of pid.

The value of options is a bitwise or of zero or more of the following constants:

WNOHANG 

return immediately if no child is there to be waited for.

WUNTRACED 

return for children that are stopped, and whose status has not been reported.

If status is not NULL, wait4() stores status information in the location status. This status can be evaluated with the following macros:

Note: These macros take the status value (an int) as an argument -- not a pointer to the value!

WIFEXITED(status) 

is nonzero if the child exited normally.

WEXITSTATUS(status) 

evaluates to the least significant eight bits of the return code of the child that terminated, which may have been set as the argument to a call to exit() or as the argument for a return statement in the main program. This macro can only be evaluated if WIFEXITED() returned nonzero.

WIFSIGNALED(status) 

returns true if the child process exited because of a signal that was not caught.

WTERMSIG(status) 

returns the number of the signal that caused the child process to terminate. This macro can only be evaluated if WIFSIGNALED() returned nonzero.

WIFSTOPPED(status) 

returns true if the child process that caused the return is currently stopped; this is only possible if the call was done using WUNTRACED().

WSTOPSIG(status) 

returns the number of the signal that caused the child to stop. This macro can only be evaluated if WIFSTOPPED() returned nonzero.

If rusage is not NULL, the struct rusage (as defined in sys/resource.h) that it points to will be filled with accounting information. See getrusage() for details.

Return Value

On success, the process ID of the child that exited is returned. On error, -1 is returned (in particular, when no unwaited-for child processes of the specified kind exist), or 0 if WNOHANG() was used and no child was available yet. In the latter two cases, the global variable errno is set appropriately.

Errors

ECHILD 

No unwaited-for child process as specified does exist.

ERESTARTSYS 

A WNOHANG() was not set and an unblocked signal or a SIGCHILD was caught. This error is returned by the system call. The library interface is not allowed to return ERESTARTSYS, but will return EINTR.

waitpid

Name

waitpid -- wait for child process

Description

waitpid() is as specified in ISO POSIX (2003), but with differences as listed below.

Need not support WCONTINUED or WIFCONTINUED

Implementations need not support the XSI optional functionality of WCONTINUED() or WIFCONTINUED().

warn

Name

warn -- formatted error messages

Synopsis

#include <err.h>

void warn(const char * fmt, ...);

Description

The warn() function shall display a formatted error message on the standard error stream. The output shall consist of the last component of the program name, a colon character, and a space character. If fmt is non-NULL, it shall be used as a format string for the printf() family of functions, and the formatted message, a colon character, and a space are written to stderr. Finally, the error message string affiliated with the current value of the global variable errno shall be written to stderr, followed by a newline character.

Return Value

None.

Errors

None.

warnx

Name

warnx -- formatted error messages

Synopsis

#include <err.h>

void warnx(const char * fmt, ...);

Description

The warnx() function shall display a formatted error message on the standard error stream. The last component of the program name, a colon character, and a space shall be output. If fmt is non-NULL, it shall be used as the format string for the printf() family of functions, and the formatted error message, a colon character, and a space shall be output. The output shall be followed by a newline character.

Return Value

None.

Errors

None.

wcpcpy

Name

wcpcpy -- copy a wide character string, returning a pointer to its end

Synopsis

#include <wchar.h>

wchar_t * wcpcpy(wchar_t * dest, const wchar_t * src);

Description

wcpcpy() is the wide-character equivalent of stpcpy(). It copies the wide character string src, including the terminating null wide character code, to the array dest.

The strings may not overlap.

The programmer shall ensure that there is room for at least wcslen()(src)+1 wide characters at dest.

Return Value

wcpcpy() returns a pointer to the end of the wide-character string dest, that is, a pointer to the terminating null wide character code.

wcpncpy

Name

wcpncpy -- copy a fixed-size string of wide characters, returning a pointer to its end

Synopsis

#include <wchar.h>

wchar_t * wcpncpy(wchar_t * dest, const wchar_t * src, size_t n);

Description

wcpncpy() is the wide-character equivalent of stpncpy(). It copies at most n wide characters from the wide-character string src, including the terminating null wide character code, to the array dest. Exactly n wide characters are written at dest. If the length wcslen()(src) is smaller than n, the remaining wide characters in the array dest are filled with null wide character codes. If the length wcslen()(src) is greater than or equal to n, the string dest will not be terminated with a null wide character code.

The strings may not overlap.

The programmer shall ensure that there is room for at least n wide characters at dest.

Return Value

wcpncpy() returns a pointer to the wide character one past the last non-null wide character written.

wcscasecmp

Name

wcscasecmp -- compare two wide-character strings, ignoring case

Synopsis

#include <wchar.h>

int wcscasecmp(const wchar_t * s1, const wchar_t * s2);

Description

wcscasecmp() is the wide-character equivalent of strcasecmp(). It compares the wide-character string s1 and the wide-character string s2, ignoring case differences (towupper, towlower).

Return Value

The wcscasecmp() function shall return 0 if the wide-character strings s1 and s2 are equal except for case distinctions. It shall return a positive integer if s1 is greater than s2, ignoring case. It shall return a negative integer if s1 is less than s2, ignoring case.

Notes

The behavior of wcscasecmp() depends upon the LC_CTYPE category of the current locale.

wcsdup

Name

wcsdup -- duplicate a wide-character string

Synopsis

#include <wchar.h>

wchar_t * wcsdup(const wchar_t * s);

Description

The wcsdup() function is the wide-character equivalent of strdup(). The wcsdup() function shall return a pointer to a new wide character string, which is a duplicate of the wide character string pointed to by s. The returned pointer can be passed to free(). A null pointer is returned if the new string cannot be created.

Return Value

The wcsdup() function returns a pointer to a new wide-character string on success. Otherwise, it shall return NULL and set errno to indicate the error.

Errors

ENOMEM 

Insufficient memory available.

wcsncasecmp

Name

wcsncasecmp -- compare two fixed-size wide-character strings, ignoring case

Synopsis

#include <wchar.h>

int wcsncasecmp(const wchar_t * s1, const wchar_t * s2, size_t n);

Description

wcsncasecmp() is the wide-character equivalent of strncasecmp(). It compares the wide-character string s1 and the wide-character string s2, but at most n wide characters from each string, ignoring case differences (towupper, towlower).

Return Value

wcscasecmp() returns 0 if the wide-character strings s1 and s2, truncated to at most length n, are equal except for case distinctions. It returns a positive integer if truncated s1 is greater than truncated s2, ignoring case. It returns a negative integer if truncated s1 is smaller than truncated s2, ignoring case.

Notes

The behavior of wcsncasecmp() depends upon the LC_CTYPE category of the current locale.

wcsnlen

Name

wcsnlen -- determine the length of a fixed-size wide-character string

Synopsis

#include <wchar.h>

size_t wcsnlen(const wchar_t * s, size_t maxlen);

Description

wcsnlen() is the wide-character equivalent of strnlen(). It returns the number of wide-characters in the string s, not including the terminating null wide character code, but at most maxlen. In doing this, wcsnlen() looks only at the first maxlen wide-characters at s and never beyond s + maxlen.

Return Value

wcsnlen() returns wcslen()(s) if that is less than maxlen, or maxlen if there is no null wide character code among the first maxlen wide characters pointed to by s.

wcsnrtombs

Name

wcsnrtombs -- convert a wide character string to a multi-byte string

Synopsis

#include <wchar.h>

size_t wcsnrtombs(char * dest, const wchar_t * * src, size_t nwc, size_t len, mbstate_t * ps);

Description

wcsnrtombs() is like wcsrtombs(), except that the number of wide characters to be converted, starting at src, is limited to nwc.

If dest is not a NULL pointer, wcsnrtombs() converts at most nwc wide characters from the wide-character string src to a multibyte string starting at dest. At most len bytes are written to dest. The state ps is updated.

The conversion is effectively performed by repeatedly calling:

wcrtomb(dest, *src, ps)
as long as this call succeeds, and then incrementing dest by the number of bytes written and src by 1.

The conversion can stop for three reasons:

  • A wide character has been encountered that cannot be represented as a multibyte sequence (according to the current locale). In this case src is left pointing to the invalid wide character, (size_t)(-1) is returned, and errno is set to EILSEQ.

  • nws wide characters have been converted without encountering a null wide character code, or the length limit forces a stop. In this case, src is left pointing to the next wide character to be converted, and the number bytes written to dest is returned.

  • The wide-character string has been completely converted, including the terminating null wide character code (which has the side effect of bringing back ps to the initial state). In this case, src is set to NULL, and the number of bytes written to dest, excluding the terminating null wide character code, is returned.

If dest is NULL, len is ignored, and the conversion proceeds as above, except that the converted bytes are not written out to memory, and that no destination length limit exists.

In both of the above cases, if ps is a NULL pointer, a static anonymous state only known to wcsnrtombs() is used instead.

The programmer shall ensure that there is room for at least len bytes at dest.

Return Value

wcsnrtombs() returns the number of bytes that make up the converted part of multibyte sequence, not including the terminating null wide character code. If a wide character was encountered which could not be converted, (size_t)(-1) is returned, and the global variable errno set to EILSEQ.

Notes

The behavior of wcsnrtombs() depends on the LC_CTYPE category of the current locale.

Passing NULL as ps is not multi-thread safe.

wcstoq

Name

wcstoq -- convert wide string to long long int representation

Synopsis

#include <wchar.h>

long long int wcstoq(const wchar_t * restrict nptr, wchar_t ** restrict endptr, int base);

Description

The wcstoq() function shall convert the initial portion of the wide string nptr to long long int representation. It is identical to wcstoll().

Return Value

Refer to wcstoll().

Errors

Refer to wcstoll().

wcstouq

Name

wcstouq -- convert wide string to unsigned long long int representation

Synopsis

#include <wchar.h>

unsigned long long wcstouq(const wchar_t * restrict nptr, wchar_t ** restrict endptr, int base);

Description

The wcstouq() function shall convert the initial portion of the wide string nptr to unsigned long long int representation. It is identical to wcstoull().

Return Value

Refer to wcstoull().

Errors

Refer to wcstoull().

wscanf

Name

wscanf -- convert formatted input

Description

The scanf() family of functions shall behave as described in ISO POSIX (2003), except as noted below.

Differences

The %s, %S and %[ conversion specifiers shall accept an option length modifier a, which shall cause a memory buffer to be allocated to hold the string converted. In such a case, the argument corresponding to the conversion specifier should be a reference to a pointer value that will receive a pointer to the allocated buffer. If there is insufficient memory to allocate a buffer, the function may set errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion specifier for hexadecimal float values. While this conversion specifier should be supported, a format specifier such as "%aseconds" will have a different meaning on an LSB conforming system.

xdr_u_int

Name

xdr_u_int -- library routines for external data representation

Synopsis

int xdr_u_int(XDR * xdrs, unsigned int * up);

Description

xdr_u_int() is a filter primitive that translates between C unsigned integers and their external representations.

Return Value

On success, 1 is returned. On error, 0 is returned.


13.6. Interfaces for libm

Table 13-24 defines the library name and shared object name for the libm library

Table 13-24. libm Definition

Library:libm
SONAME:See archLSB.

The behavior of the interfaces in this library is specified by the following specifications:

[ISOC99] ISO C (1999)
[LSB] This Specification
[SUSv2] SUSv2
[SUSv3] ISO POSIX (2003)
[SVID.3] SVID Issue 3


13.6.1. Math


13.6.1.1. Interfaces for Math

An LSB conforming implementation shall provide the generic functions for Math specified in Table 13-25, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-25. libm - Math Function Interfaces

__finite [ISOC99]__finitef [ISOC99]__finitel [ISOC99]__fpclassify [LSB]
__fpclassifyf [LSB]__signbit [ISOC99]__signbitf [ISOC99]acos [SUSv3]
acosf [SUSv3]acosh [SUSv3]acoshf [SUSv3]acoshl [SUSv3]
acosl [SUSv3]asin [SUSv3]asinf [SUSv3]asinh [SUSv3]
asinhf [SUSv3]asinhl [SUSv3]asinl [SUSv3]atan [SUSv3]
atan2 [SUSv3]atan2f [SUSv3]atan2l [SUSv3]atanf [SUSv3]
atanh [SUSv3]atanhf [SUSv3]atanhl [SUSv3]atanl [SUSv3]
cabs [SUSv3]cabsf [SUSv3]cabsl [SUSv3]cacos [SUSv3]
cacosf [SUSv3]cacosh [SUSv3]cacoshf [SUSv3]cacoshl [SUSv3]
cacosl [SUSv3]carg [SUSv3]cargf [SUSv3]cargl [SUSv3]
casin [SUSv3]casinf [SUSv3]casinh [SUSv3]casinhf [SUSv3]
casinhl [SUSv3]casinl [SUSv3]catan [SUSv3]catanf [SUSv3]
catanh [SUSv3]catanhf [SUSv3]catanhl [SUSv3]catanl [SUSv3]
cbrt [SUSv3]cbrtf [SUSv3]cbrtl [SUSv3]ccos [SUSv3]
ccosf [SUSv3]ccosh [SUSv3]ccoshf [SUSv3]ccoshl [SUSv3]
ccosl [SUSv3]ceil [SUSv3]ceilf [SUSv3]ceill [SUSv3]
cexp [SUSv3]cexpf [SUSv3]cexpl [SUSv3]cimag [SUSv3]
cimagf [SUSv3]cimagl [SUSv3]clog [SUSv3]clog10 [ISOC99]
clog10f [ISOC99]clog10l [ISOC99]clogf [SUSv3]clogl [SUSv3]
conj [SUSv3]conjf [SUSv3]conjl [SUSv3]copysign [SUSv3]
copysignf [SUSv3]copysignl [SUSv3]cos [SUSv3]cosf [SUSv3]
cosh [SUSv3]coshf [SUSv3]coshl [SUSv3]cosl [SUSv3]
cpow [SUSv3]cpowf [SUSv3]cpowl [SUSv3]cproj [SUSv3]
cprojf [SUSv3]cprojl [SUSv3]creal [SUSv3]crealf [SUSv3]
creall [SUSv3]csin [SUSv3]csinf [SUSv3]csinh [SUSv3]
csinhf [SUSv3]csinhl [SUSv3]csinl [SUSv3]csqrt [SUSv3]
csqrtf [SUSv3]csqrtl [SUSv3]ctan [SUSv3]ctanf [SUSv3]
ctanh [SUSv3]ctanhf [SUSv3]ctanhl [SUSv3]ctanl [SUSv3]
dremf [ISOC99]dreml [ISOC99]erf [SUSv3]erfc [SUSv3]
erfcf [SUSv3]erfcl [SUSv3]erff [SUSv3]erfl [SUSv3]
exp [SUSv3]exp2 [SUSv3]exp2f [SUSv3]expf [SUSv3]
expl [SUSv3]expm1 [SUSv3]expm1f [SUSv3]expm1l [SUSv3]
fabs [SUSv3]fabsf [SUSv3]fabsl [SUSv3]fdim [SUSv3]
fdimf [SUSv3]fdiml [SUSv3]feclearexcept [SUSv3]fegetenv [SUSv3]
fegetexceptflag [SUSv3]fegetround [SUSv3]feholdexcept [SUSv3]feraiseexcept [SUSv3]
fesetenv [SUSv3]fesetexceptflag [SUSv3]fesetround [SUSv3]fetestexcept [SUSv3]
feupdateenv [SUSv3]finite [SUSv2]finitef [ISOC99]finitel [ISOC99]
floor [SUSv3]floorf [SUSv3]floorl [SUSv3]fma [SUSv3]
fmaf [SUSv3]fmal [SUSv3]fmax [SUSv3]fmaxf [SUSv3]
fmaxl [SUSv3]fmin [SUSv3]fminf [SUSv3]fminl [SUSv3]
fmod [SUSv3]fmodf [SUSv3]fmodl [SUSv3]frexp [SUSv3]
frexpf [SUSv3]frexpl [SUSv3]gamma [SUSv2]gammaf [ISOC99]
gammal [ISOC99]hypot [SUSv3]hypotf [SUSv3]hypotl [SUSv3]
ilogb [SUSv3]ilogbf [SUSv3]ilogbl [SUSv3]j0 [SUSv3]
j0f [ISOC99]j0l [ISOC99]j1 [SUSv3]j1f [ISOC99]
j1l [ISOC99]jn [SUSv3]jnf [ISOC99]jnl [ISOC99]
ldexp [SUSv3]ldexpf [SUSv3]ldexpl [SUSv3]lgamma [SUSv3]
lgamma_r [ISOC99]lgammaf [SUSv3]lgammaf_r [ISOC99]lgammal [SUSv3]
lgammal_r [ISOC99]llrint [SUSv3]llrintf [SUSv3]llrintl [SUSv3]
llround [SUSv3]llroundf [SUSv3]llroundl [SUSv3]log [SUSv3]
log10 [SUSv3]log10f [SUSv3]log10l [SUSv3]log1p [SUSv3]
log1pf [SUSv3]log1pl [SUSv3]log2 [SUSv3]log2f [SUSv3]
log2l [SUSv3]logb [SUSv3]logbf [SUSv3]logbl [SUSv3]
logf [SUSv3]logl [SUSv3]lrint [SUSv3]lrintf [SUSv3]
lrintl [SUSv3]lround [SUSv3]lroundf [SUSv3]lroundl [SUSv3]
matherr [SVID.3]modf [SUSv3]modff [SUSv3]modfl [SUSv3]
nan [SUSv3]nanf [SUSv3]nanl [SUSv3]nearbyint [SUSv3]
nearbyintf [SUSv3]nearbyintl [SUSv3]nextafter [SUSv3]nextafterf [SUSv3]
nextafterl [SUSv3]nexttoward [SUSv3]nexttowardf [SUSv3]nexttowardl [SUSv3]
pow [SUSv3]pow10 [ISOC99]pow10f [ISOC99]pow10l [ISOC99]
powf [SUSv3]powl [SUSv3]remainder [SUSv3]remainderf [SUSv3]
remainderl [SUSv3]remquo [SUSv3]remquof [SUSv3]remquol [SUSv3]
rint [SUSv3]rintf [SUSv3]rintl [SUSv3]round [SUSv3]
roundf [SUSv3]roundl [SUSv3]scalb [SUSv3]scalbf [ISOC99]
scalbl [ISOC99]scalbln [SUSv3]scalblnf [SUSv3]scalblnl [SUSv3]
scalbn [SUSv3]scalbnf [SUSv3]scalbnl [SUSv3]significand [ISOC99]
significandf [ISOC99]significandl [ISOC99]sin [SUSv3]sincos [ISOC99]
sincosf [ISOC99]sincosl [ISOC99]sinf [SUSv3]sinh [SUSv3]
sinhf [SUSv3]sinhl [SUSv3]sinl [SUSv3]sqrt [SUSv3]
sqrtf [SUSv3]sqrtl [SUSv3]tan [SUSv3]tanf [SUSv3]
tanh [SUSv3]tanhf [SUSv3]tanhl [SUSv3]tanl [SUSv3]
tgamma [SUSv3]tgammaf [SUSv3]tgammal [SUSv3]trunc [SUSv3]
truncf [SUSv3]truncl [SUSv3]y0 [SUSv3]y0f [ISOC99]
y0l [ISOC99]y1 [SUSv3]y1f [ISOC99]y1l [ISOC99]
yn [SUSv3]ynf [ISOC99]ynl [ISOC99] 

An LSB conforming implementation shall provide the generic data interfaces for Math specified in Table 13-26, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-26. libm - Math Data Interfaces

signgam [SUSv3]   

13.7. Data Definitions for libm

This section defines global identifiers and their values that are associated with interfaces contained in libm. These definitions are organized into groups that correspond to system headers. This convention is used as a convenience for the reader, and does not imply the existence of these headers, or their content. Where an interface is defined as requiring a particular system header file all of the data definitions for that system header file presented here shall be in effect.

This section gives data definitions to promote binary application portability, not to repeat source interface definitions available elsewhere. System providers and application developers should use this ABI to supplement - not to replace - source interface definition specifications.

This specification uses the ISO C (1999) C Language as the reference programming language, and data definitions are specified in ISO C format. The C language is used here as a convenient notation. Using a C language description of these data objects does not preclude their use by other programming languages.


13.7.1. complex.h


#define complex	_Complex

extern double cabs(double complex);
extern float cabsf(float complex);
extern long double cabsl(long double complex);
extern double complex cacos(double complex);
extern float complex cacosf(float complex);
extern double complex cacosh(double complex);
extern float complex cacoshf(float complex);
extern long double complex cacoshl(long double complex);
extern long double complex cacosl(long double complex);
extern double carg(double complex);
extern float cargf(float complex);
extern long double cargl(long double complex);
extern double complex casin(double complex);
extern float complex casinf(float complex);
extern double complex casinh(double complex);
extern float complex casinhf(float complex);
extern long double complex casinhl(long double complex);
extern long double complex casinl(long double complex);
extern double complex catan(double complex);
extern float complex catanf(float complex);
extern double complex catanh(double complex);
extern float complex catanhf(float complex);
extern long double complex catanhl(long double complex);
extern long double complex catanl(long double complex);
extern double complex ccos(double complex);
extern float complex ccosf(float complex);
extern double complex ccosh(double complex);
extern float complex ccoshf(float complex);
extern long double complex ccoshl(long double complex);
extern long double complex ccosl(long double complex);
extern double complex cexp(double complex);
extern float complex cexpf(float complex);
extern long double complex cexpl(long double complex);
extern double cimag(double complex);
extern float cimagf(float complex);
extern long double cimagl(long double complex);
extern double complex clog(double complex);
extern double complex clog10(void);
extern float complex clog10f(float complex);
extern long double complex clog10l(long double complex);
extern float complex clogf(float complex);
extern long double complex clogl(long double complex);
extern double complex conj(double complex);
extern float complex conjf(float complex);
extern long double complex conjl(long double complex);
extern double complex cpow(double complex, double complex);
extern float complex cpowf(float complex, float complex);
extern long double complex cpowl(long double complex, long double complex);
extern double complex cproj(double complex);
extern float complex cprojf(float complex);
extern long double complex cprojl(long double complex);
extern double creal(double complex);
extern float crealf(float complex);
extern long double creall(long double complex);
extern double complex csin(double complex);
extern float complex csinf(float complex);
extern double complex csinh(double complex);
extern float complex csinhf(float complex);
extern long double complex csinhl(long double complex);
extern long double complex csinl(long double complex);
extern double complex csqrt(double complex);
extern float complex csqrtf(float complex);
extern long double complex csqrtl(long double complex);
extern double complex ctan(double complex);
extern float complex ctanf(float complex);
extern double complex ctanh(double complex);
extern float complex ctanhf(float complex);
extern long double complex ctanhl(long double complex);
extern long double complex ctanl(long double complex);

13.7.2. fenv.h


extern int feclearexcept(int);
extern int fegetenv(fenv_t *);
extern int fegetexceptflag(fexcept_t *, int);
extern int fegetround(void);
extern int feholdexcept(fenv_t *);
extern int feraiseexcept(int);
extern int fesetenv(const fenv_t *);
extern int fesetexceptflag(const fexcept_t *, int);
extern int fesetround(int);
extern int fetestexcept(int);
extern int feupdateenv(const fenv_t *);

13.7.3. math.h


#define DOMAIN	1
#define SING	2

struct exception {
    int type;
    char *name;
    double arg1;
    double arg2;
    double retval;
};

#define FP_NAN	0
#define FP_INFINITE	1
#define FP_ZERO	2
#define FP_SUBNORMAL	3
#define FP_NORMAL	4

#define isnormal(x)	(fpclassify (x) == FP_NORMAL)
#define isfinite(x)	\
	(sizeof (x) == sizeof (float) ? __finitef (x) : sizeof (x) == sizeof (double)? __finite (x) : __finitel (x))
#define isinf(x)	\
	(sizeof (x) == sizeof (float) ? __isinff (x): sizeof (x) == sizeof (double) ? __isinf (x) : __isinfl (x))
#define isnan(x)	\
	(sizeof (x) == sizeof (float) ? __isnanf (x)  : sizeof (x) == sizeof (double) ? __isnan (x) : __isnanl (x))

#define HUGE_VAL	0x1.0p2047
#define HUGE_VALF	0x1.0p255f
#define HUGE_VALL	0x1.0p32767L

#define NAN	((float)0x7fc00000UL)
#define M_1_PI	0.31830988618379067154
#define M_LOG10E	0.43429448190325182765
#define M_2_PI	0.63661977236758134308
#define M_LN2	0.69314718055994530942
#define M_SQRT1_2	0.70710678118654752440
#define M_PI_4	0.78539816339744830962
#define M_2_SQRTPI	1.12837916709551257390
#define M_SQRT2	1.41421356237309504880
#define M_LOG2E	1.4426950408889634074
#define M_PI_2	1.57079632679489661923
#define M_LN10	2.30258509299404568402
#define M_E	2.7182818284590452354
#define M_PI	3.14159265358979323846
#define INFINITY	HUGE_VALF

#define MATH_ERRNO	1
#define MATH_ERREXCEPT	2

#define isunordered(u, v)	\
	(__extension__({ __typeof__(u) __u = (u); __typeof__(v) __v = (v);fpclassify (__u) == FP_NAN || fpclassify (__v) == FP_NAN; }))
#define islessgreater(x, y)	\
	(__extension__({ __typeof__(x) __x = (x); __typeof__(y) __y = (y);!isunordered (__x, __y) && (__x < __y || __y < __x); }))
#define isless(x,y)	\
	(__extension__({ __typeof__(x) __x = (x); __typeof__(y) __y = (y);!isunordered (__x, __y) && __x < __y; }))
#define islessequal(x, y)	\
	(__extension__({ __typeof__(x) __x = (x); __typeof__(y) __y = (y);!isunordered (__x, __y) && __x <= __y; }))
#define isgreater(x,y)	\
	(__extension__({ __typeof__(x) __x = (x); __typeof__(y) __y = (y);!isunordered (__x, __y) && __x > __y; }))
#define isgreaterequal(x,y)	\
	(__extension__({ __typeof__(x) __x = (x); __typeof__(y) __y = (y);!isunordered (__x, __y) && __x >= __y; }))

extern int __finite(double);
extern int __finitef(float);
extern int __finitel(long double);
extern int __isinf(double);
extern int __isinff(float);
extern int __isinfl(long double);
extern int __isnan(double);
extern int __isnanf(float);
extern int __isnanl(long double);
extern int __signbit(double);
extern int __signbitf(float);
extern int __fpclassify(double);
extern int __fpclassifyf(float);
extern int signgam;
extern double copysign(double, double);
extern int finite(double);
extern double frexp(double, int *);
extern double ldexp(double, int);
extern double modf(double, double *);
extern double acos(double);
extern double acosh(double);
extern double asinh(double);
extern double atanh(double);
extern double asin(double);
extern double atan(double);
extern double atan2(double, double);
extern double cbrt(double);
extern double ceil(double);
extern double cos(double);
extern double cosh(double);
extern double erf(double);
extern double erfc(double);
extern double exp(double);
extern double expm1(double);
extern double fabs(double);
extern double floor(double);
extern double fmod(double, double);
extern double gamma(double);
extern double hypot(double, double);
extern int ilogb(double);
extern double j0(double);
extern double j1(double);
extern double jn(int, double);
extern double lgamma(double);
extern double log(double);
extern double log10(double);
extern double log1p(double);
extern double logb(double);
extern double nextafter(double, double);
extern double pow(double, double);
extern double remainder(double, double);
extern double rint(double);
extern double scalb(double, double);
extern double sin(double);
extern double sinh(double);
extern double sqrt(double);
extern double tan(double);
extern double tanh(double);
extern double y0(double);
extern double y1(double);
extern double yn(int, double);
extern float copysignf(float, float);
extern long double copysignl(long double, long double);
extern int finitef(float);
extern int finitel(long double);
extern float frexpf(float, int *);
extern long double frexpl(long double, int *);
extern float ldexpf(float, int);
extern long double ldexpl(long double, int);
extern float modff(float, float *);
extern long double modfl(long double, long double *);
extern double scalbln(double, long int);
extern float scalblnf(float, long int);
extern long double scalblnl(long double, long int);
extern double scalbn(double, int);
extern float scalbnf(float, int);
extern long double scalbnl(long double, int);
extern float acosf(float);
extern float acoshf(float);
extern long double acoshl(long double);
extern long double acosl(long double);
extern float asinf(float);
extern float asinhf(float);
extern long double asinhl(long double);
extern long double asinl(long double);
extern float atan2f(float, float);
extern long double atan2l(long double, long double);
extern float atanf(float);
extern float atanhf(float);
extern long double atanhl(long double);
extern long double atanl(long double);
extern float cbrtf(float);
extern long double cbrtl(long double);
extern float ceilf(float);
extern long double ceill(long double);
extern float cosf(float);
extern float coshf(float);
extern long double coshl(long double);
extern long double cosl(long double);
extern float dremf(float, float);
extern long double dreml(long double, long double);
extern float erfcf(float);
extern long double erfcl(long double);
extern float erff(float);
extern long double erfl(long double);
extern double exp2(double);
extern float exp2f(float);
extern float expf(float);
extern long double expl(long double);
extern float expm1f(float);
extern long double expm1l(long double);
extern float fabsf(float);
extern long double fabsl(long double);
extern double fdim(double, double);
extern float fdimf(float, float);
extern long double fdiml(long double, long double);
extern float floorf(float);
extern long double floorl(long double);
extern double fma(double, double, double);
extern float fmaf(float, float, float);
extern long double fmal(long double, long double, long double);
extern double fmax(double, double);
extern float fmaxf(float, float);
extern long double fmaxl(long double, long double);
extern double fmin(double, double);
extern float fminf(float, float);
extern long double fminl(long double, long double);
extern float fmodf(float, float);
extern long double fmodl(long double, long double);
extern float gammaf(float);
extern long double gammal(long double);
extern float hypotf(float, float);
extern long double hypotl(long double, long double);
extern int ilogbf(float);
extern int ilogbl(long double);
extern float j0f(float);
extern long double j0l(long double);
extern float j1f(float);
extern long double j1l(long double);
extern float jnf(int, float);
extern long double jnl(int, long double);
extern double lgamma_r(double, int *);
extern float lgammaf(float);
extern float lgammaf_r(float, int *);
extern long double lgammal(long double);
extern long double lgammal_r(long double, int *);
extern long long int llrint(double);
extern long long int llrintf(float);
extern long long int llrintl(long double);
extern long long int llround(double);
extern long long int llroundf(float);
extern long long int llroundl(long double);
extern float log10f(float);
extern long double log10l(long double);
extern float log1pf(float);
extern long double log1pl(long double);
extern double log2(double);
extern float log2f(float);
extern long double log2l(long double);
extern float logbf(float);
extern long double logbl(long double);
extern float logf(float);
extern long double logl(long double);
extern long int lrint(double);
extern long int lrintf(float);
extern long int lrintl(long double);
extern long int lround(double);
extern long int lroundf(float);
extern long int lroundl(long double);
extern int matherr(struct exception *);
extern double nan(const char *);
extern float nanf(const char *);
extern long double nanl(const char *);
extern double nearbyint(double);
extern float nearbyintf(float);
extern long double nearbyintl(long double);
extern float nextafterf(float, float);
extern long double nextafterl(long double, long double);
extern double nexttoward(double, long double);
extern float nexttowardf(float, long double);
extern long double nexttowardl(long double, long double);
extern double pow10(double);
extern float pow10f(float);
extern long double pow10l(long double);
extern float powf(float, float);
extern long double powl(long double, long double);
extern float remainderf(float, float);
extern long double remainderl(long double, long double);
extern double remquo(double, double, int *);
extern float remquof(float, float, int *);
extern long double remquol(long double, long double, int *);
extern float rintf(float);
extern long double rintl(long double);
extern double round(double);
extern float roundf(float);
extern long double roundl(long double);
extern float scalbf(float, float);
extern long double scalbl(long double, long double);
extern double significand(double);
extern float significandf(float);
extern long double significandl(long double);
extern void sincos(double, double *, double *);
extern void sincosf(float, float *, float *);
extern void sincosl(long double, long double *, long double *);
extern float sinf(float);
extern float sinhf(float);
extern long double sinhl(long double);
extern long double sinl(long double);
extern float sqrtf(float);
extern long double sqrtl(long double);
extern float tanf(float);
extern float tanhf(float);
extern long double tanhl(long double);
extern long double tanl(long double);
extern double tgamma(double);
extern float tgammaf(float);
extern long double tgammal(long double);
extern double trunc(double);
extern float truncf(float);
extern long double truncl(long double);
extern float y0f(float);
extern long double y0l(long double);
extern float y1f(float);
extern long double y1l(long double);
extern float ynf(int, float);
extern long double ynl(int, long double);

13.8. Interface Definitions for libm

Table of Contents
__fpclassify -- Classify real floating type
__fpclassifyf -- Classify real floating type

The interfaces defined on the following pages are included in libm and are defined by this specification. Unless otherwise noted, these interfaces shall be included in the source standard.

Other interfaces listed in Section 13.6 shall behave as described in the referenced base document.

__fpclassify

Name

__fpclassify -- Classify real floating type

Synopsis

int __fpclassify(double arg);

Description

__fpclassify() has the same specification as fpclassify() in ISO POSIX (2003), except that the argument type for __fpclassify() is known to be double.

__fpclassify() is not in the source standard; it is only in the binary standard.

__fpclassifyf

Name

__fpclassifyf -- Classify real floating type

Synopsis

int __fpclassifyf(float arg);

Description

__fpclassifyf() has the same specification as fpclassify() in ISO POSIX (2003), except that the argument type for __fpclassifyf() is known to be float.

__fpclassifyf() is not in the source standard; it is only in the binary standard.


13.9. Interfaces for libpthread

Table 13-27 defines the library name and shared object name for the libpthread library

Table 13-27. libpthread Definition

Library:libpthread
SONAME:libpthread.so.0

The behavior of the interfaces in this library is specified by the following specifications:

[LFS] Large File Support
[LSB] This Specification
[SUSv3] ISO POSIX (2003)


13.9.1. Realtime Threads


13.9.1.1. Interfaces for Realtime Threads

An LSB conforming implementation shall provide the generic functions for Realtime Threads specified in Table 13-28, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-28. libpthread - Realtime Threads Function Interfaces

pthread_attr_getinheritsched [SUSv3]pthread_attr_getschedpolicy [SUSv3]pthread_attr_getscope [SUSv3]pthread_attr_setinheritsched [SUSv3]
pthread_attr_setschedpolicy [SUSv3]pthread_attr_setscope [SUSv3]pthread_getschedparam [SUSv3]pthread_setschedparam [SUSv3]
pthread_setschedprio(GLIBC_2.3.4) [SUSv3]   

13.9.2. Advanced Realtime Threads


13.9.2.1. Interfaces for Advanced Realtime Threads

No external functions are defined for libpthread - Advanced Realtime Threads in this part of the specification. See also the relevant architecture specific part of ISO/IEC 23360.


13.9.3. Posix Threads


13.9.3.1. Interfaces for Posix Threads

An LSB conforming implementation shall provide the generic functions for Posix Threads specified in Table 13-29, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-29. libpthread - Posix Threads Function Interfaces

_pthread_cleanup_pop [LSB]_pthread_cleanup_push [LSB]pthread_attr_destroy [SUSv3]pthread_attr_getdetachstate [SUSv3]
pthread_attr_getguardsize [SUSv3]pthread_attr_getschedparam [SUSv3]pthread_attr_getstack [SUSv3]pthread_attr_getstackaddr [SUSv3]
pthread_attr_getstacksize [SUSv3]pthread_attr_init [SUSv3]pthread_attr_setdetachstate [SUSv3]pthread_attr_setguardsize [SUSv3]
pthread_attr_setschedparam [SUSv3]pthread_attr_setstack [SUSv3]pthread_attr_setstackaddr [SUSv3]pthread_attr_setstacksize [SUSv3]
pthread_cancel [SUSv3]pthread_cond_broadcast [SUSv3]pthread_cond_destroy [SUSv3]pthread_cond_init [SUSv3]
pthread_cond_signal [SUSv3]pthread_cond_timedwait [SUSv3]pthread_cond_wait [SUSv3]pthread_condattr_destroy [SUSv3]
pthread_condattr_getpshared [SUSv3]pthread_condattr_init [SUSv3]pthread_condattr_setpshared [SUSv3]pthread_create [SUSv3]
pthread_detach [SUSv3]pthread_equal [SUSv3]pthread_exit [SUSv3]pthread_getconcurrency [SUSv3]
pthread_getspecific [SUSv3]pthread_join [SUSv3]pthread_key_create [SUSv3]pthread_key_delete [SUSv3]
pthread_kill [SUSv3]pthread_mutex_destroy [SUSv3]pthread_mutex_init [SUSv3]pthread_mutex_lock [SUSv3]
pthread_mutex_trylock [SUSv3]pthread_mutex_unlock [SUSv3]pthread_mutexattr_destroy [SUSv3]pthread_mutexattr_getpshared [SUSv3]
pthread_mutexattr_gettype [SUSv3]pthread_mutexattr_init [SUSv3]pthread_mutexattr_setpshared [SUSv3]pthread_mutexattr_settype [SUSv3]
pthread_once [SUSv3]pthread_rwlock_destroy [SUSv3]pthread_rwlock_init [SUSv3]pthread_rwlock_rdlock [SUSv3]
pthread_rwlock_timedrdlock [SUSv3]pthread_rwlock_timedwrlock [SUSv3]pthread_rwlock_tryrdlock [SUSv3]pthread_rwlock_trywrlock [SUSv3]
pthread_rwlock_unlock [SUSv3]pthread_rwlock_wrlock [SUSv3]pthread_rwlockattr_destroy [SUSv3]pthread_rwlockattr_getpshared [SUSv3]
pthread_rwlockattr_init [SUSv3]pthread_rwlockattr_setpshared [SUSv3]pthread_self [SUSv3]pthread_setcancelstate [SUSv3]
pthread_setcanceltype [SUSv3]pthread_setconcurrency [SUSv3]pthread_setspecific [SUSv3]pthread_sigmask [SUSv3]
pthread_testcancel [SUSv3]sem_close [SUSv3]sem_destroy [SUSv3]sem_getvalue [SUSv3]
sem_init [SUSv3]sem_open [SUSv3]sem_post [SUSv3]sem_timedwait [SUSv3]
sem_trywait [SUSv3]sem_unlink [SUSv3]sem_wait [SUSv3] 

13.9.4. Thread aware versions of libc interfaces


13.9.4.1. Interfaces for Thread aware versions of libc interfaces

An LSB conforming implementation shall provide the generic functions for Thread aware versions of libc interfaces specified in Table 13-30, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-30. libpthread - Thread aware versions of libc interfaces Function Interfaces

lseek64 [LFS]open64 [LFS]pread [SUSv3]pread64 [LFS]
pwrite [SUSv3]pwrite64 [LFS]  

13.10. Data Definitions for libpthread

This section defines global identifiers and their values that are associated with interfaces contained in libpthread. These definitions are organized into groups that correspond to system headers. This convention is used as a convenience for the reader, and does not imply the existence of these headers, or their content. Where an interface is defined as requiring a particular system header file all of the data definitions for that system header file presented here shall be in effect.

This section gives data definitions to promote binary application portability, not to repeat source interface definitions available elsewhere. System providers and application developers should use this ABI to supplement - not to replace - source interface definition specifications.

This specification uses the ISO C (1999) C Language as the reference programming language, and data definitions are specified in ISO C format. The C language is used here as a convenient notation. Using a C language description of these data objects does not preclude their use by other programming languages.


13.10.1. pthread.h


#define PTHREAD_MUTEX_DEFAULT	0
#define PTHREAD_MUTEX_NORMAL	0
#define PTHREAD_SCOPE_SYSTEM	0
#define PTHREAD_MUTEX_RECURSIVE	1
#define PTHREAD_SCOPE_PROCESS	1
#define PTHREAD_MUTEX_ERRORCHECK	2
#define PTHREAD_RWLOCK_DEFAULT_NP	2
#define PTHREAD_MUTEX_INITIALIZER	\
	{0,0,0,PTHREAD_MUTEX_NORMAL,__LOCK_INITIALIZER}
#define PTHREAD_RWLOCK_INITIALIZER	\
        { __LOCK_INITIALIZER, 0, NULL, NULL, NULL,PTHREAD_RWLOCK_DEFAULT_NP,\
        PTHREAD_PROCESS_PRIVATE }
#define pthread_cleanup_push(routine,arg)	\
        {struct _pthread_cleanup_buffer _buffer;\
        _pthread_cleanup_push(&_buffer,(routine),(arg));
#define pthread_cleanup_pop(execute)	_pthread_cleanup_pop(&_buffer,(execute));}
#define __LOCK_INITIALIZER	{ 0, 0 }
#define PTHREAD_COND_INITIALIZER	{__LOCK_INITIALIZER,0}

struct _pthread_cleanup_buffer {
    void (*__routine) (void *);
    void *__arg;
    int __canceltype;
    struct _pthread_cleanup_buffer *__prev;
};
typedef unsigned int pthread_key_t;
typedef int pthread_once_t;
typedef long long int __pthread_cond_align_t;

typedef unsigned long int pthread_t;
struct _pthread_fastlock {
    long int __status;
    int __spinlock;
};

typedef struct _pthread_descr_struct *_pthread_descr;

typedef struct {
    int __m_reserved;
    int __m_count;
    _pthread_descr __m_owner;
    int __m_kind;
    struct _pthread_fastlock __m_lock;
} pthread_mutex_t;
typedef struct {
    int __mutexkind;
} pthread_mutexattr_t;

typedef struct {
    int __detachstate;
    int __schedpolicy;
    struct sched_param __schedparam;
    int __inheritsched;
    int __scope;
    size_t __guardsize;
    int __stackaddr_set;
    void *__stackaddr;
    unsigned long int __stacksize;
} pthread_attr_t;

typedef struct {
    struct _pthread_fastlock __c_lock;
    _pthread_descr __c_waiting;
    char __padding[48 - sizeof(struct _pthread_fastlock) -
		   sizeof(_pthread_descr) -
		   sizeof(__pthread_cond_align_t)];
    __pthread_cond_align_t __align;
} pthread_cond_t;
typedef struct {
    int __dummy;
} pthread_condattr_t;

typedef struct _pthread_rwlock_t {
    struct _pthread_fastlock __rw_lock;
    int __rw_readers;
    _pthread_descr __rw_writer;
    _pthread_descr __rw_read_waiting;
    _pthread_descr __rw_write_waiting;
    int __rw_kind;
    int __rw_pshared;
} pthread_rwlock_t;
typedef struct {
    int __lockkind;
    int __pshared;
} pthread_rwlockattr_t;

#define PTHREAD_CREATE_JOINABLE	0
#define PTHREAD_INHERIT_SCHED	0
#define PTHREAD_ONCE_INIT	0
#define PTHREAD_PROCESS_PRIVATE	0
#define PTHREAD_CREATE_DETACHED	1
#define PTHREAD_EXPLICIT_SCHED	1
#define PTHREAD_PROCESS_SHARED	1

#define PTHREAD_CANCELED	((void*)-1)
#define PTHREAD_CANCEL_DEFERRED	0
#define PTHREAD_CANCEL_ENABLE	0
#define PTHREAD_CANCEL_ASYNCHRONOUS	1
#define PTHREAD_CANCEL_DISABLE	1

extern void _pthread_cleanup_pop(struct _pthread_cleanup_buffer *, int);
extern void _pthread_cleanup_push(struct _pthread_cleanup_buffer *,
				  void (*__pshared) (void *)
				  , void *);
extern int pthread_attr_destroy(pthread_attr_t *);
extern int pthread_attr_getdetachstate(const pthread_attr_t *, int *);
extern int pthread_attr_getinheritsched(const pthread_attr_t *, int *);
extern int pthread_attr_getschedparam(const pthread_attr_t *,
				      struct sched_param *);
extern int pthread_attr_getschedpolicy(const pthread_attr_t *, int *);
extern int pthread_attr_getscope(const pthread_attr_t *, int *);
extern int pthread_attr_init(pthread_attr_t *);
extern int pthread_attr_setdetachstate(pthread_attr_t *, int);
extern int pthread_attr_setinheritsched(pthread_attr_t *, int);
extern int pthread_attr_setschedparam(pthread_attr_t *,
				      const struct sched_param *);
extern int pthread_attr_setschedpolicy(pthread_attr_t *, int);
extern int pthread_attr_setscope(pthread_attr_t *, int);
extern int pthread_cancel(pthread_t);
extern int pthread_cond_broadcast(pthread_cond_t *);
extern int pthread_cond_destroy(pthread_cond_t *);
extern int pthread_cond_init(pthread_cond_t *, const pthread_condattr_t *);
extern int pthread_cond_signal(pthread_cond_t *);
extern int pthread_cond_timedwait(pthread_cond_t *, pthread_mutex_t *,
				  const struct timespec *);
extern int pthread_cond_wait(pthread_cond_t *, pthread_mutex_t *);
extern int pthread_condattr_destroy(pthread_condattr_t *);
extern int pthread_condattr_init(pthread_condattr_t *);
extern int pthread_create(pthread_t *, const pthread_attr_t *,
			  void *(*__pshared) (void *p1)
			  , void *);
extern int pthread_detach(pthread_t);
extern int pthread_equal(pthread_t, pthread_t);
extern void pthread_exit(void *);
extern int pthread_getschedparam(pthread_t, int *, struct sched_param *);
extern void *pthread_getspecific(pthread_key_t);
extern int pthread_join(pthread_t, void **);
extern int pthread_key_create(pthread_key_t *, void (*__pshared) (void *)
    );
extern int pthread_key_delete(pthread_key_t);
extern int pthread_mutex_destroy(pthread_mutex_t *);
extern int pthread_mutex_init(pthread_mutex_t *,
			      const pthread_mutexattr_t *);
extern int pthread_mutex_lock(pthread_mutex_t *);
extern int pthread_mutex_trylock(pthread_mutex_t *);
extern int pthread_mutex_unlock(pthread_mutex_t *);
extern int pthread_mutexattr_destroy(pthread_mutexattr_t *);
extern int pthread_mutexattr_init(pthread_mutexattr_t *);
extern int pthread_once(pthread_once_t *, void (*__pshared) (void)
    );
extern int pthread_rwlock_destroy(pthread_rwlock_t *);
extern int pthread_rwlock_init(pthread_rwlock_t *, pthread_rwlockattr_t *);
extern int pthread_rwlock_rdlock(pthread_rwlock_t *);
extern int pthread_rwlock_tryrdlock(pthread_rwlock_t *);
extern int pthread_rwlock_trywrlock(pthread_rwlock_t *);
extern int pthread_rwlock_unlock(pthread_rwlock_t *);
extern int pthread_rwlock_wrlock(pthread_rwlock_t *);
extern int pthread_rwlockattr_destroy(pthread_rwlockattr_t *);
extern int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *,
					 int *);
extern int pthread_rwlockattr_init(pthread_rwlockattr_t *);
extern int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *, int);
extern pthread_t pthread_self(void);
extern int pthread_setcancelstate(int, int *);
extern int pthread_setcanceltype(int, int *);
extern int pthread_setschedparam(pthread_t, int,
				 const struct sched_param *);
extern int pthread_setspecific(pthread_key_t, const void *);
extern void pthread_testcancel(void);
extern int pthread_attr_getguardsize(const pthread_attr_t *, size_t *);
extern int pthread_attr_setguardsize(pthread_attr_t *, size_t);
extern int pthread_attr_setstackaddr(pthread_attr_t *, void *);
extern int pthread_attr_getstackaddr(const pthread_attr_t *, void **);
extern int pthread_attr_setstacksize(pthread_attr_t *, size_t);
extern int pthread_attr_getstacksize(const pthread_attr_t *, size_t *);
extern int pthread_mutexattr_gettype(const pthread_mutexattr_t *, int *);
extern int pthread_mutexattr_settype(pthread_mutexattr_t *, int);
extern int pthread_getconcurrency(void);
extern int pthread_setconcurrency(int);
extern int pthread_attr_getstack(const pthread_attr_t *, void **,
				 size_t *);
extern int pthread_attr_setstack(pthread_attr_t *, void *, size_t);
extern int pthread_condattr_getpshared(const pthread_condattr_t *, int *);
extern int pthread_condattr_setpshared(pthread_condattr_t *, int);
extern int pthread_mutexattr_getpshared(const pthread_mutexattr_t *,
					int *);
extern int pthread_mutexattr_setpshared(pthread_mutexattr_t *, int);
extern int pthread_rwlock_timedrdlock(pthread_rwlock_t *,
				      const struct timespec *);
extern int pthread_rwlock_timedwrlock(pthread_rwlock_t *,
				      const struct timespec *);
extern int __register_atfork(void (*__pshared) (void)
			     , void (*__pshared) (void)
			     , void (*__pshared) (void)
			     , void *);
extern int pthread_setschedprio(pthread_t, int);

13.10.2. semaphore.h


typedef struct {
    struct _pthread_fastlock __sem_lock;
    int __sem_value;
    _pthread_descr __sem_waiting;
} sem_t;

#define SEM_FAILED	((sem_t*)0)

#define SEM_VALUE_MAX	((int)((~0u)>>1))

extern int sem_close(sem_t *);
extern int sem_destroy(sem_t *);
extern int sem_getvalue(sem_t *, int *);
extern int sem_init(sem_t *, int, unsigned int);
extern sem_t *sem_open(const char *, int, ...);
extern int sem_post(sem_t *);
extern int sem_trywait(sem_t *);
extern int sem_unlink(const char *);
extern int sem_wait(sem_t *);
extern int sem_timedwait(sem_t *, const struct timespec *);

13.11. Interface Definitions for libpthread

Table of Contents
_pthread_cleanup_pop -- establish cancellation handlers
_pthread_cleanup_push -- establish cancellation handlers

The interfaces defined on the following pages are included in libpthread and are defined by this specification. Unless otherwise noted, these interfaces shall be included in the source standard.

Other interfaces listed in Section 13.9 shall behave as described in the referenced base document.

_pthread_cleanup_pop

Name

_pthread_cleanup_pop -- establish cancellation handlers

Synopsis

#include <pthread.h>

void _pthread_cleanup_pop(struct _pthread_cleanup_buffer *, int);

Description

The _pthread_cleanup_pop() function provides an implementation of the pthread_cleanup_pop() macro described in ISO POSIX (2003).

The _pthread_cleanup_pop() function is not in the source standard; it is only in the binary standard.

_pthread_cleanup_push

Name

_pthread_cleanup_push -- establish cancellation handlers

Synopsis

#include <pthread.h>

void _pthread_cleanup_push(struct _pthread_cleanup_buffer *, void (*) (void *), void *);

Description

The _pthread_cleanup_push() function provides an implementation of the pthread_cleanup_push() macro described in ISO POSIX (2003).

The _pthread_cleanup_push() function is not in the source standard; it is only in the binary standard.


13.12. Interfaces for libgcc_s

Table 13-31 defines the library name and shared object name for the libgcc_s library

Table 13-31. libgcc_s Definition

Library:libgcc_s
SONAME:libgcc_s.so.1


13.12.1. Unwind Library


13.12.1.1. Interfaces for Unwind Library

No external functions are defined for libgcc_s - Unwind Library in this part of the specification. See also the relevant architecture specific part of ISO/IEC 23360.


13.13. Data Definitions for libgcc_s

This section defines global identifiers and their values that are associated with interfaces contained in libgcc_s. These definitions are organized into groups that correspond to system headers. This convention is used as a convenience for the reader, and does not imply the existence of these headers, or their content. Where an interface is defined as requiring a particular system header file all of the data definitions for that system header file presented here shall be in effect.

This section gives data definitions to promote binary application portability, not to repeat source interface definitions available elsewhere. System providers and application developers should use this ABI to supplement - not to replace - source interface definition specifications.

This specification uses the ISO C (1999) C Language as the reference programming language, and data definitions are specified in ISO C format. The C language is used here as a convenient notation. Using a C language description of these data objects does not preclude their use by other programming languages.


13.13.1. unwind.h


struct _Unwind_Context;

typedef void *_Unwind_Ptr;
typedef unsigned int _Unwind_Word;

typedef enum {
    _URC_NO_REASON = 0,
    _URC_FOREIGN_EXCEPTION_CAUGHT = 1,
    _URC_FATAL_PHASE2_ERROR = 2,
    _URC_FATAL_PHASE1_ERROR = 3,
    _URC_NORMAL_STOP = 4,
    _URC_END_OF_STACK = 5,
    _URC_HANDLER_FOUND = 6,
    _URC_INSTALL_CONTEXT = 7,
    _URC_CONTINUE_UNWIND = 8
} _Unwind_Reason_Code;

struct _Unwind_Exception {
    u_int64_t exception_class;
    _Unwind_Exception_Cleanup_Fn exception_cleanup;
    u_int64_t private_1;
    u_int64_t private_2;
};

#define _UA_SEARCH_PHASE	1
#define _UA_END_OF_STACK	16
#define _UA_CLEANUP_PHASE	2
#define _UA_HANDLER_FRAME	4
#define _UA_FORCE_UNWIND	8

13.14. Interfaces for libdl

Table 13-32 defines the library name and shared object name for the libdl library

Table 13-32. libdl Definition

Library:libdl
SONAME:libdl.so.2

The behavior of the interfaces in this library is specified by the following specifications:

[LSB] This Specification
[SUSv3] ISO POSIX (2003)


13.14.1. Dynamic Loader


13.14.1.1. Interfaces for Dynamic Loader

An LSB conforming implementation shall provide the generic functions for Dynamic Loader specified in Table 13-33, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-33. libdl - Dynamic Loader Function Interfaces

dladdr [LSB]dlclose [SUSv3]dlerror [SUSv3]dlopen [LSB]
dlsym [LSB]   

13.15. Data Definitions for libdl

This section defines global identifiers and their values that are associated with interfaces contained in libdl. These definitions are organized into groups that correspond to system headers. This convention is used as a convenience for the reader, and does not imply the existence of these headers, or their content. Where an interface is defined as requiring a particular system header file all of the data definitions for that system header file presented here shall be in effect.

This section gives data definitions to promote binary application portability, not to repeat source interface definitions available elsewhere. System providers and application developers should use this ABI to supplement - not to replace - source interface definition specifications.

This specification uses the ISO C (1999) C Language as the reference programming language, and data definitions are specified in ISO C format. The C language is used here as a convenient notation. Using a C language description of these data objects does not preclude their use by other programming languages.


13.15.1. dlfcn.h


#define RTLD_NEXT	((void *) -1l)
#define RTLD_LOCAL	0
#define RTLD_LAZY	0x00001
#define RTLD_NOW	0x00002
#define RTLD_GLOBAL	0x00100

typedef struct {
    char *dli_fname;
    void *dli_fbase;
    char *dli_sname;
    void *dli_saddr;
} Dl_info;
extern int dladdr(const void *, Dl_info *);
extern int dlclose(void *);
extern char *dlerror(void);
extern void *dlopen(char *, int);
extern void *dlsym(void *, char *);

13.16. Interface Definitions for libdl

Table of Contents
dladdr -- find the shared object containing a given address
dlopen -- open dynamic object
dlsym -- obtain the address of a symbol from a dlopen object

The interfaces defined on the following pages are included in libdl and are defined by this specification. Unless otherwise noted, these interfaces shall be included in the source standard.

Other interfaces listed in Section 13.14 shall behave as described in the referenced base document.

dladdr

Name

dladdr -- find the shared object containing a given address

Synopsis

#include <dlfcn.h>

typedef struct {
             const char  *dli_fname;
             void        *dli_fbase;
             const char  *dli_sname;
             void        *dli_saddr;
} Dl_info;

int dladdr(const void * addr, Dl_info * dlip);

Description

The dladdr() function shall query the dynamic linker for information about the shared object containing the address addr. The information shall be returned in the user supplied data structure referenced by dlip.

The structure shall contain at least the following members:

dli_fname 

The pathname of the shared object containing the address

dli_fbase 

The base address at which the shared object is mapped into the address space of the calling process.

dli_sname 

The name of the nearest runtime symbol with value less than or equal to addr. Where possible, the symbol name shall be returned as it would appear in C source code.

If no symbol with a suitable value is found, both this field and dli_saddr shall be set to NULL.

dli_saddr 

The address of the symbol returned in dli_sname. This address has type "pointer to type", where type is the type of the symbol dli_sname.

Example: If the symbol in dli_sname is a function, then the type of dli_saddr is of type "pointer to function".

The behavior of dladdr() is only specified in dynamically linked programs.

Return Value

On success, dladdr() shall return non-zero, and the structure referenced by dlip shall be filled in as described. Otherwise, dladdr() shall return zero, and the cause of the error can be fetched with dlerror().

Errors

See dlerror().

Environment

LD_LIBRARY_PATH 

directory search-path for object files

dlopen

Name

dlopen -- open dynamic object

Synopsis

#include <dlfcn.h>

void * dlopen(const char * filename, int flag);

Description

The dlopen() function shall behave as specified in ISO POSIX (2003), but with additional behaviors listed below.

If the file argument does not contain a slash character, then the system shall look for a library of that name in at least the following directories, and use the first one which is found:

  • The directories specified by the DT_RPATH dynamic entry.

  • The directories specified in the LD_LIBRARY_PATH environment variable (which is a colon separated list of pathnames). This step shall be skipped for setuid and setgid executables.

  • A set of directories sufficient to contain the libraries specified in this standard.

    Note: Traditionally, /lib and /usr/lib. This case would also cover cases in which the system used the mechanism of /etc/ld.so.conf and /etc/ld.so.cache to provide access.

    Example: An application which is not linked against libm may choose to dlopen libm.

dlsym

Name

dlsym -- obtain the address of a symbol from a dlopen object

Description

dlsym() is as specified in the ISO POSIX (2003), but with differences as listed below.

The special purpose value for handle RTLD_NEXT

The value RTLD_NEXT, which is reserved for future use shall be available, with the behavior as described in ISO POSIX (2003).


13.17. Interfaces for librt

Table 13-34 defines the library name and shared object name for the librt library

Table 13-34. librt Definition

Library:librt
SONAME:librt.so.1

The behavior of the interfaces in this library is specified by the following specifications:

[SUSv3] ISO POSIX (2003)


13.17.1. Shared Memory Objects


13.17.1.1. Interfaces for Shared Memory Objects

An LSB conforming implementation shall provide the generic functions for Shared Memory Objects specified in Table 13-35, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-35. librt - Shared Memory Objects Function Interfaces

shm_open [SUSv3]shm_unlink [SUSv3]  

13.17.2. Clock


13.17.2.1. Interfaces for Clock

An LSB conforming implementation shall provide the generic functions for Clock specified in Table 13-36, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-36. librt - Clock Function Interfaces

clock_getcpuclockid [SUSv3]clock_getres [SUSv3]clock_gettime [SUSv3]clock_nanosleep [SUSv3]
clock_settime [SUSv3]   

13.17.3. Timers


13.17.3.1. Interfaces for Timers

An LSB conforming implementation shall provide the generic functions for Timers specified in Table 13-37, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-37. librt - Timers Function Interfaces

timer_create [SUSv3]timer_delete [SUSv3]timer_getoverrun [SUSv3]timer_gettime [SUSv3]
timer_settime [SUSv3]   

13.18. Interfaces for libcrypt

Table 13-38 defines the library name and shared object name for the libcrypt library

Table 13-38. libcrypt Definition

Library:libcrypt
SONAME:libcrypt.so.1

The behavior of the interfaces in this library is specified by the following specifications:

[SUSv3] ISO POSIX (2003)


13.18.1. Encryption


13.18.1.1. Interfaces for Encryption

An LSB conforming implementation shall provide the generic functions for Encryption specified in Table 13-39, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-39. libcrypt - Encryption Function Interfaces

crypt [SUSv3]encrypt [SUSv3]setkey [SUSv3] 

13.19. Interfaces for libpam

Table 13-40 defines the library name and shared object name for the libpam library

Table 13-40. libpam Definition

Library:libpam
SONAME:libpam.so.0

The Pluggable Authentication Module (PAM) interfaces allow applications to request authentication via a system administrator defined mechanism, known as a service.

A single service name, other, shall always be present. The behavior of this service shall be determined by the system administrator. Additional service names may also exist.

Note: Future versions of this specification might define additional service names.

The behavior of the interfaces in this library is specified by the following specifications:

[LSB] This Specification


13.19.1. Pluggable Authentication API


13.19.1.1. Interfaces for Pluggable Authentication API

An LSB conforming implementation shall provide the generic functions for Pluggable Authentication API specified in Table 13-41, with the full mandatory functionality as described in the referenced underlying specification.

Table 13-41. libpam - Pluggable Authentication API Function Interfaces

pam_acct_mgmt [LSB]pam_authenticate [LSB]pam_chauthtok [LSB]pam_close_session [LSB]
pam_end [LSB]pam_fail_delay [LSB]pam_get_item [LSB]pam_getenvlist [LSB]
pam_open_session [LSB]pam_set_item [LSB]pam_setcred [LSB]pam_start [LSB]
pam_strerror [LSB]   

13.20. Data Definitions for libpam

This section defines global identifiers and their values that are associated with interfaces contained in libpam. These definitions are organized into groups that correspond to system headers. This convention is used as a convenience for the reader, and does not imply the existence of these headers, or their content. Where an interface is defined as requiring a particular system header file all of the data definitions for that system header file presented here shall be in effect.

This section gives data definitions to promote binary application portability, not to repeat source interface definitions available elsewhere. System providers and application developers should use this ABI to supplement - not to replace - source interface definition specifications.

This specification uses the ISO C (1999) C Language as the reference programming language, and data definitions are specified in ISO C format. The C language is used here as a convenient notation. Using a C language description of these data objects does not preclude their use by other programming languages.


13.20.1. security/pam_appl.h


typedef struct pam_handle pam_handle_t;
struct pam_message {
    int msg_style;
    const char *msg;
};
struct pam_response {
    char *resp;
    int resp_retcode;
};

struct pam_conv {
    int (*conv) (int num_msg, const struct pam_message * *msg,
		 struct pam_response * *resp, void *appdata_ptr);
    void *appdata_ptr;
};

#define PAM_PROMPT_ECHO_OFF	1
#define PAM_PROMPT_ECHO_ON	2
#define PAM_ERROR_MSG	3
#define PAM_TEXT_INFO	4

#define PAM_SERVICE	1
#define PAM_USER	2
#define PAM_TTY	3
#define PAM_RHOST	4
#define PAM_CONV	5
#define PAM_RUSER	8
#define PAM_USER_PROMPT	9

#define PAM_SUCCESS	0
#define PAM_OPEN_ERR	1
#define PAM_USER_UNKNOWN	10
#define PAM_MAXTRIES	11
#define PAM_NEW_AUTHTOK_REQD	12
#define PAM_ACCT_EXPIRED	13
#define PAM_SESSION_ERR	14
#define PAM_CRED_UNAVAIL	15
#define PAM_CRED_EXPIRED	16
#define PAM_CRED_ERR	17
#define PAM_CONV_ERR	19
#define PAM_SYMBOL_ERR	2
#define PAM_AUTHTOK_ERR	20
#define PAM_AUTHTOK_RECOVER_ERR	21
#define PAM_AUTHTOK_LOCK_BUSY	22
#define PAM_AUTHTOK_DISABLE_AGING	23
#define PAM_TRY_AGAIN	24
#define PAM_ABORT	26
#define PAM_AUTHTOK_EXPIRED	27
#define PAM_BAD_ITEM	29
#define PAM_SERVICE_ERR	3
#define PAM_SYSTEM_ERR	4
#define PAM_BUF_ERR	5
#define PAM_PERM_DENIED	6
#define PAM_AUTH_ERR	7
#define PAM_CRED_INSUFFICIENT	8
#define PAM_AUTHINFO_UNAVAIL	9

#define PAM_DISALLOW_NULL_AUTHTOK	0x0001U
#define PAM_ESTABLISH_CRED	0x0002U
#define PAM_DELETE_CRED	0x0004U
#define PAM_REINITIALIZE_CRED	0x0008U
#define PAM_REFRESH_CRED	0x0010U
#define PAM_CHANGE_EXPIRED_AUTHTOK	0x0020U
#define PAM_SILENT	0x8000U

extern int pam_set_item(pam_handle_t *, int, const void *);
extern int pam_get_item(const pam_handle_t *, int, const void **);
extern const char *pam_strerror(pam_handle_t *, int);
extern char **pam_getenvlist(pam_handle_t *);
extern int pam_fail_delay(pam_handle_t *, unsigned int);
extern int pam_start(const char *, const char *, const struct pam_conv *,
		     pam_handle_t * *);
extern int pam_end(pam_handle_t *, int);
extern int pam_authenticate(pam_handle_t *, int);
extern int pam_setcred(pam_handle_t *, int);
extern int pam_acct_mgmt(pam_handle_t *, int);
extern int pam_open_session(pam_handle_t *, int);
extern int pam_close_session(pam_handle_t *, int);
extern int pam_chauthtok(pam_handle_t *, int);

13.21. Interface Definitions for libpam

Table of Contents
pam_acct_mgmt -- establish the status of a user's account
pam_authenticate -- authenticate the user
pam_chauthtok -- change the authentication token for a given user
pam_close_session -- indicate that an authenticated session has ended
pam_end -- terminate the use of the PAM library
pam_fail_delay -- specify delay time to use on authentication error
pam_get_item -- obtain the value of the indicated item.
pam_getenvlist -- returns a pointer to the complete PAM environment.
pam_open_session -- indicate session has started
pam_set_item -- (re)set the value of an item.
pam_setcred -- set the module-specific credentials of the user
pam_start -- initialize the PAM library
pam_strerror -- returns a string describing the PAM error

The interfaces defined on the following pages are included in libpam and are defined by this specification. Unless otherwise noted, these interfaces shall be included in the source standard.

Other interfaces listed in Section 13.19 shall behave as described in the referenced base document.

pam_acct_mgmt

Name

pam_acct_mgmt -- establish the status of a user's account

Synopsis

#include <security/pam_appl.h>

int pam_acct_mgmt(pam_handle_t * pamh, int flags);

Description

pam_acct_mgmt() establishes the account's usability and the user's accessibility to the system. It is typically called after the user has been authenticated.

flags may be specified as any valid flag (namely, one of those applicable to the flags argument of pam_authenticate()). Additionally, the value of flags may be logically or'd with PAM_SILENT.

Return Value

PAM_SUCCESS 

Success.

PAM_NEW_AUTHTOK_REQD 

User is valid, but user's authentication token has expired. The correct response to this return-value is to require that the user satisfy the pam_chauthtok() function before obtaining service. It may not be possible for an application to do this. In such a case, the user should be denied access until the account password is updated.

PAM_ACCT_EXPIRED 

User is no longer permitted access to the system.

PAM_AUTH_ERR 

Authentication error.

PAM_PERM_DENIED 

User is not permitted to gain access at this time.

PAM_USER_UNKNOWN 

User is not known to a module's account management component.

Note: Errors may be translated to text with pam_strerror().

pam_authenticate

Name

pam_authenticate -- authenticate the user

Synopsis

#include <security/pam_appl.h>

int pam_authenticate(pam_handle_t * pamh, int flags);

Description

pam_authenticate() serves as an interface to the authentication mechanisms of the loaded modules.

flags is an optional parameter that may be specified by the following value:

PAM_DISALLOW_NULL_AUTHTOK

Instruct the authentication modules to return PAM_AUTH_ERR if the user does not have a registered authorization token.

Additionally, the value of flags may be logically or'd with PAM_SILENT.

The process may need to be privileged in order to successfully call this function.

Return Value

PAM_SUCCESS

Success.

PAM_AUTH_ERR

User was not authenticated or process did not have sufficient privileges to perform authentication.

PAM_CRED_INSUFFICIENT

Application does not have sufficient credentials to authenticate the user.

PAM_AUTHINFO_UNAVAIL

Modules were not able to access the authentication information. This might be due to a network or hardware failure, etc.

PAM_USER_UNKNOWN

Supplied username is not known to the authentication service.

PAM_MAXTRIES

One or more authentication modules has reached its limit of tries authenticating the user. Do not try again.

PAM_ABORT

One or more authentication modules failed to load.

Note: Errors may be translated to text with pam_strerror().

pam_chauthtok

Name

pam_chauthtok -- change the authentication token for a given user

Synopsis

#include <security/pam_appl.h>

int pam_chauthtok(pam_handle_t * pamh, const int flags);

Description

pam_chauthtok() is used to change the authentication token for a given user as indicated by the state associated with the handle pamh.

flags is an optional parameter that may be specified by the following value:

PAM_CHANGE_EXPIRED_AUTHTOK

User's authentication token should only be changed if it has expired.

Additionally, the value of flags may be logically or'd with PAM_SILENT.

RETURN VALUE

PAM_SUCCESS

Success.

PAM_AUTHTOK_ERR

A module was unable to obtain the new authentication token.

PAM_AUTHTOK_RECOVER_ERR

A module was unable to obtain the old authentication token.

PAM_AUTHTOK_LOCK_BUSY

One or more modules were unable to change the authentication token since it is currently locked.

PAM_AUTHTOK_DISABLE_AGING

Authentication token aging has been disabled for at least one of the modules.

PAM_PERM_DENIED

Permission denied.

PAM_TRY_AGAIN

Not all modules were in a position to update the authentication token(s). In such a case, none of the user's authentication tokens are updated.

PAM_USER_UNKNOWN

User is not known to the authentication token changing service.

Note: Errors may be translated to text with pam_strerror().

pam_close_session

Name

pam_close_session -- indicate that an authenticated session has ended

Synopsis

#include <security/pam_appl.h>

int pam_close_session(pam_handle_t * pamh, int flags);

Description

pam_close_session() is used to indicate that an authenticated session has ended. It is used to inform the module that the user is exiting a session. It should be possible for the PAM library to open a session and close the same session from different applications.

flags may have the value PAM_SILENT to indicate that no output should be generated as a result of this function call.

Return Value

PAM_SUCCESS 

Success.

PAM_SESSION_ERR 

One of the required loaded modules was unable to close a session for the user.

Note: Errors may be translated to text with pam_strerror().

pam_end

Name

pam_end -- terminate the use of the PAM library

Synopsis

#include <security/pam_appl.h>

int pam_end(pam_handle_t * pamh, int pam_status);

Description

pam_end() terminates use of the PAM library. On success, the contents of *pamh are no longer valid, and all memory associated with it is invalid.

Normally, pam_status is passed the value PAM_SUCCESS, but in the event of an unsuccessful service application, the appropriate PAM error return value should be used.

Return Value

PAM_SUCCESS 

Success.

Note: Errors may be translated to text with pam_strerror().

pam_fail_delay

Name

pam_fail_delay -- specify delay time to use on authentication error

Synopsis

#include <security/pam_appl.h>

int pam_fail_delay(pam_handle_t * pamh, unsigned int micro_sec);

Description

pam_fail_delay() specifies the minimum delay for the PAM library to use when an authentication error occurs. The actual delay can vary by as much at 25%. If this function is called multiple times, the longest time specified by any of the call will be used.

The delay is invoked if an authentication error occurs during the pam_authenticate() or pam_chauthtok() function calls.

Independent of the success of pam_authenticate() or pam_chauthtok(), the delay time is reset to its default value of 0 when the PAM library returns control to the application from these two functions.

Return Value

PAM_SUCCESS 

Success.

Note: Errors may be translated to text with pam_strerror().

pam_get_item

Name

pam_get_item -- obtain the value of the indicated item.

Synopsis

#include <security/pam_appl.h>

int pam_get_item(const pam_handle_t * pamh, int item_type, const void * * item);

Description

pam_get_item() obtains the value of the indicated item_type. The possible values of item_type are the same as listed for pam_set_item().

On success, item contains a pointer to the value of the corresponding item. Note that this is a pointer to the actual data and should not be free()'d or over-written.

Return Value

PAM_SUCCESS 

Success.

PAM_PERM_DENIED 

Application passed a NULL pointer for item.

PAM_BAD_ITEM 

Application attempted to get an undefined item.

Note: Errors may be translated to text with pam_strerror().

pam_getenvlist

Name

pam_getenvlist -- returns a pointer to the complete PAM environment.

Synopsis

#include <security/pam_appl.h>

char * const * pam_getenvlist(pam_handle_t * pamh);

Description

pam_getenvlist() returns a pointer to the complete PAM environment. This pointer points to an array of pointers to NUL-terminated strings and must be terminated by a NULL pointer. Each string has the form "name=value".

The PAM library module allocates memory for the returned value and the associated strings. The calling application is responsible for freeing this memory.

Return Value

pam_getenvlist() returns an array of string pointers containing the PAM environment. On error, NULL is returned.

pam_open_session

Name

pam_open_session -- indicate session has started

Synopsis

#include <security/pam_appl.h>

int pam_open_session(pam_handle_t * pamh, int flags);

Description

The pam_open_session() function is used to indicate that an authenticated session has begun, after the user has been identified (see pam_authenticate()) and, if necessary, granted credentials (see pam_setcred()). It is used to inform the module that the user is currently in a session. It should be possible for the PAM library to open a session and close the same session from different applications.

flags may have the value PAM_SILENT to indicate that no output be generated as a result of this function call.

Return Value

PAM_SUCCESS 

Success.

PAM_SESSION_ERR 

One of the loaded modules was unable to open a session for the user.

Note: Errors may be translated to text with pam_strerror().

pam_set_item

Name

pam_set_item -- (re)set the value of an item.

Synopsis

#include <security/pam_appl.h>

int pam_set_item(pam_handle_t * pamh, int item_type, const void * item);

Description

pam_set_item() (re)sets the value of one of the following item_types:

PAM_SERVICE 

service name

PAM_USER 

user name

PAM_TTY 

terminal name

The value for a device file should include the /dev/ prefix. The value for graphical, X-based, applications should be the $DISPLAY variable.

PAM_RHOST 

remote host name

PAM_CONV 

conversation structure

PAM_RUSER 

remote user name

PAM_USER_PROMPT 

string to be used when prompting for a user's name

The default value for this string is Please enter username: .

For all item_types other than PAM_CONV, item is a pointer to a NULL-terminated character string. In the case of PAM_CONV, item points to an initialized pam_conv structure.

Return Value

PAM_SUCCESS 

Success.

PAM_PERM_DENIED 

An attempt was made to replace the conversation structure with a NULL value.

PAM_BUF_ERR 

Function ran out of memory making a copy of the item.

PAM_BAD_ITEM 

Application attempted to set an undefined item.

Note: Errors may be translated to text with pam_strerror().

pam_setcred

Name

pam_setcred -- set the module-specific credentials of the user

Synopsis

#include <security/pam_appl.h>

extern int pam_setcred(pam_handle_t * pamh, int flags);

Description

pam_setcred() sets the module-specific credentials of the user. It is usually called after the user has been authenticated, after the account management function has been called and after a session has been opened for the user.

flags maybe specified from among the following values:

PAM_ESTABLISH_CRED

set credentials for the authentication service

PAM_DELETE_CRED

delete credentials associated with the authentication service

PAM_REINITIALIZE_CRED

reinitialize the user credentials

PAM_REFRESH_CRED

extend lifetime of the user credentials

Additionally, the value of flags may be logically or'd with PAM_SILENT.

Return Value

PAM_SUCCESS 

Success.

PAM_CRED_UNAVAIL 

Module cannot retrieve the user's credentials.

PAM_CRED_EXPIRED 

User's credentials have expired.

PAM_USER_UNKNOWN 

User is not known to an authentication module.

PAM_CRED_ERR 

Module was unable to set the credentials of the user.

Note: Errors may be translated to text with pam_strerror().

pam_start

Name

pam_start -- initialize the PAM library

Synopsis

#include <security/pam_appl.h>

int pam_start(const char * service_name, const char * user, const struct pam_conv * pam_conversation, pam_handle_t * * pamh);

Description

pam_start() is used to initialize the PAM library. It must be called prior to any other usage of the PAM library. On success, *pamh becomes a handle that provides continuity for successive calls to the PAM library. pam_start() expects arguments as follows: the service_name of the program, the username of the individual to be authenticated, a pointer to an application-supplied pam_conv structure, and a pointer to a pam_handle_t pointer.

An application must provide the conversation function used for direct communication between a loaded module and the application. The application also typically provides a means for the module to prompt the user for a password, etc.

The structure, pam_conv, is defined to be,

  struct pam_conv {
               int (*conv) (int num_msg,
                            const struct pam_message * *msg,
                            struct pam_response * *resp,
                            void *appdata_ptr);
               void *appdata_ptr;
  };
It is initialized by the application before it is passed to the library. The contents of this structure are attached to the *pamh handle. The point of this argument is to provide a mechanism for any loaded module to interact directly with the application program; this is why it is called a conversation structure.

When a module calls the referenced conv() function, appdata_ptr is set to the second element of this structure.

The other arguments of a call to conv() concern the information exchanged by module and application. num_msg holds the length of the array of pointers passed via msg. On success, the pointer resp points to an array of num_msg pam_response structures, holding the application-supplied text. Note that resp is a struct pam_response array and not an array of pointers.

Return Value

PAM_SUCCESS 

Success.

PAM_BUF_ERR 

Memory allocation error.

PAM_ABORT 

Internal failure.

ERRORS

May be translated to text with pam_strerror().

pam_strerror

Name

pam_strerror -- returns a string describing the PAM error

Synopsis

#include <security/pam_appl.h>

const char * pam_strerror(pam_handle_t * pamh, int errnum);

Description

pam_strerror() returns a string describing the PAM error associated with errnum.

Return Value

On success, this function returns a description of the indicated error. The application should not free or modify this string. Otherwise, a string indicating that the error is unknown shall be returned. It is unspecified whether or not the string returned is translated according to the setting of LC_MESSAGES.

IV. Utility Libraries

Table of Contents
14. Utility Libraries
14.1. Introduction
14.2. Interfaces for libz
14.2.1. Compression Library
14.3. Data Definitions for libz
14.3.1. zlib.h
14.4. Interface Definitions for libz
adler32 -- compute Adler 32 Checksum
compress -- compress data
compress2 -- compress data at a specified level
compressBound -- compute compressed data size
crc32 -- compute CRC-32 Checksum
deflate -- compress data
deflateBound -- compute compressed data size
deflateCopy -- copy compression stream
deflateEnd -- free compression stream state
deflateInit2_ -- initialize compression system
deflateInit_ -- initialize compression system
deflateParams -- set compression parameters
deflateReset -- reset compression stream state
deflateSetDictionary -- initialize compression dictionary
get_crc_table -- generate a table for crc calculations
gzclose -- close a compressed file stream
gzdopen -- open a compressed file
gzeof -- check for end-of-file on a compressed file stream
gzerror -- decode an error on a compressed file stream
gzflush -- flush a compressed file stream
gzgetc -- read a character from a compressed file
gzgets -- read a string from a compressed file
gzopen -- open a compressed file
gzprintf -- format data and compress
gzputc -- write character to a compressed file
gzputs -- string write to a compressed file
gzread -- read from a compressed file
gzrewind -- reset the file-position indicator on a compressed file stream
gzseek -- reposition a file-position indicator in a compressed file stream
gzsetparams -- dynamically set compression parameters
gztell -- find position on a compressed file stream
gzwrite -- write to a compressed file
inflate -- decompress data
inflateEnd -- free decompression stream state
inflateInit2_ -- initialize decompression system
inflateInit_ -- initialize decompression system
inflateReset -- reset decompression stream state
inflateSetDictionary -- initialize decompression dictionary
inflateSync -- advance compression stream to next sync point
inflateSyncPoint -- test for synchronization point
uncompress -- uncompress data
zError -- translate error number to string
zlibVersion -- discover library version at run time
14.5. Interfaces for libncurses
14.5.1. Curses
14.6. Data Definitions for libncurses
14.6.1. curses.h
14.6.2. term.h
14.7. Interfaces for libutil
14.7.1. Utility Functions
14.8. Interface Definitions for libutil
forkpty -- Create a new process attached to an available pseudo-terminal
login -- login utility function
login_tty -- Prepare a terminal for login
logout -- logout utility function
logwtmp -- append an entry to the wtmp file
openpty -- find and open an available pseudo-terminal

Chapter 14. Utility Libraries

14.1. Introduction

An LSB-conforming implementation shall also support the following utility libraries which are built on top of the interfaces provided by the base libraries. These libraries implement common functionality, and hide additional system dependent information such as file formats and device names.

  • libz

  • libcurses

  • libutil

The structure of the definitions for these libraries follows the same model as used for Base Libraries.


14.2. Interfaces for libz

Table 14-1 defines the library name and shared object name for the libz library

Table 14-1. libz Definition

Library:libz
SONAME:libz.so.1

The behavior of the interfaces in this library is specified by the following specifications:

[LSB] This Specification


14.2.1. Compression Library


14.2.1.1. Interfaces for Compression Library

An LSB conforming implementation shall provide the generic functions for Compression Library specified in Table 14-2, with the full mandatory functionality as described in the referenced underlying specification.

Table 14-2. libz - Compression Library Function Interfaces

adler32 [LSB]compress [LSB]compress2 [LSB]compressBound [LSB]
crc32 [LSB]deflate [LSB]deflateBound [LSB]deflateCopy [LSB]
deflateEnd [LSB]deflateInit2_ [LSB]deflateInit_ [LSB]deflateParams [LSB]
deflateReset [LSB]deflateSetDictionary [LSB]get_crc_table [LSB]gzclose [LSB]
gzdopen [LSB]gzeof [LSB]gzerror [LSB]gzflush [LSB]
gzgetc [LSB]gzgets [LSB]gzopen [LSB]gzprintf [LSB]
gzputc [LSB]gzputs [LSB]gzread [LSB]gzrewind [LSB]
gzseek [LSB]gzsetparams [LSB]gztell [LSB]gzwrite [LSB]
inflate [LSB]inflateEnd [LSB]inflateInit2_ [LSB]inflateInit_ [LSB]
inflateReset [LSB]inflateSetDictionary [LSB]inflateSync [LSB]inflateSyncPoint [LSB]
uncompress [LSB]zError [LSB]zlibVersion [LSB] 

14.3. Data Definitions for libz

This section defines global identifiers and their values that are associated with interfaces contained in libz. These definitions are organized into groups that correspond to system headers. This convention is used as a convenience for the reader, and does not imply the existence of these headers, or their content. Where an interface is defined as requiring a particular system header file all of the data definitions for that system header file presented here shall be in effect.

This section gives data definitions to promote binary application portability, not to repeat source interface definitions available elsewhere. System providers and application developers should use this ABI to supplement - not to replace - source interface definition specifications.

This specification uses the ISO C (1999) C Language as the reference programming language, and data definitions are specified in ISO C format. The C language is used here as a convenient notation. Using a C language description of these data objects does not preclude their use by other programming languages.


14.3.1. zlib.h

In addition to the values below, the zlib.h header shall define the ZLIB_VERSION macro. This macro may be used to check that the version of the library at run time matches that at compile time.

See also the zlibVersion() function, which returns the library version at run time. The first character of the version at compile time should always match the first character at run time.


#define Z_NULL	0
#define MAX_WBITS	15
#define MAX_MEM_LEVEL	9
#define deflateInit2(strm,level,method,windowBits,memLevel,strategy)	\
	deflateInit2_((strm),(level),(method),(windowBits),(memLevel),(strategy),ZLIB_VERSION,sizeof(z_stream))
#define deflateInit(strm,level)	\
	deflateInit_((strm), (level),       ZLIB_VERSION, sizeof(z_stream))
#define inflateInit2(strm,windowBits)	\
	inflateInit2_((strm), (windowBits), ZLIB_VERSION, sizeof(z_stream))
#define inflateInit(strm)	\
	inflateInit_((strm),                ZLIB_VERSION, sizeof(z_stream))

typedef char charf;
typedef int intf;

typedef void *voidpf;
typedef unsigned int uInt;
typedef unsigned long int uLong;
typedef uLong uLongf;
typedef void *voidp;
typedef unsigned char Byte;
typedef off_t z_off_t;
typedef void *const voidpc;

typedef voidpf(*alloc_func) (voidpf opaque, uInt items, uInt size);
typedef void (*free_func) (voidpf opaque, voidpf address);
struct internal_state {
    int dummy;
};
typedef Byte Bytef;
typedef uInt uIntf;

typedef struct z_stream_s {
    Bytef *next_in;
    uInt avail_in;
    uLong total_in;
    Bytef *next_out;
    uInt avail_out;
    uLong total_out;
    char *msg;
    struct internal_state *state;
    alloc_func zalloc;
    free_func zfree;
    voidpf opaque;
    int data_type;
    uLong adler;
    uLong reserved;
} z_stream;

typedef z_stream *z_streamp;
typedef voidp gzFile;

#define Z_NO_FLUSH	0
#define Z_PARTIAL_FLUSH	1
#define Z_SYNC_FLUSH	2
#define Z_FULL_FLUSH	3
#define Z_FINISH	4
#define Z_BLOCK	5

#define Z_ERRNO	(-1)
#define Z_STREAM_ERROR	(-2)
#define Z_DATA_ERROR	(-3)
#define Z_MEM_ERROR	(-4)
#define Z_BUF_ERROR	(-5)
#define Z_VERSION_ERROR	(-6)
#define Z_OK	0
#define Z_STREAM_END	1
#define Z_NEED_DICT	2

#define Z_DEFAULT_COMPRESSION	(-1)
#define Z_NO_COMPRESSION	0
#define Z_BEST_SPEED	1
#define Z_BEST_COMPRESSION	9

#define Z_DEFAULT_STRATEGY	0
#define Z_FILTERED	1
#define Z_HUFFMAN_ONLY	2

#define Z_BINARY	0
#define Z_ASCII	1
#define Z_UNKNOWN	2

#define Z_DEFLATED	8

extern int gzread(gzFile, voidp, unsigned int);
extern int gzclose(gzFile);
extern gzFile gzopen(const char *, const char *);
extern gzFile gzdopen(int, const char *);
extern int gzwrite(gzFile, voidpc, unsigned int);
extern int gzflush(gzFile, int);
extern const char *gzerror(gzFile, int *);
extern uLong adler32(uLong, const Bytef *, uInt);
extern int compress(Bytef *, uLongf *, const Bytef *, uLong);
extern int compress2(Bytef *, uLongf *, const Bytef *, uLong, int);
extern uLong crc32(uLong, const Bytef *, uInt);
extern int deflate(z_streamp, int);
extern int deflateCopy(z_streamp, z_streamp);
extern int deflateEnd(z_streamp);
extern int deflateInit2_(z_streamp, int, int, int, int, int, const char *,
			 int);
extern int deflateInit_(z_streamp, int, const char *, int);
extern int deflateParams(z_streamp, int, int);
extern int deflateReset(z_streamp);
extern int deflateSetDictionary(z_streamp, const Bytef *, uInt);
extern const uLongf *get_crc_table(void);
extern int gzeof(gzFile);
extern int gzgetc(gzFile);
extern char *gzgets(gzFile, char *, int);
extern int gzprintf(gzFile, const char *, ...);
extern int gzputc(gzFile, int);
extern int gzputs(gzFile, const char *);
extern int gzrewind(gzFile);
extern z_off_t gzseek(gzFile, z_off_t, int);
extern int gzsetparams(gzFile, int, int);
extern z_off_t gztell(gzFile);
extern int inflate(z_streamp, int);
extern int inflateEnd(z_streamp);
extern int inflateInit2_(z_streamp, int, const char *, int);
extern int inflateInit_(z_streamp, const char *, int);
extern int inflateReset(z_streamp);
extern int inflateSetDictionary(z_streamp, const Bytef *, uInt);
extern int inflateSync(z_streamp);
extern int inflateSyncPoint(z_streamp);
extern int uncompress(Bytef *, uLongf *, const Bytef *, uLong);
extern const char *zError(int);
extern const char *zlibVersion(void);
extern uLong deflateBound(z_streamp, uLong);
extern uLong compressBound(uLong);

14.4. Interface Definitions for libz

Table of Contents
adler32 -- compute Adler 32 Checksum
compress -- compress data
compress2 -- compress data at a specified level
compressBound -- compute compressed data size
crc32 -- compute CRC-32 Checksum
deflate -- compress data
deflateBound -- compute compressed data size
deflateCopy -- copy compression stream
deflateEnd -- free compression stream state
deflateInit2_ -- initialize compression system
deflateInit_ -- initialize compression system
deflateParams -- set compression parameters
deflateReset -- reset compression stream state
deflateSetDictionary -- initialize compression dictionary
get_crc_table -- generate a table for crc calculations
gzclose -- close a compressed file stream
gzdopen -- open a compressed file
gzeof -- check for end-of-file on a compressed file stream
gzerror -- decode an error on a compressed file stream
gzflush -- flush a compressed file stream
gzgetc -- read a character from a compressed file
gzgets -- read a string from a compressed file
gzopen -- open a compressed file
gzprintf -- format data and compress
gzputc -- write character to a compressed file
gzputs -- string write to a compressed file
gzread -- read from a compressed file
gzrewind -- reset the file-position indicator on a compressed file stream
gzseek -- reposition a file-position indicator in a compressed file stream
gzsetparams -- dynamically set compression parameters
gztell -- find position on a compressed file stream
gzwrite -- write to a compressed file
inflate -- decompress data
inflateEnd -- free decompression stream state
inflateInit2_ -- initialize decompression system
inflateInit_ -- initialize decompression system
inflateReset -- reset decompression stream state
inflateSetDictionary -- initialize decompression dictionary
inflateSync -- advance compression stream to next sync point
inflateSyncPoint -- test for synchronization point
uncompress -- uncompress data
zError -- translate error number to string
zlibVersion -- discover library version at run time

The interfaces defined on the following pages are included in libz and are defined by this specification. Unless otherwise noted, these interfaces shall be included in the source standard.

Other interfaces listed in Section 14.2 shall behave as described in the referenced base document.

adler32

Name

adler32 -- compute Adler 32 Checksum

Synopsis

#include <zlib.h>

uLong adler32(uLong adler, const Bytef * buf, uInt len);

Description

The adler32() function shall compute a running Adler-32 checksum (as described in RFC 1950: ZLIB Compressed Data Format Specication). On entry, adler is the previous value for the checksum, and buf shall point to an array of len bytes of data to be added to this checksum. The adler32() function shall return the new checksum.

If buf is NULL (or Z_NULL), adler32() shall return the initial checksum.

Return Value

The adler32() function shall return the new checksum value.

Errors

None defined.

Application Usage (informative)

The following code fragment demonstrates typical usage of the adler32() function:

     uLong adler = adler32(0L, Z_NULL, 0);

     while (read_buffer(buffer, length) != EOF) {
       adler = adler32(adler, buffer, length);
     }
     if (adler != original_adler) error();

compress

Name

compress -- compress data

Synopsis

#include <zlib.h>

int compress(Bytef * dest, uLongf * destLen, const Bytef * source, uLong sourceLen);

Description

The compress() function shall attempt to compress sourceLen bytes of data in the buffer source, placing the result in the buffer dest.

On entry, destLen should point to a value describing the size of the dest buffer. The application should ensure that this value be at least (sourceLen 1.001) + 12. On successful exit, the variable referenced by destLen shall be updated to hold the length of compressed data in dest.

The compress() function is equivalent to compress2() with a level of Z_DEFAULT_COMPRESSION.

Return Value

On success, compress() shall return Z_OK. Otherwise, compress() shall return a value to indicate the error.

Errors

On error, compress() shall return a value as described below:

Z_BUF_ERROR 

The buffer dest was not large enough to hold the compressed data.

Z_MEM_ERROR 

Insufficient memory.

compress2

Name

compress2 -- compress data at a specified level

Synopsis

#include <zlib.h>

int compress2(Bytef * dest, uLongf * destLen, const Bytef * source, uLong sourceLen, int level);

Description

The compress2() function shall attempt to compress sourceLen bytes of data in the buffer source, placing the result in the buffer dest, at the level described by level. The level supplied shall be a value between 0 and 9, or the value Z_DEFAULT_COMPRESSION. A level of 1 requests the highest speed, while a level of 9 requests the highest compression. A level of 0 indicates that no compression should be used, and the output shall be the same as the input.

On entry, destLen should point to a value describing the size of the dest buffer. The application should ensure that this value be at least (sourceLen 1.001) + 12. On successful exit, the variable referenced by destLen shall be updated to hold the length of compressed data in dest.

The compress() function is equivalent to compress2() with a level of Z_DEFAULT_COMPRESSION.

Return Value

On success, compress2() shall return Z_OK. Otherwise, compress2() shall return a value to indicate the error.

Errors

On error, compress2() shall return a value as described below:

Z_BUF_ERROR 

The buffer dest was not large enough to hold the compressed data.

Z_MEM_ERROR 

Insufficient memory.

Z_STREAM_ERROR 

The level was not Z_DEFAULT_COMPRESSION, or was not between 0 and 9.

compressBound

Name

compressBound -- compute compressed data size

Synopsis

#include <zlib.h>

int compressBound(uLong sourceLen);

Description

The compressBound() function shall estimate the size of buffer required to compress sourceLen bytes of data using the compress() or compress2() functions. If successful, the value returned shall be an upper bound for the size of buffer required to compress sourceLen bytes of data, using the parameters stored in stream, in a single call to compress() or compress2().

Return Value

The compressBound() shall return a value representing the upper bound of an array to allocate to hold the compressed data in a single call to compress() or compress2(). This function may return a conservative value that may be larger than sourceLen.

Errors

None defined.

crc32

Name

crc32 -- compute CRC-32 Checksum

Synopsis

#include <zlib.h>

uLong crc32(uLong crc, const Bytef * buf, uInt len);

Description

The crc32() function shall compute a running Cyclic Redundancy Check checksum, as defined in ITU-T V.42. On entry, crc is the previous value for the checksum, and buf shall point to an array of len bytes of data to be added to this checksum. The crc32() function shall return the new checksum.

If buf is NULL (or Z_NULL), crc32() shall return the initial checksum.

Return Value

The crc32() function shall return the new checksum value.

Errors

None defined.

Application Usage (informative)

The following code fragment demonstrates typical usage of the crc32() function:

     uLong crc = crc32(0L, Z_NULL, 0);

     while (read_buffer(buffer, length) != EOF) {
       crc = crc32(crc, buffer, length);
     }
     if (crc != original_crc) error();

deflate

Name

deflate -- compress data

Synopsis

#include <zlib.h>

int deflate(z_streamp stream, int flush);

Description

The deflate() function shall attempt to compress data until either the input buffer is empty or the output buffer is full. The stream references a z_stream structure. Before the first call to deflate(), this structure should have been initialized by a call to deflateInit2_().

Note: deflateInit2_() is only in the binary standard; source level applications should initialize stream via a call to deflateInit() or deflateInit2().

In addition, the stream input and output buffers should have been initialized as follows:

next_in 

should point to the data to be compressed.

avail_in 

should contain the number of bytes of data in the buffer referenced by next_in.

next_out 

should point to a buffer where compressed data may be placed.

avail_out 

should contain the size in bytes of the buffer referenced by next_out

The deflate() function shall perform one or both of the following actions:

  1. Compress input data from next_in and update next_in, avail_in and total_in to reflect the data that has been compressed.

  2. Fill the output buffer referenced by next_out, and update next_out, avail_out and total_out to reflect the compressed data that has been placed there. If flush is not Z_NO_FLUSH, and avail_out indicates that there is still space in output buffer, this action shall always occur (see below for further details).

The deflate() function shall return when either avail_in reaches zero (indicating that all the input data has been compressed), or avail_out reaches zero (indicating that the output buffer is full).

On success, the deflate() function shall set the adler field of the stream to the adler32() checksum of all the input data compressed so far (represented by total_in).

If the deflate() function shall attempt to determine the type of input data, and set field data_type in stream to Z_ASCII if the majority of the data bytes fall within the ASCII (ISO 646) printable character range. Otherwise, it shall set data_type to Z_BINARY. This data type is informational only, and does not affect the compression algorithm.

Note: Future versions of the LSB may remove this requirement, since it is based on an outdated character set that does not support Internationalization, and does not affect the algorithm. It is included for information only at this release. Applications should not depend on this field.

Flush Operation

The parameter flush determines when compressed bits are added to the output buffer in next_out. If flush is Z_NO_FLUSH, deflate() may return with some data pending output, and not yet added to the output buffer.

If flush is Z_SYNC_FLUSH, deflate() shall flush all pending output to next_out and align the output to a byte boundary. A synchronization point is generated in the output.

If flush is Z_FULL_FLUSH, all output shall be flushed, as for Z_SYNC_FLUSH, and the compression state shall be reset. A synchronization point is generated in the output.

Rationale: Z_SYNC_FLUSH is intended to ensure that the compressed data contains all the data compressed so far, and allows a decompressor to reconstruct all of the input data. Z_FULL_FLUSH allows decompression to restart from this point if the previous compressed data has been lost or damaged. Flushing is likely to degrade the performance of the compression system, and should only be used where necessary.

If flush is set to Z_FINISH, all pending input shall be processed and deflate() shall return with Z_STREAM_END if there is sufficient space in the output buffer at next_out, as indicated by avail_out. If deflate() is called with flush set to Z_FINISH and there is insufficient space to store the compressed data, and no other error has occurred during compression, deflate() shall return Z_OK, and the application should call deflate() again with flush unchanged, and having updated next_out and avail_out.

If all the compression is to be done in a single step, deflate() may be called with flush set to Z_FINISH immediately after the stream has been initialized if avail_out is set to at least the value returned by deflateBound().

Return Value

On success, deflate() shall return Z_OK, unless flush was set to Z_FINISH and there was sufficient space in the output buffer to compress all of the input data. In this case, deflate() shall return Z_STREAM_END. On error, deflate() shall return a value to indicate the error.

Note: If deflate() returns Z_OK and has set avail_out to zero, the function should be called again with the same value for flush, and with updated next_out and avail_out until deflate() returns with Z_OK (or Z_STREAM_END if flush is set to Z_FINISH) and a non-zero avail_out.

Errors

On error, deflate() shall return a value as described below, and set the msg field of stream to point to a string describing the error:

Z_BUF_ERROR 

No progress is possible; either avail_in or avail_out was zero.

Z_MEM_ERROR 

Insufficient memory.

Z_STREAM_ERROR 

The state (as represented in stream) is inconsistent, or stream was NULL.

deflateBound

Name

deflateBound -- compute compressed data size

Synopsis

#include <zlib.h>

int deflateBound(z_streamp stream, uLong sourceLen);

Description

The deflateBound() function shall estimate the size of buffer required to compress sourceLen bytes of data. If successful, the value returned shall be an upper bound for the size of buffer required to compress sourceLen bytes of data, using the parameters stored in stream, in a single call to deflate() with flush set to Z_FINISH.

On entry, stream should have been initialized via a call to deflateInit_() or deflateInit2_().

Return Value

The deflateBound() shall return a value representing the upper bound of an array to allocate to hold the compressed data in a single call to deflate(). If the stream is not correctly initialized, or is NULL, then deflateBound() may return a conservative value that may be larger than sourceLen.

Errors

None defined.

deflateCopy

Name

deflateCopy -- copy compression stream

Synopsis

#include <zlib.h>

int deflateCopy(z_streamp dest, z_streamp source);

Description

The deflateCopy() function shall copy the compression state information in source to the uninitialized z_stream structure referenced by dest.

On successful return, dest will be an exact copy of the stream referenced by source. The input and output buffer pointers in next_in and next_out will reference the same data.

Return Value

On success, deflateCopy() shall return Z_OK. Otherwise it shall return a value less than zero to indicate the error.

Errors

On error, deflateCopy() shall return a value as described below:

Z_STREAM_ERROR 

The state in source is inconsistent, or either source or dest was NULL.

Z_MEM_ERROR 

Insufficient memory available.

Application Usage (informative)

This function can be useful when several compression strategies will be tried, for example when there are several ways of pre-processing the input data with a filter. The streams that will be discarded should then be freed by calling deflateEnd(). Note that deflateCopy() duplicates the internal compression state which can be quite large, so this strategy may be slow and can consume lots of memory.

deflateEnd

Name

deflateEnd -- free compression stream state

Synopsis

#include <zlib.h>

int deflateEnd(z_streamp stream);

Description

The deflateEnd() function shall free all allocated state information referenced by stream. All pending output is discarded, and unprocessed input is ignored.

Return Value

On success, deflateEnd() shall return Z_OK, or Z_DATA_ERROR if there was pending output discarded or input unprocessed. Otherwise it shall return Z_STREAM_ERROR to indicate the error.

Errors

On error, deflateEnd() shall return Z_STREAM_ERROR. The following conditions shall be treated as an error:

  • The state in stream is inconsistent or inappropriate.

  • stream is NULL.

deflateInit2_

Name

deflateInit2_ -- initialize compression system

Synopsis

#include <zlib.h>

int deflateInit2_ (z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy, char * version, int stream_size);

Description

The deflateInit2_() function shall initialize the compression system. On entry, strm shall refer to a user supplied z_stream object (a z_stream_s structure). The following fields shall be set on entry:

zalloc 

a pointer to an alloc_func function, used to allocate state information. If this is NULL, a default allocation function will be used.

zfree 

a pointer to a free_func function, used to free memory allocated by the zalloc function. If this is NULL a default free function will be used.

opaque 

If alloc_func is not NULL, opaque is a user supplied pointer to data that will be passed to the alloc_func and free_func functions.

If the version requested is not compatible with the version implemented, or if the size of the z_stream_s structure provided in stream_size does not match the size in the library implementation, deflateInit2_() shall fail, and return Z_VERSION_ERROR.

The level supplied shall be a value between 0 and 9, or the value Z_DEFAULT_COMPRESSION. A level of 1 requests the highest speed, while a level of 9 requests the highest compression. A level of 0 indicates that no compression should be used, and the output shall be the same as the input.

The method selects the compression algorithm to use. LSB conforming implementation shall support the Z_DEFLATED method, and may support other implementation defined methods.

The windowBits parameter shall be a base 2 logarithm of the window size to use, and shall be a value between 8 and 15. A smaller value will use less memory, but will result in a poorer compression ratio, while a higher value will give better compression but utilize more memory.

The memLevel parameter specifies how much memory to use for the internal state. The value of memLevel shall be between 1 and MAX_MEM_LEVEL. Smaller values use less memory but are slower, while higher values use more memory to gain compression speed.

The strategy parameter selects the compression strategy to use:

Z_DEFAULT_STRATEGY 

use the system default compression strategy. Z_DEFAULT_STRATEGY is particularly appropriate for text data.

Z_FILTERED 

use a compression strategy tuned for data consisting largely of small values with a fairly random distribution. Z_FILTERED uses more Huffman encoding and less string matching than Z_DEFAULT_STRATEGY.

Z_HUFFMAN_ONLY 

force Huffman encoding only, with no string match.

The deflateInit2_() function is not in the source standard; it is only in the binary standard. Source applications should use the deflateInit2() macro.

Return Value

On success, the deflateInit2_() function shall return Z_OK. Otherwise, deflateInit2_() shall return a value as described below to indicate the error.

Errors

On error, deflateInit2_() shall return one of the following error indicators:

Z_STREAM_ERROR 

Invalid parameter.

Z_MEM_ERROR 

Insufficient memory available.

Z_VERSION_ERROR 

The version requested is not compatible with the library version, or the z_stream size differs from that used by the library.

In addition, the msg field of the strm may be set to an error message.

deflateInit_

Name

deflateInit_ -- initialize compression system

Synopsis

#include <zlib.h>

int deflateInit_(z_streamp stream, int level, const char * version, int stream_size);

Description

The deflateInit_() function shall initialize the compression system. On entry, stream shall refer to a user supplied z_stream object (a z_stream_s structure). The following fields shall be set on entry:

zalloc 

a pointer to an alloc_func function, used to allocate state information. If this is NULL, a default allocation function will be used.

zfree 

a pointer to a free_func function, used to free memory allocated by the zalloc function. If this is NULL a default free function will be used.

opaque 

If alloc_func is not NULL, opaque is a user supplied pointer to data that will be passed to the alloc_func and free_func functions.

If the version requested is not compatible with the version implemented, or if the size of the z_stream_s structure provided in stream_size does not match the size in the library implementation, deflateInit_() shall fail, and return Z_VERSION_ERROR.

The level supplied shall be a value between 0 and 9, or the value Z_DEFAULT_COMPRESSION. A level of 1 requests the highest speed, while a level of 9 requests the highest compression. A level of 0 indicates that no compression should be used, and the output shall be the same as the input.

The deflateInit_() function is not in the source standard; it is only in the binary standard. Source applications should use the deflateInit() macro.

The deflateInit_() function is equivalent to

 deflateInit2_(stream, level, Z_DEFLATED, MAX_WBITS, MAX_MEM_LEVEL,
                         Z_DEFAULT_STRATEGY, version, stream_size);

Return Value

On success, the deflateInit_() function shall return Z_OK. Otherwise, deflateInit_() shall return a value as described below to indicate the error.

Errors

On error, deflateInit_() shall return one of the following error indicators:

Z_STREAM_ERROR 

Invalid parameter.

Z_MEM_ERROR 

Insufficient memory available.

Z_VERSION_ERROR 

The version requested is not compatible with the library version, or the z_stream size differs from that used by the library.

In addition, the msg field of the stream may be set to an error message.

deflateParams

Name

deflateParams -- set compression parameters

Synopsis

#include <zlib.h>

int deflateParams(z_streamp stream, int level, int strategy);

Description

The deflateParams() function shall dynamically alter the compression parameters for the compression stream object stream. On entry, stream shall refer to a user supplied z_stream object (a z_stream_s structure), already initialized via a call to deflateInit_() or deflateInit2_().

The level supplied shall be a value between 0 and 9, or the value Z_DEFAULT_COMPRESSION. A level of 1 requests the highest speed, while a level of 9 requests the highest compression. A level of 0 indicates that no compression should be used, and the output shall be the same as the input. If the compression level is altered by deflateParams(), and some data has already been compressed with this stream (i.e. total_in is not zero), and the new level requires a different underlying compression method, then stream shall be flushed by a call to deflate().

The strategy parameter selects the compression strategy to use:

Z_DEFAULT_STRATEGY 

use the system default compression strategy. Z_DEFAULT_STRATEGY is particularly appropriate for text data.

Z_FILTERED 

use a compression strategy tuned for data consisting largely of small values with a fairly random distribution. Z_FILTERED uses more Huffman encoding and less string matching than Z_DEFAULT_STRATEGY.

Z_HUFFMAN_ONLY 

force Huffman encoding only, with no string match.

Return Value

On success, the deflateParams() function shall return Z_OK. Otherwise, deflateParams() shall return a value as described below to indicate the error.

Errors

On error, deflateParams() shall return one of the following error indicators:

Z_STREAM_ERROR 

Invalid parameter.

Z_MEM_ERROR 

Insufficient memory available.

Z_BUF_ERROR 

Insufficient space in stream to flush the current output.

In addition, the msg field of the strm may be set to an error message.

Application Usage (Informative)

Applications should ensure that the stream is flushed, e.g. by a call to deflate(stream, Z_SYNC_FLUSH) before calling deflateParams(), or ensure that there is sufficient space in next_out (as identified by avail_out) to ensure that all pending output and all uncompressed input can be flushed in a single call to deflate().

Rationale: Although the deflateParams() function should flush pending output and compress all pending input, the result is unspecified if there is insufficient space in the output buffer. Applications should only call deflateParams() when the stream is effectively empty (flushed).

The deflateParams() can be used to switch between compression and straight copy of the input data, or to switch to a different kind of input data requiring a different strategy.

deflateReset

Name

deflateReset -- reset compression stream state

Synopsis

#include <zlib.h>

int deflateReset(z_streamp stream);

Description

The deflateReset() function shall reset all state associated with stream. All pending output shall be discarded, and the counts of processed bytes (total_in and total_out) shall be reset to zero.

Return Value

On success, deflateReset() shall return Z_OK. Otherwise it shall return Z_STREAM_ERROR to indicate the error.

Errors

On error, deflateReset() shall return Z_STREAM_ERROR. The following conditions shall be treated as an error:

  • The state in stream is inconsistent or inappropriate.

  • stream is NULL.

deflateSetDictionary

Name

deflateSetDictionary -- initialize compression dictionary

Synopsis

#include <zlib.h>

int deflateSetDictionary(z_streamp stream, const Bytef * dictionary, uInt dictlen);

Description

The deflateSetDictionary() function shall initialize the compression dictionary associated with stream using the dictlen bytes referenced by dictionary.

The implementation may silently use a subset of the provided dictionary if the dictionary cannot fit in the current window associated with stream (see deflateInit2_()). The application should ensure that the dictionary is sorted such that the most commonly used strings occur at the end of the dictionary.

If the dictionary is successfully set, the Adler32 checksum of the entire provided dictionary shall be stored in the adler member of stream. This value may be used by the decompression system to select the correct dictionary. The compression and decompression systems must use the same dictionary.

stream shall reference an initialized compression stream, with total_in zero (i.e. no data has been compressed since the stream was initialized).

Return Value

On success, deflateSetDictionary() shall return Z_OK. Otherwise it shall return Z_STREAM_ERROR to indicate an error.

Errors

On error, deflateSetDictionary() shall return a value as described below:

Z_STREAM_ERROR 

The state in stream is inconsistent, or stream was NULL.

Application Usage (informative)

The application should provide a dictionary consisting of strings {{{ed note: do we really mean "strings"? Null terminated?}}} that are likely to be encountered in the data to be compressed. The application should ensure that the dictionary is sorted such that the most commonly used strings occur at the end of the dictionary.

The use of a dictionary is optional; however if the data to be compressed is relatively short and has a predictable structure, the use of a dictionary can substantially improve the compression ratio.

get_crc_table

Name

get_crc_table -- generate a table for crc calculations

Synopsis

#include <zlib.h>

const uLongf * get_crc_table(void);

Description

Generate tables for a byte-wise 32-bit CRC calculation based on the polynomial: x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1

In a multi-threaded application, get_crc_table() should be called by one thread to initialize the tables before any other thread calls any libz function.

Return Value

The get_crc_table() function shall return a pointer to the first of a set of tables used internally to calculate CRC-32 values (see crc32()).

Errors

None defined.

gzclose

Name

gzclose -- close a compressed file stream

Synopsis

#include <zlib.h>

int gzclose (gzFile file );

Description

The gzclose() function shall close the compressed file stream file. If file was open for writing, gzclose() shall first flush any pending output. Any state information allocated shall be freed.

Return Value

On success, gzclose() shall return Z_OK. Otherwise, gzclose() shall return an error value as described below.

Errors

On error, gzclose() may set the global variable errno to indicate the error. The gzclose() shall return a value other than Z_OK on error.

Z_STREAM_ERROR 

file was NULL (or Z_NULL), or did not refer to an open compressed file stream.

Z_ERRNO 

An error occurred in the underlying base libraries, and the application should check errno for further information.

Z_BUF_ERROR 

no compression progress is possible during buffer flush (see deflate()).

gzdopen

Name

gzdopen -- open a compressed file

Synopsis

#include <zlib.h>

gzFile gzdopen ( int fd, const char *mode );

Description

The gzdopen() function shall attempt to associate the open file referenced by fd with a gzFile object. The mode argument is based on that of fopen(), but the mode parameter may also contain the following characters:

digit 

set the compression level to digit. A low value (e.g. 1) means high speed, while a high value (e.g. 9) means high compression. A compression level of 0 (zero) means no compression. See deflateInit2_() for further details.

[fhR] 

set the compression strategy to [fhR]. The letter f corresponds to filtered data, the letter h corresponds to Huffman only compression, and the letter R corresponds to Run Length Encoding. See deflateInit2_() for further details.

If fd refers to an uncompressed file, and mode refers to a read mode, gzdopen() shall attempt to open the file and return a gzFile object suitable for reading directly from the file without any decompression.

If mode is NULL, or if mode does not contain one of r, w, or a, gzdopen() shall return Z_NULL, and need not set any other error condition.

Example

gzdopen(fileno(stdin), "r");
Attempt to associate the standard input with a gzFile object.

Return Value

On success, gzdopen() shall return a gzFile object. On failure, gzdopen() shall return Z_NULL and may set errno accordingly.

Note: At version 1.2.2, zlib does not set errno for several error conditions. Applications may not be able to determine the cause of an error.

Errors

On error, gzdopen() may set the global variable errno to indicate the error.

gzeof

Name

gzeof -- check for end-of-file on a compressed file stream

Synopsis

#include <zlib.h>

int gzeof (gzFile file );

Description

The gzeof() function shall test the compressed file stream file for end of file.

Return Value

If file was open for reading and end of file has been reached, gzeof() shall return 1. Otherwise, gzeof() shall return 0.

Errors

None defined.

gzerror

Name

gzerror -- decode an error on a compressed file stream

Synopsis

#include <zlib.h>

const char * gzerror (gzFile file, int * errnum);

Description

The gzerror() function shall return a string describing the last error to have occurred associated with the open compressed file stream referred to by file. It shall also set the location referenced by errnum to an integer value that further identifies the error.

Return Value

The gzerror() function shall return a string that describes the last error associated with the given file compressed file stream. This string shall have the format "%s: %s", with the name of the file, followed by a colon, a space, and the description of the error. If the compressed file stream was opened by a call to gzdopen(), the format of the filename is unspecified.

Rationale: Although in all current implementations of libz file descriptors are named "<fd:%d>", the code suggests that this is for debugging purposes only, and may change in a future release.

It is unspecified if the string returned is determined by the setting of the LC_MESSAGES category in the current locale.

Errors

None defined.

gzflush

Name

gzflush -- flush a compressed file stream

Synopsis

#include <zlib.h>

int gzflush(gzFile file, int flush);

Description

The gzflush() function shall flush pending output to the compressed file stream identified by file, which must be open for writing.

Flush Operation

The parameter flush determines which compressed bits are added to the output file. If flush is Z_NO_FLUSH, gzflush() may return with some data pending output, and not yet written to the file.

If flush is Z_SYNC_FLUSH, gzflush() shall flush all pending output to file and align the output to a byte boundary. There may still be data pending compression that is not flushed.

If flush is Z_FULL_FLUSH, all output shall be flushed, as for Z_SYNC_FLUSH, and the compression state shall be reset. There may still be data pending compression that is not flushed.

Rationale: Z_SYNC_FLUSH is intended to ensure that the compressed data contains all the data compressed so far, and allows a decompressor to reconstruct all of the input data. Z_FULL_FLUSH allows decompression to restart from this point if the previous compressed data has been lost or damaged. Flushing is likely to degrade the performance of the compression system, and should only be used where necessary.

If flush is set to Z_FINISH, all pending uncompressed data shall be compressed and all output shall be flushed.

Return Value

On success, gzflush() shall return the value Z_OK. Otherwise gzflush() shall return a value to indicate the error, and may set the error number associated with the compressed file stream file.

Note: If flush is set to Z_FINISH and the flush operation is successful, gzflush() will return Z_OK, but the compressed file stream error value may be set to Z_STREAM_END.

Errors

On error, gzflush() shall return an error value, and may set the error number associated with the stream identified by file to indicate the error. Applications may use gzerror() to access this error value.

Z_ERRNO 

An underlying base library function has indicated an error. The global variable errno may be examined for further information.

Z_STREAM_ERROR 

The stream is invalid, is not open for writing, or is in an invalid state.

Z_BUF_ERROR 

no compression progress is possible (see deflate()).

Z_MEM_ERROR 

Insufficient memory available to compress.

gzgetc

Name

gzgetc -- read a character from a compressed file

Synopsis

#include <zlib.h>

int gzgetc (gzFile file);

Description

The gzgetc() function shall read the next single character from the compressed file stream referenced by file, which shall have been opened in a read mode (see gzopen() and gzdopen()).

Return Value

On success, gzgetc() shall return the uncompressed character read, otherwise, on end of file or error, gzgetc() shall return -1.

Errors

On end of file or error, gzgetc() shall return -1. Further information can be found by calling gzerror() with a pointer to the compressed file stream.

gzgets

Name

gzgets -- read a string from a compressed file

Synopsis

#include <zlib.h>

char * gzgets (gzFile file, char * buf, int len);

Description

The gzgets() function shall attempt to read data from the compressed file stream file, uncompressing it into buf until either len-1 bytes have been inserted into buf, or until a newline character has been uncompressed into buf. A null byte shall be appended to the uncompressed data. The file shall have been opened in for reading (see gzopen() and gzdopen()).

Return Value

On success, gzgets() shall return a pointer to buf. Otherwise, gzgets() shall return Z_NULL. Applications may examine the cause using gzerror().

Errors

On error, gzgets() shall return Z_NULL. The following conditions shall always be treated as an error:

file is NULL, or does not refer to a file open for reading;
buf is NULL;
len is less than or equal to zero.

gzopen

Name

gzopen -- open a compressed file

Synopsis

#include <zlib.h>

gzFile gzopen (const char *path , const char *mode );

Description

The gzopen() function shall open the compressed file named by path. The mode argument is based on that of fopen(), but the mode parameter may also contain the following characters:

digit 

set the compression level to digit. A low value (e.g. 1) means high speed, while a high value (e.g. 9) means high compression. A compression level of 0 (zero) means no compression. See deflateInit2_() for further details.

[fhR] 

set the compression strategy to [fhR]. The letter f corresponds to filtered data, the letter h corresponds to Huffman only compression, and the letter R corresponds to Run Length Encoding. See deflateInit2_() for further details.

If path refers to an uncompressed file, and mode refers to a read mode, gzopen() shall attempt to open the file and return a gzFile object suitable for reading directly from the file without any decompression.

If path or mode is NULL, or if mode does not contain one of r, w, or a, gzopen() shall return Z_NULL, and need not set any other error condition.

The gzFile object is also referred to as a compressed file stream.

Example

gzopen("file.gz", "w6h");
Attempt to create a new compressed file, file.gz, at compression level 6 using Huffman only compression.

Return Value

On success, gzopen() shall return a gzFile object (also known as a compressed file stream). On failure, gzopen() shall return Z_NULL and may set errno accordingly.

Note: At version 1.2.2, zlib does not set errno for several error conditions. Applications may not be able to determine the cause of an error.

Errors

On error, gzopen() may set the global variable errno to indicate the error.

gzprintf

Name

gzprintf -- format data and compress

Synopsis

#include <zlib.h>

int gzprintf (gzFile file, const char * fmt, ...);

Description

The gzprintf() function shall format data as for fprintf(), and write the resulting string to the compressed file stream file.

Return Value

The gzprintf() function shall return the number of uncompressed bytes actually written, or a value less than or equal to 0 in the event of an error.

Errors

If file is NULL, or refers to a compressed file stream that has not been opened for writing, gzprintf() shall return Z_STREAM_ERROR. Otherwise, errors are as for gzwrite().

gzputc

Name

gzputc -- write character to a compressed file

Synopsis

#include <zlib.h>

int gzputc (gzFile file, int c);

Description

The gzputc() function shall write the single character c, converted from integer to unsigned character, to the compressed file referenced by file, which shall have been opened in a write mode (see gzopen() and gzdopen()).

Return Value

On success, gzputc() shall return the value written, otherwise gzputc() shall return -1.

Errors

On error, gzputc() shall return -1.

gzputs

Name

gzputs -- string write to a compressed file

Synopsis

#include <zlib.h>

int gzputs (gzFile file, const char * s);

Description

The gzputs() function shall write the null terminated string s to the compressed file referenced by file, which shall have been opened in a write mode (see gzopen() and gzdopen()). The terminating null character shall not be written. The gzputs() function shall return the number of uncompressed bytes actually written.

Return Value

On success, gzputs() shall return the number of uncompressed bytes actually written to file. On error gzputs() shall return a value less than or equal to 0. Applications may examine the cause using gzerror().

Errors

On error, gzputs() shall set the error number associated with the stream identified by file to indicate the error. Applications should use gzerror() to access this error value. If file is NULL, gzputs() shall return Z_STREAM_ERR.

Z_ERRNO 

An underlying base library function has indicated an error. The global variable errno may be examined for further information.

Z_STREAM_ERROR 

The stream is invalid, is not open for writing, or is in an invalid state.

Z_BUF_ERROR 

no compression progress is possible (see deflate()).

Z_MEM_ERROR 

Insufficient memory available to compress.

gzread

Name

gzread -- read from a compressed file

Synopsis

#include <zlib.h>

int gzread (gzFile file, voidp buf, unsigned int len);

Description

The gzread() function shall read data from the compressed file referenced by file, which shall have been opened in a read mode (see gzopen() and gzdopen()). The gzread() function shall read data from file, and uncompress it into buf. At most, len bytes of uncompressed data shall be copied to buf. If the file is not compressed, gzread() shall simply copy data from file to buf without alteration.

Return Value

On success, gzread() shall return the number of bytes decompressed into buf. If gzread() returns 0, either the end-of-file has been reached or an underlying read error has occurred. Applications should use gzerror() or gzeof() to determine which occurred. On other errors, gzread() shall return a value less than 0 and applications may examine the cause using gzerror().

Errors

On error, gzread() shall set the error number associated with the stream identified by file to indicate the error. Applications should use gzerror() to access this error value.

Z_ERRNO 

An underlying base library function has indicated an error. The global variable errno may be examined for further information.

Z_STREAM_END 

End of file has been reached on input.

Z_DATA_ERROR 

A CRC error occurred when reading data; the file is corrupt.

Z_STREAM_ERROR 

The stream is invalid, or is in an invalid state.

Z_NEED_DICT 

A dictionary is needed (see inflateSetDictionary()).

Z_MEM_ERROR 

Insufficient memory available to decompress.

gzrewind

Name

gzrewind -- reset the file-position indicator on a compressed file stream

Synopsis

#include <zlib.h>

int gzrewind(gzFile file);

Description

The gzrewind() function shall set the starting position for the next read on compressed file stream file to the beginning of file. file must be open for reading.

gzrewind() is equivalent to

(int)gzseek(file, 0L, SEEK_SET)
.

Return Value

On success, gzrewind() shall return 0. On error, gzrewind() shall return -1, and may set the error value for file accordingly.

Errors

On error, gzrewind() shall return -1, indicating that file is NULL, or does not represent an open compressed file stream, or represents a compressed file stream that is open for writing and is not currently at the beginning of file.

gzseek

Name

gzseek -- reposition a file-position indicator in a compressed file stream

Synopsis

#include <zlib.h>

z_off_t gzseek(gzFile file, z_off_t offset, int whence);

Description

The gzseek() function shall set the file-position indicator for the compressed file stream file. The file-position indicator controls where the next read or write operation on the compressed file stream shall take place. The offset indicates a byte offset in the uncompressed data. The whence parameter may be one of:

SEEK_SET 

the offset is relative to the start of the uncompressed data.

SEEK_CUR 

the offset is relative to the current positition in the uncompressed data.

Note: The value SEEK_END need not be supported.

If the file is open for writing, the new offset must be greater than or equal to the current offset. In this case, gzseek() shall compress a sequence of null bytes to fill the gap from the previous offset to the new offset.

Return Value

On success, gzseek() shall return the resulting offset in the file expressed as a byte position in the uncompressed data stream. On error, gzseek() shall return -1, and may set the error value for file accordingly.

Errors

On error, gzseek() shall return -1. The following conditions shall always result in an error:

  • file is NULL

  • file does not represent an open compressed file stream.

  • file refers to a compressed file stream that is open for writing, and the newly computed offset is less than the current offset.

  • The newly computed offset is less than zero.

  • whence is not one of the supported values.

Application Usage (informative)

If file is open for reading, the implementation may still need to uncompress all of the data up to the new offset. As a result, gzseek() may be extremely slow in some circumstances.

gzsetparams

Name

gzsetparams -- dynamically set compression parameters

Synopsis

#include <zlib.h>

int gzsetparams (gzFile file, int level, int strategy);

Description

The gzsetparams() function shall set the compression level and compression strategy on the compressed file stream referenced by file. The compressed file stream shall have been opened in a write mode. The level and strategy are as defined in deflateInit2.. If there is any data pending writing, it shall be flushed before the parameters are updated.

Return Value

On success, the gzsetparams() function shall return Z_OK.

Errors

On error, gzsetparams() shall return one of the following error indications:

Z_STREAM_ERROR 

Invalid parameter, or file not open for writing.

Z_BUF_ERROR 

An internal inconsistency was detected while flushing the previous buffer.

gztell

Name

gztell -- find position on a compressed file stream

Synopsis

#include <zlib.h>

z_off_t gztell (gzFile file );

Description

The gztell() function shall return the starting position for the next read or write operation on compressed file stream file. This position represents the number of bytes from the beginning of file in the uncompressed data.

gztell() is equivalent to

gzseek(file, 0L, SEEK_CUR)
.

Return Value

gztell() shall return the current offset in the file expressed as a byte position in the uncompressed data stream. On error, gztell() shall return -1, and may set the error value for file accordingly.

Errors

On error, gztell() shall return -1, indicating that file is NULL, or does not represent an open compressed file stream.

gzwrite

Name

gzwrite -- write to a compressed file

Synopsis

#include <zlib.h>

int gzwrite (gzFile file, voidpc buf, unsigned int len);

Description

The gzwrite() function shall write data to the compressed file referenced by file, which shall have been opened in a write mode (see gzopen() and gzdopen()). On entry, buf shall point to a buffer containing len bytes of uncompressed data. The gzwrite() function shall compress this data and write it to file. The gzwrite() function shall return the number of uncompressed bytes actually written.

Return Value

On success, gzwrite() shall return the number of uncompressed bytes actually written to file. On error gzwrite() shall return a value less than or equal to 0. Applications may examine the cause using gzerror().

Errors

On error, gzwrite() shall set the error number associated with the stream identified by file to indicate the error. Applications should use gzerror() to access this error value.

Z_ERRNO 

An underlying base library function has indicated an error. The global variable errno may be examined for further information.

Z_STREAM_ERROR 

The stream is invalid, is not open for writing, or is in an invalid state.

Z_BUF_ERROR 

no compression progress is possible (see deflate()).

Z_MEM_ERROR 

Insufficient memory available to compress.

inflate

Name

inflate -- decompress data

Synopsis

#include <zlib.h>

int inflate(z_streamp stream, int flush);

Description

The inflate() function shall attempt to decompress data until either the input buffer is empty or the output buffer is full. The stream references a z_stream structure. Before the first call to inflate(), this structure should have been initialized by a call to inflateInit2_().

Note: inflateInit2_() is only in the binary standard; source level applications should initialize stream via a call to inflateInit() or inflateInit2().

In addition, the stream input and output buffers should have been initialized as follows:

next_in 

should point to the data to be decompressed.

avail_in 

should contain the number of bytes of data in the buffer referenced by next_in.

next_out 

should point to a buffer where decompressed data may be placed.

avail_out 

should contain the size in bytes of the buffer referenced by next_out

The inflate() function shall perform one or both of the following actions:

  1. Decompress input data from next_in and update next_in, avail_in and total_in to reflect the data that has been decompressed.

  2. Fill the output buffer referenced by next_out, and update next_out, avail_out, and total_out to reflect the decompressed data that has been placed there. If flush is not Z_NO_FLUSH, and avail_out indicates that there is still space in output buffer, this action shall always occur (see below for further details).

The inflate() function shall return when either avail_in reaches zero (indicating that all the input data has been compressed), or avail_out reaches zero (indicating that the output buffer is full).

Flush Operation

The parameter flush determines when uncompressed bytes are added to the output buffer in next_out. If flush is Z_NO_FLUSH, inflate() may return with some data pending output, and not yet added to the output buffer.

If flush is Z_SYNC_FLUSH, inflate() shall flush all pending output to next_out, and update next_out and avail_out accordingly.

If flush is set to Z_BLOCK, inflate() shall stop adding data to the output buffer if and when the next compressed block boundary is reached (see RFC 1951: DEFLATE Compressed Data Format Specification).

If flush is set to Z_FINISH, all of the compressed input shall be decompressed and added to the output. If there is insufficient output space (i.e. the compressed input data uncompresses to more than avail_out bytes), then inflate() shall fail and return Z_BUF_ERROR.

Return Value

On success, inflate() shall return Z_OK if decompression progress has been made, or Z_STREAM_END if all of the input data has been decompressed and there was sufficient space in the output buffer to store the uncompressed result. On error, inflate() shall return a value to indicate the error.

Note: If inflate() returns Z_OK and has set avail_out to zero, the function should be called again with the same value for flush, and with updated next_out and avail_out until inflate() returns with either Z_OK or Z_STREAM_END and a non-zero avail_out.

On success, inflate() shall set the adler to the Adler-32 checksum of the output produced so far (i.e. total_out bytes).

Errors

On error, inflate() shall return a value as described below, and may set the msg field of stream to point to a string describing the error:

Z_BUF_ERROR 

No progress is possible; either avail_in or avail_out was zero.

Z_MEM_ERROR 

Insufficient memory.

Z_STREAM_ERROR 

The state (as represented in stream) is inconsistent, or stream was NULL.

Z_NEED_DICT 

A preset dictionary is required. The adler field shall be set to the Adler-32 checksum of the dictionary chosen by the compressor.

inflateEnd

Name

inflateEnd -- free decompression stream state

Synopsis

#include <zlib.h>

int inflateEnd(z_streamp stream);

Description

The inflateEnd() function shall free all allocated state information referenced by stream. All pending output is discarded, and unprocessed input is ignored.

Return Value

On success, inflateEnd() shall return Z_OK. Otherwise it shall return Z_STREAM_ERROR to indicate the error.

Errors

On error, inflateEnd() shall return Z_STREAM_ERROR. The following conditions shall be treated as an error:

  • The state in stream is inconsistent.

  • stream is NULL.

  • The zfree function pointer is NULL.

inflateInit2_

Name

inflateInit2_ -- initialize decompression system

Synopsis

#include <zlib.h>

int inflateInit2_ (z_streamp strm, int windowBits, char * version, int stream_size);

Description

The inflateInit2_() function shall initialize the decompression system. On entry, strm shall refer to a user supplied z_stream object (a z_stream_s structure). The following fields shall be set on entry:

zalloc 

a pointer to an alloc_func function, used to allocate state information. If this is NULL, a default allocation function will be used.

zfree 

a pointer to a free_func function, used to free memory allocated by the zalloc function. If this is NULL a default free function will be used.

opaque 

If alloc_func is not NULL, opaque is a user supplied pointer to data that will be passed to the alloc_func and free_func functions.

If the version requested is not compatible with the version implemented, or if the size of the z_stream_s structure provided in stream_size does not match the size in the library implementation, inflateInit2_() shall fail, and return Z_VERSION_ERROR.

The windowBits parameter shall be a base 2 logarithm of the maximum window size to use, and shall be a value between 8 and 15. If the input data was compressed with a larger window size, subsequent attempts to decompress this data will fail with Z_DATA_ERROR, rather than try to allocate a larger window.

The inflateInit2_() function is not in the source standard; it is only in the binary standard. Source applications should use the inflateInit2() macro.

Return Value

On success, the inflateInit2_() function shall return Z_OK. Otherwise, inflateInit2_() shall return a value as described below to indicate the error.

Errors

On error, inflateInit2_() shall return one of the following error indicators:

Z_STREAM_ERROR 

Invalid parameter.

Z_MEM_ERROR 

Insufficient memory available.

Z_VERSION_ERROR 

The version requested is not compatible with the library version, or the z_stream size differs from that used by the library.

In addition, the msg field of the strm may be set to an error message.

inflateInit_

Name

inflateInit_ -- initialize decompression system

Synopsis

#include <zlib.h>

int inflateInit_(z_streamp stream, const char * version, int stream_size);

Description

The inflateInit_() function shall initialize the decompression system. On entry, stream shall refer to a user supplied z_stream object (a z_stream_s structure). The following fields shall be set on entry:

zalloc 

a pointer to an alloc_func function, used to allocate state information. If this is NULL, a default allocation function will be used.

zfree 

a pointer to a free_func function, used to free memory allocated by the zalloc function. If this is NULL a default free function will be used.

opaque 

If alloc_func is not NULL, opaque is a user supplied pointer to data that will be passed to the alloc_func and free_func functions.

If the version requested is not compatible with the version implemented, or if the size of the z_stream_s structure provided in stream_size does not match the size in the library implementation, inflateInit_() shall fail, and return Z_VERSION_ERROR.

The inflateInit_() function is not in the source standard; it is only in the binary standard. Source applications should use the inflateInit() macro.

The inflateInit_() shall be equivalent to

inflateInit2_(strm, MAX_WBITS, version, stream_size);

Return Value

On success, the inflateInit_() function shall return Z_OK. Otherwise, inflateInit_() shall return a value as described below to indicate the error.

Errors

On error, inflateInit_() shall return one of the following error indicators:

Z_STREAM_ERROR 

Invalid parameter.

Z_MEM_ERROR 

Insufficient memory available.

Z_VERSION_ERROR 

The version requested is not compatible with the library version, or the z_stream size differs from that used by the library.

In addition, the msg field of the strm may be set to an error message.

inflateReset

Name

inflateReset -- reset decompression stream state

Synopsis

#include <zlib.h>

int inflateReset(z_streamp stream);

Description

The inflateReset() function shall reset all state associated with stream. All pending output shall be discarded, and the counts of processed bytes (total_in and total_out) shall be reset to zero.

Return Value

On success, inflateReset() shall return Z_OK. Otherwise it shall return Z_STREAM_ERROR to indicate the error.

Errors

On error, inflateReset() shall return Z_STREAM_ERROR. The following conditions shall be treated as an error:

  • The state in stream is inconsistent or inappropriate.

  • stream is NULL.

inflateSetDictionary

Name

inflateSetDictionary -- initialize decompression dictionary

Synopsis

#include <zlib.h>

int inflateSetDictionary(z_streamp stream, const Bytef * dictionary, uInt dictlen);

Description

The inflateSetDictionary() function shall initialize the decompression dictionary associated with stream using the dictlen bytes referenced by dictionary.

The inflateSetDictionary() function should be called immediately after a call to inflate() has failed with return value Z_NEED_DICT. The dictionary must have the same Adler-32 checksum as the dictionary used for the compression (see deflateSetDictionary()).

stream shall reference an initialized decompression stream, with total_in zero (i.e. no data has been decompressed since the stream was initialized).

Return Value

On success, inflateSetDictionary() shall return Z_OK. Otherwise it shall return a value as indicated below.

Errors

On error, inflateSetDictionary() shall return a value as described below:

Z_STREAM_ERROR 

The state in stream is inconsistent, or stream was NULL.

Z_DATA_ERROR 

The Adler-32 checksum of the supplied dictionary does not match that used for the compression.

Application Usage (informative)

The application should provide a dictionary consisting of strings {{{ed note: do we really mean "strings"? Null terminated?}}} that are likely to be encountered in the data to be compressed. The application should ensure that the dictionary is sorted such that the most commonly used strings occur at the end of the dictionary.

The use of a dictionary is optional; however if the data to be compressed is relatively short and has a predictable structure, the use of a dictionary can substantially improve the compression ratio.

inflateSync

Name

inflateSync -- advance compression stream to next sync point

Synopsis

#include <zlib.h>

int inflateSync(z_streamp stream);

Description

The inflateSync() function shall advance through the compressed data in stream, skipping any invalid compressed data, until the next full flush point is reached, or all input is exhausted. See the description for deflate() with flush level Z_FULL_FLUSH. No output is placed in next_out.

Return Value

On success, inflateSync() shall return Z_OK, and update the next_in, avail_in, and total_in fields of stream to reflect the number of bytes of compressed data that have been skipped. Otherwise, inflateSync() shall return a value as described below to indicate the error.

Errors

On error, inflateSync() shall return a value as described below:

Z_STREAM_ERROR 

The state (as represented in stream) is inconsistent, or stream was NULL.

Z_BUF_ERROR 

There is no data available to skip over.

Z_DATA_ERROR 

No sync point was found.

inflateSyncPoint

Name

inflateSyncPoint -- test for synchronization point

Synopsis

#include <zlib.h>

int inflateSyncPoint(z_streamp stream);

Description

The inflateSyncPoint() function shall return a non-zero value if the compressed data stream referenced by stream is at a synchronization point.

Return Value

If the compressed data in stream is at a synchronization point (see deflate() with a flush level of Z_SYNC_FLUSH or Z_FULL_FLUSH), inflateSyncPoint() shall return a non-zero value, other than Z_STREAM_ERROR. Otherwise, if the stream is valid, inflateSyncPoint() shall return 0. If stream is invalid, or in an invalid state, inflateSyncPoint() shall return Z_STREAM_ERROR to indicate the error.

Errors

On error, inflateSyncPoint() shall return a value as described below:

Z_STREAM_ERROR 

The state (as represented in stream) is inconsistent, or stream was NULL.

uncompress

Name

uncompress -- uncompress data

Synopsis

#include <zlib.h>

int uncompress(Bytef * dest, uLongf * destLen, const Bytef * source, uLong sourceLen);

Description

The uncompress() function shall attempt to uncompress sourceLen bytes of data in the buffer source, placing the result in the buffer dest.

On entry, destLen should point to a value describing the size of the dest buffer. The application should ensure that this value is large enough to hold the entire uncompressed data.

Note: The LSB does not describe any mechanism by which a compressor can communicate the size required to the uncompressor.

On successful exit, the variable referenced by destLen shall be updated to hold the length of uncompressed data in dest.

Return Value

On success, uncompress() shall return Z_OK. Otherwise, uncompress() shall return a value to indicate the error.

Errors

On error, uncompress() shall return a value as described below:

Z_BUF_ERROR 

The buffer dest was not large enough to hold the uncompressed data.

Z_MEM_ERROR 

Insufficient memory.

Z_DATA_ERROR 

The compressed data (referenced by source) was corrupted.

zError

Name

zError -- translate error number to string

Synopsis

#include <zlib.h>

const char * zError(int err);

Description

The zError() function shall return the string identifying the error associated with err. This allows for conversion from error code to string for functions such as compress() and uncompress(), that do not always set the string version of an error.

Return Value

The zError() function shall return a the string identifying the error associated with err, or NULL if err is not a valid error code.

It is unspecified if the string returned is determined by the setting of the LC_MESSAGES category in the current locale.

Errors

None defined.

zlibVersion

Name

zlibVersion -- discover library version at run time

Synopsis

#include <zlib.h>

const char * zlibVersion (void);

Description

The zlibVersion() function shall return the string identifying the interface version at the time the library was built.

Applications should compare the value returned from zlibVersion() with the macro constant ZLIB_VERSION for compatibility.

Return Value

The zlibVersion() function shall return a the string identifying the version of the library currently implemented.

Errors

None defined.


14.5. Interfaces for libncurses

Table 14-3 defines the library name and shared object name for the libncurses library

Table 14-3. libncurses Definition

Library:libncurses
SONAME:libncurses.so.5

The Parameters or return value of the following interface have had the const qualifier added as shown here.

extern const char *keyname (int);
extern int mvscanw (int, int, const char *, ...);
extern int mvwscanw (WINDOW *, int, int, const char *, ...);
extern SCREEN *newterm (const char *, FILE *, FILE *);
extern int scanw (const char *, ...);
extern int vwscanw (WINDOW *, const char *, va_list);
extern int vw_scanw (WINDOW *, const char *, va_list);
extern int wscanw (WINDOW *, const char *, ...);

The behavior of the interfaces in this library is specified by the following specifications:

[SUS-CURSES] X/Open Curses


14.5.1. Curses


14.5.1.1. Interfaces for Curses

An LSB conforming implementation shall provide the generic functions for Curses specified in Table 14-4, with the full mandatory functionality as described in the referenced underlying specification.

Table 14-4. libncurses - Curses Function Interfaces

addch [SUS-CURSES]addchnstr [SUS-CURSES]addchstr [SUS-CURSES]addnstr [SUS-CURSES]
addstr [SUS-CURSES]attr_get [SUS-CURSES]attr_off [SUS-CURSES]attr_on [SUS-CURSES]
attr_set [SUS-CURSES]attroff [SUS-CURSES]attron [SUS-CURSES]attrset [SUS-CURSES]
baudrate [SUS-CURSES]beep [SUS-CURSES]bkgd [SUS-CURSES]bkgdset [SUS-CURSES]
border [SUS-CURSES]box [SUS-CURSES]can_change_color [SUS-CURSES]cbreak [SUS-CURSES]
chgat [SUS-CURSES]clear [SUS-CURSES]clearok [SUS-CURSES]clrtobot [SUS-CURSES]
clrtoeol [SUS-CURSES]color_content [SUS-CURSES]color_set [SUS-CURSES]copywin [SUS-CURSES]
curs_set [SUS-CURSES]def_prog_mode [SUS-CURSES]def_shell_mode [SUS-CURSES]del_curterm [SUS-CURSES]
delay_output [SUS-CURSES]delch [SUS-CURSES]deleteln [SUS