Copyright © 2010 Linux Foundation
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Portions of the text may be copyrighted by the following parties:
The Regents of the University of California
Free Software Foundation
Ian F. Darwin
Paul Vixie
BSDI (now Wind River)
Andrew G Morgan
Jean-loup Gailly and Mark Adler
Massachusetts Institute of Technology
Apple Inc.
Easy Software Products
artofcode LLC
Till Kamppeter
Manfred Wassman
Python Software Foundation
These excerpts are being used in accordance with their respective licenses.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
UNIX is a registered trademark of The Open Group.
LSB is a trademark of the Linux Foundation in the United States and other countries.
AMD is a trademark of Advanced Micro Devices, Inc.
Intel and Itanium are registered trademarks and Intel386 is a trademark of Intel Corporation.
PowerPC is a registered trademark and PowerPC Architecture is a trademark of the IBM Corporation.
S/390 is a registered trademark of the IBM Corporation.
OpenGL is a registered trademark of Silicon Graphics, Inc.
This is version 4.1 of the Linux Standard Base Core Specification. This specification is one of a series of volumes under the collective title Linux Standard Base:
Core
C++
Desktop
Languages
Printing
Note that the Core, C++ and Desktop volumes consist of a generic volume augmented by an architecture-specific volume.
This is a released specification. Other documents may supersede or augment this specification. A list of current Linux Standard Base (LSB) specifications is available at http://refspecs.linuxfoundation.org.
If you wish to make comments regarding this document in a manner that is tracked by the LSB project, please submit them using our public bug database at http://bugs.linuxbase.org. Please enter your feedback, carefully indicating the title of the section for which you are submitting feedback, and the volume and version of the specification where you found the problem, quoting the incorrect text if appropriate. If you are suggesting a new feature, please indicate what the problem you are trying to solve is. That is more important than the solution, in fact.
If you do not have or wish to create a bug database account then you
can also e-mail feedback to
<lsb-discuss@lists.linuxfoundation.org>
(subscribe, archives), and arrangements will be made to transpose the
comments to our public bug database.
The LSB defines a binary interface for application programs that are compiled and packaged for LSB-conforming implementations on many different hardware architectures. A binary specification must include information specific to the computer processor architecture for which it is intended. To avoid the complexity of conditional descriptions, the specification has instead been divided into generic parts which are augmented by one of several architecture-specific parts, depending on the target processor architecture; the generic part will indicate when reference must be made to the architecture part, and vice versa.
This document should be used in conjunction with the documents it references. This document enumerates the system components it includes, but descriptions of those components may be included entirely or partly in this document, partly in other documents, or entirely in other reference documents. For example, the section that describes system service routines includes a list of the system routines supported in this interface, formal declarations of the data structures they use that are visible to applications, and a pointer to the underlying referenced specification for information about the syntax and semantics of each call. Only those routines not described in standards referenced by this document, or extensions to those standards, are described in the detail. Information referenced in this way is as much a part of this document as is the information explicitly included here.
The specification carries a version number of either the form x.y or x.y.z. This version number carries the following meaning:
The first number (x) is the major version number. Versions sharing the same major version number shall be compatible in a backwards direction; that is, a newer version shall be compatible with an older version. Any deletion of a library results in a new major version number. Interfaces marked as deprecated may be removed from the specification at a major version change.
The second number (y) is the minor version number. Libraries and individual interfaces may be added, but not removed. Interfaces may be marked as deprecated at a minor version change. Other minor changes may be permitted at the discretion of the LSB workgroup.
The third number (z), if present, is the editorial level. Only editorial changes should be included in such versions.
Since this specification is a descriptive Application Binary Interface, and not a source level API specification, it is not possible to make a guarantee of 100% backward compatibility between major releases. However, it is the intent that those parts of the binary interface that are visible in the source level API will remain backward compatible from version to version, except where a feature marked as "Deprecated" in one release may be removed from a future release. Implementors are strongly encouraged to make use of symbol versioning to permit simultaneous support of applications conforming to different releases of this specification.
LSB is a trademark of the Linux Foundation. Developers of applications or implementations interested in using the trademark should see the Linux Foundation Certification Policy for details.
The Linux Standard Base (LSB) defines a system interface for compiled applications and a minimal environment for support of installation scripts. Its purpose is to enable a uniform industry standard environment for high-volume applications conforming to the LSB.
These specifications are composed of two basic parts: A common specification ("LSB-generic" or "generic LSB"), ISO/IEC 23360 Part 1, describing those parts of the interface that remain constant across all implementations of the LSB, and an architecture-specific part ("LSB-arch") describing the parts of the interface that vary by processor architecture. Together, the LSB-generic and the relevant architecture-specific part of ISO/IEC 23360 for a single hardware architecture provide a complete interface specification for compiled application programs on systems that share a common hardware architecture.
ISO/IEC 23360 Part 1, the LSB-generic document, should be used in conjunction with an architecture-specific part. Whenever a section of the LSB-generic specification is supplemented by architecture-specific information, the LSB-generic document includes a reference to the architecture part. Architecture-specific parts of ISO/IEC 23360 may also contain additional information that is not referenced in the LSB-generic document.
The LSB contains both a set of Application Program Interfaces (APIs) and Application Binary Interfaces (ABIs). APIs may appear in the source code of portable applications, while the compiled binary of that application may use the larger set of ABIs. A conforming implementation provides all of the ABIs listed here. The compilation system may replace (e.g. by macro definition) certain APIs with calls to one or more of the underlying binary interfaces, and may insert calls to binary interfaces as needed.
The LSB is primarily a binary interface definition. Not all of the source level APIs available to applications may be contained in this specification.
This is the Core module of the Linux Standard Base (LSB), ISO/IEC 23360 Part 1. This module provides the fundamental system interfaces, libraries, and runtime environment upon which all conforming applications and libraries depend.
Interfaces described in this part of ISO/IEC 23360 are mandatory except where explicitly listed otherwise. Core interfaces may be supplemented by other modules; all modules are built upon the core.
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
Note: Where copies of a document are available on the World Wide Web, a Uniform Resource Locator (URL) is given for informative purposes only. This may point to a more recent copy of the referenced specification, or may be out of date. Reference copies of specifications at the revision level indicated may be found at the Linux Foundation's Reference Specifications site.
Table 2-1. Normative References
Name | Title | URL |
---|---|---|
Filesystem Hierarchy Standard | Filesystem Hierarchy Standard (FHS) 2.3 | http://www.pathname.com/fhs/ |
ISO C (1999) | ISO/IEC 9899: 1999, Programming Languages --C | |
Itanium™ C++ ABI | Itanium™ C++ ABI (Revision 1.86) | http://refspecs.linuxfoundation.org/cxxabi-1.86.html |
Large File Support | Large File Support | http://www.UNIX-systems.org/version2/whatsnew/lfs20mar.html |
POSIX 1003.1-2001 (ISO/IEC 9945-2003) | ISO/IEC 9945-1:2003 Information technology -- Portable Operating System Interface (POSIX) -- Part 1: Base Definitions ISO/IEC 9945-2:2003 Information technology -- Portable Operating System Interface (POSIX) -- Part 2: System Interfaces ISO/IEC 9945-3:2003 Information technology -- Portable Operating System Interface (POSIX) -- Part 3: Shell and Utilities ISO/IEC 9945-4:2003 Information technology -- Portable Operating System Interface (POSIX) -- Part 4: Rationale Including Technical Cor. 1: 2004 | http://www.unix.org/version3/ |
POSIX 1003.1-2008 (ISO/IEC 9945-2009) | Portable Operating System Interface (POSIX®) 2008 Edition / The Open Group Technical Standard Base Specifications, Issue 7 | http://www.unix.org/version4/ |
SUSv2 | CAE Specification, January 1997, System Interfaces and Headers (XSH),Issue 5 (ISBN: 1-85912-181-0, C606) | http://www.opengroup.org/publications/catalog/un.htm |
SVID Issue 3 | American Telephone and Telegraph Company, System V Interface Definition, Issue 3; Morristown, NJ, UNIX Press, 1989. (ISBN 0201566524) | |
SVID Issue 4 | System V Interface Definition, Fourth Edition | http://refspecs.linuxfoundation.org/svid4/ |
System V ABI | System V Application Binary Interface, Edition 4.1 | http://www.sco.com/developers/devspecs/gabi41.pdf |
System V ABI Update | System V Application Binary Interface - DRAFT - 17 December 2003 | http://www.sco.com/developers/gabi/2003-12-17/contents.html |
X/Open Curses | CAE Specification, May 1996, X/Open Curses, Issue 4, Version 2 (ISBN: 1-85912-171-3, C610), plus Corrigendum U018 | http://www.opengroup.org/publications/catalog/un.htm |
In addition, the specifications listed below provide essential background information to implementors of this specification. These references are included for information only.
Table 2-2. Other References
Name | Title | URL |
---|---|---|
DWARF Debugging Information Format, Revision 2.0.0 | DWARF Debugging Information Format, Revision 2.0.0 (July 27, 1993) | http://refspecs.linux-foundation.org/dwarf/dwarf-2.0.0.pdf |
DWARF Debugging Information Format, Revision 3.0.0 (Draft) | DWARF Debugging Information Format, Revision 3.0.0 (Draft) | http://refspecs.linux-foundation.org/dwarf |
IEC 60559/IEEE 754 Floating Point | IEC 60559:1989 Binary floating-point arithmetic for microprocessor systems | http://www.ieee.org/ |
ISO/IEC TR14652 | ISO/IEC Technical Report 14652:2002 Specification method for cultural conventions | |
ITU-T V.42 | International Telecommunication Union Recommendation V.42 (2002): Error-correcting procedures for DCEs using asynchronous-to-synchronous conversionITUV | http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-V.42 |
Li18nux Globalization Specification | LI18NUX 2000 Globalization Specification, Version 1.0 with Amendment 4 | http://www.openi18n.org/docs/html/LI18NUX-2000-amd4.htm |
Linux Allocated Device Registry | LINUX ALLOCATED DEVICES | http://www.lanana.org/docs/device-list/devices.txt |
Mozilla's NSS SSL Reference | Mozilla's NSS SSL Reference | http://www.mozilla.org/projects/security/pki/nss/ref/ssl/ |
NSPR Reference | Mozilla's NSPR Reference | http://refspecs.linuxfoundation.org/NSPR_API_Reference/NSPR_API.html |
PAM | Open Software Foundation, Request For Comments: 86.0 , October 1995, V. Samar & R.Schemers (SunSoft) | http://www.opengroup.org/tech/rfc/mirror-rfc/rfc86.0.txt |
RFC 1321: The MD5 Message-Digest Algorithm | IETF RFC 1321: The MD5 Message-Digest Algorithm | http://www.ietf.org/rfc/rfc1321.txt |
RFC 1831/1832 RPC & XDR | IETF RFC 1831 & 1832 | http://www.ietf.org/ |
RFC 1833: Binding Protocols for ONC RPC Version 2 | IETF RFC 1833: Binding Protocols for ONC RPC Version 2 | http://www.ietf.org/rfc/rfc1833.txt |
RFC 1950: ZLIB Compressed Data Format Specication | IETF RFC 1950: ZLIB Compressed Data Format Specification | http://www.ietf.org/rfc/rfc1950.txt |
RFC 1951: DEFLATE Compressed Data Format Specification | IETF RFC 1951: DEFLATE Compressed Data Format Specification version 1.3 | http://www.ietf.org/rfc/rfc1951.txt |
RFC 1952: GZIP File Format Specification | IETF RFC 1952: GZIP file format specification version 4.3 | http://www.ietf.org/rfc/rfc1952.txt |
RFC 2440: OpenPGP Message Format | IETF RFC 2440: OpenPGP Message Format | http://www.ietf.org/rfc/rfc2440.txt |
RFC 2821:Simple Mail Transfer Protocol | IETF RFC 2821: Simple Mail Transfer Protocol | http://www.ietf.org/rfc/rfc2821.txt |
RFC 2822:Internet Message Format | IETF RFC 2822: Internet Message Format | http://www.ietf.org/rfc/rfc2822.txt |
RFC 791:Internet Protocol | IETF RFC 791: Internet Protocol Specification | http://www.ietf.org/rfc/rfc791.txt |
RPM Package Format | RPM Package Format V3.0 | http://www.rpm.org/max-rpm/s1-rpm-file-format-rpm-file-format.html |
SUSv2 Commands and Utilities | The Single UNIX Specification(SUS) Version 2, Commands and Utilities (XCU), Issue 5 (ISBN: 1-85912-191-8, C604) | http://www.opengroup.org/publications/catalog/un.htm |
zlib Manual | zlib 1.2 Manual | http://www.gzip.org/zlib/ |
The libraries listed in Table 3-1 shall be available on a Linux Standard Base system, with the specified runtime names. The libraries listed in Table 3-2 are architecture specific, but shall be available on all LSB conforming systems. This list may be supplemented or amended by the relevant architecture specific part of ISO/IEC 23360.
Table 3-1. Standard Library Names
Library | Runtime Name |
---|---|
libdl | libdl.so.2 |
libcrypt | libcrypt.so.1 |
libz | libz.so.1 |
libncurses | libncurses.so.5 |
libutil | libutil.so.1 |
libpthread | libpthread.so.0 |
librt | librt.so.1 |
libpam | libpam.so.0 |
libgcc_s | libgcc_s.so.1 |
Table 3-2. Standard Library Names defined in the Architecture Specific Parts of ISO/IEC 23360
Library | Runtime Name |
---|---|
libm | See archLSB |
libc | See archLSB |
proginterp | See archLSB |
These libraries will be in an implementation-defined directory which the dynamic linker shall search by default.
A conforming implementation is necessarily architecture specific, and must provide the interfaces specified by both the generic LSB Core specification (ISO/IEC 23360 Part 1) and the relevant architecture specific part of ISO/IEC 23360.
Rationale: An implementation must provide at least the interfaces specified in these specifications. It may also provide additional interfaces.
A conforming implementation shall satisfy the following requirements:
A processor architecture represents a family of related processors which may not have identical feature sets. The architecture specific parts of ISO/IEC 23360 that supplement this specification for a given target processor architecture describe a minimum acceptable processor. The implementation shall provide all features of this processor, whether in hardware or through emulation transparent to the application.
The implementation shall be capable of executing compiled applications having the format and using the system interfaces described in this document.
The implementation shall provide libraries containing the interfaces specified by this document, and shall provide a dynamic linking mechanism that allows these interfaces to be attached to applications at runtime. All the interfaces shall behave as specified in this document.
The map of virtual memory provided by the implementation shall conform to the requirements of this document.
The implementation's low-level behavior with respect to function call linkage, system traps, signals, and other such activities shall conform to the formats described in this document.
The implementation shall provide all of the mandatory interfaces in their entirety.
The implementation may provide one or more of the optional interfaces. Each optional interface that is provided shall be provided in its entirety. The product documentation shall state which optional interfaces are provided.
The implementation shall provide all files and utilities specified as part of this document in the format defined here and in other referenced documents. All commands and utilities shall behave as required by this document. The implementation shall also provide all mandatory components of an application's runtime environment that are included or referenced in this document.
The implementation, when provided with standard data formats and values at a named interface, shall provide the behavior defined for those values and data formats at that interface. However, a conforming implementation may consist of components which are separately packaged and/or sold. For example, a vendor of a conforming implementation might sell the hardware, operating system, and windowing system as separately packaged items.
The implementation may provide additional interfaces with different names. It may also provide additional behavior corresponding to data values outside the standard ranges, for standard named interfaces.
A conforming application is necessarily architecture specific, and must conform to both the generic LSB Core specification (ISO/IEC 23360 Part 1)and the relevant architecture specific part of ISO/IEC 23360.
A conforming application shall satisfy the following requirements:
Its executable files shall be either shell scripts or object files in the format defined for the Object File Format system interface.
Its object files shall participate in dynamic linking as defined in the Program Loading and Linking System interface.
It shall employ only the instructions, traps, and other low-level facilities defined in the Low-Level System interface as being for use by applications.
If it requires any optional interface defined in this document in order to be installed or to execute successfully, the requirement for that optional interface shall be stated in the application's documentation.
It shall not use any interface or data format that is not required to be provided by a conforming implementation, unless:
If such an interface or data format is supplied by another application through direct invocation of that application during execution, that application shall be in turn an LSB conforming application.
The use of that interface or data format, as well as its source, shall be identified in the documentation of the application.
It shall not use any values for a named interface that are reserved for vendor extensions.
For the purposes of this document, the terms given in ISO/IEC Directives, Part 2, Annex H and the following apply.
Some LSB specification documents have both a generic, architecture-neutral part and an architecture-specific part. The latter describes elements whose definitions may be unique to a particular processor architecture. The term archLSB may be used in the generic part to refer to the corresponding section of the architecture-specific part.
The total set of interfaces that are available to be used in the compiled binary code of a conforming application, including the run-time details such as calling conventions, binary format, C++ name mangling, etc.
Describes a value or behavior that is not defined by this document but is selected by an implementor. The value or behavior may vary among implementations that conform to this document. An application should not rely on the existence of the value or behavior. An application that relies on such a value or behavior cannot be assured to be portable across conforming implementations. The implementor shall document such a value or behavior so that it can be used correctly by an application.
A file that is read by an interpreter (e.g., awk). The first line of the shell script includes a reference to its interpreter binary.
The total set of interfaces that are available to be used in the source code of a conforming application. Due to translations, the Binary Standard and the Source Standard may contain some different interfaces.
Describes the nature of a value or behavior not defined by this document which results from use of an invalid program construct or invalid data input. The value or behavior may vary among implementations that conform to this document. An application should not rely on the existence or validity of the value or behavior. An application that relies on any particular value or behavior cannot be assured to be portable across conforming implementations.
Describes the nature of a value or behavior not specified by this document which results from use of a valid program construct or valid data input. The value or behavior may vary among implementations that conform to this document. An application should not rely on the existence or validity of the value or behavior. An application that relies on any particular value or behavior cannot be assured to be portable across conforming implementations.
In addition, for the portions of this specification which build on IEEE Std 1003.1-2001, the definitions given in IEEE Std 1003.1-2001, Base Definitions, Chapter 3 apply.
Throughout this document, the following typographic conventions are used:
function() | the name of a function | |
command | the name of a command or utility | |
CONSTANT | a constant value | |
parameter | a parameter | |
variable | a variable |
Throughout this specification, several tables of interfaces are presented. Each entry in these tables has the following format:
name | the name of the interface | |
(symver) | An optional symbol version identifier, if required. | |
[refno] | A reference number indexing the table of referenced specifications that follows this table. |
For example,
refers to the interface named forkpty() with symbol versionGLIBC_2.0
that is defined in the
SUSv3 reference.
Note: For symbols with versions which differ between architectures, the symbol versions are defined in the architecture specific parts of ISO/IEC 23360 only.
This specification includes many interfaces described in POSIX 1003.1-2001 (ISO/IEC 9945-2003). Unless otherwise specified, such interfaces should behave exactly as described in that specification. Any conflict between the requirements described here and the POSIX 1003.1-2001 (ISO/IEC 9945-2003) standard is unintentional, except as explicitly noted otherwise.
Note: In addition to the differences noted inline in this specification, PDTR 24715 has extracted the differences between this specification and POSIX 1003.1-2001 (ISO/IEC 9945-2003) into a single place. It is the long term plan of the Linux Foundation to converge the LSB Core Specification with ISO/IEC 9945 POSIX.
The LSB Specification Authority is responsible for deciding the meaning of conformance to normative referenced standards in the LSB context. Problem Reports regarding underlying or referenced standards in any other context will be referred to the relevant maintenance body for that standard.
The LSB is the base for several other specification projects under the umbrella of the Linux Foundation (LF). This specification is the foundation, and other specifications build on the interfaces defined here. However, beyond those specifications listed as Normative References, this specification has no dependencies on other LF projects.
Executable and Linking Format (ELF) defines the object format for compiled applications. This specification supplements the information found in System V ABI Update and is intended to document additions made since the publication of that document.
LSB-conforming applications shall assume that stack, heap and other allocated memory regions will be non-executable. The application must take steps to make them executable if needed.
LSB-conforming applications shall use the data representation as defined in the Arcitecture specific ELF documents.
In addition to the fundamental types specified in the relevant architecture specific part of ISO/IEC 23360, a 1 byte data type is defined here.
LSB-conforming implementations shall support the object file Executable and Linking Format (ELF), which is defined by the following documents:
this specification
the relevant architecture specific part of ISO/IEC 23360
As described in System V ABI, an ELF object file contains a number of sections.
The section header table is an array of
Elf32_Shdr or
Elf64_Shdr structures as
described in System V ABI. The
sh_type
member shall be either a value from
Table 10-1, drawn from the System V
ABI, or one of the additional values specified in Table 10-2.
A section header's sh_type
member specifies the sections's semantics.
The following section types are defined in the System V ABI and the System V ABI Update.
Table 10-1. ELF Section Types
Various sections hold program and control information. Sections in the lists below are used by the system and have the indicated types and attributes.
The following sections are defined in the System V ABI and the System V ABI Update.
Table 10-3. ELF Special Sections
Name | Type | Attributes |
---|---|---|
.bss | SHT_NOBITS | SHF_ALLOC+SHF_WRITE |
.comment | SHT_PROGBITS | 0 |
.data | SHT_PROGBITS | SHF_ALLOC+SHF_WRITE |
.data1 | SHT_PROGBITS | SHF_ALLOC+SHF_WRITE |
.debug | SHT_PROGBITS | 0 |
.dynamic | SHT_DYNAMIC | SHF_ALLOC+SHF_WRITE |
.dynstr | SHT_STRTAB | SHF_ALLOC |
.dynsym | SHT_DYNSYM | SHF_ALLOC |
.fini | SHT_PROGBITS | SHF_ALLOC+SHF_EXECINSTR |
.fini_array | SHT_FINI_ARRAY | SHF_ALLOC+SHF_WRITE |
.hash | SHT_HASH | SHF_ALLOC |
.init | SHT_PROGBITS | SHF_ALLOC+SHF_EXECINSTR |
.init_array | SHT_INIT_ARRAY | SHF_ALLOC+SHF_WRITE |
.interp | SHT_PROGBITS | SHF_ALLOC |
.line | SHT_PROGBITS | 0 |
.note | SHT_NOTE | 0 |
.preinit_array | SHT_PREINIT_ARRAY | SHF_ALLOC+SHF_WRITE |
.rodata | SHT_PROGBITS | SHF_ALLOC+SHF_MERGE+SHF_STRINGS |
.rodata1 | SHT_PROGBITS | SHF_ALLOC+SHF_MERGE+SHF_STRINGS |
.shstrtab | SHT_STRTAB | 0 |
.strtab | SHT_STRTAB | SHF_ALLOC |
.symtab | SHT_SYMTAB | SHF_ALLOC |
.tbss | SHT_NOBITS | SHF_ALLOC+SHF_WRITE+SHF_TLS |
.tdata | SHT_PROGBITS | SHF_ALLOC+SHF_WRITE+SHF_TLS |
.text | SHT_PROGBITS | SHF_ALLOC+SHF_EXECINSTR |
Object files in an LSB conforming application may also contain one or more of the additional special sections described below.
Table 10-4. Additional Special Sections
Name | Type | Attributes |
---|---|---|
.ctors | SHT_PROGBITS | SHF_ALLOC+SHF_WRITE |
.data.rel.ro | SHT_PROGBITS | SHF_ALLOC+SHF_WRITE |
.dtors | SHT_PROGBITS | SHF_ALLOC+SHF_WRITE |
.eh_frame | SHT_PROGBITS | SHF_ALLOC |
.eh_frame_hdr | SHT_PROGBITS | SHF_ALLOC |
.gcc_except_table | SHT_PROGBITS | SHF_ALLOC |
.gnu.version | SHT_GNU_versym | SHF_ALLOC |
.gnu.version_d | SHT_GNU_verdef | SHF_ALLOC |
.gnu.version_r | SHT_GNU_verneed | SHF_ALLOC |
.got.plt | SHT_PROGBITS | SHF_ALLOC+SHF_WRITE |
.jcr | SHT_PROGBITS | SHF_ALLOC+SHF_WRITE |
.note.ABI-tag | SHT_NOTE | SHF_ALLOC |
.stab | SHT_PROGBITS | 0 |
.stabstr | SHT_STRTAB | 0 |
.ctors | This section contains a list of global constructor function pointers. | |
.data.rel.ro | This section holds initialized data that contribute to the program's memory image. This section may be made read-only after relocations have been applied. | |
.dtors | This section contains a list of global destructor function pointers. | |
.eh_frame | This section contains information necessary for frame unwinding during exception handling. See Section 10.6.1. | |
.eh_frame_hdr | This section contains a pointer to the .eh_frame section which is accessible to the runtime support code of a C++ application. This section may also contain a binary search table which may be used by the runtime support code to more efficiently access records in the .eh_frame section. See Section 10.6.2. | |
.gcc_except_table | This section holds Language Specific Data. | |
.gnu.version | This section contains the Symbol Version Table. See Section 10.7.2. | |
.gnu.version_d | This section contains the Version Definitions. See Section 10.7.3. | |
.gnu.version_r | This section contains the Version Requirements. See Section 10.7.4. | |
.got.plt | This section holds the read-only portion of the GLobal Offset Table. This section may be made read-only after relocations have been applied. | |
.jcr | This section contains information necessary for registering compiled Java classes. The contents are compiler-specific and used by compiler initialization functions. | |
.note.ABI-tag | Specify ABI details. See Section 10.8. | |
.stab | This section contains debugging information. The contents are not specified as part of the LSB. | |
.stabstr | This section contains strings associated with the debugging infomation contained in the .stab section. |
Symbols in a source program are translated by the compilation system into symbols that exist in the object file.
The LSB does not specify debugging information, however, some additional sections contain information which is encoded using the the encoding as specified by DWARF Debugging Information Format, Revision 2.0.0 with extensions defined here.
Note: The extensions specified here also exist in DWARF Debugging Information Format, Revision 3.0.0 (Draft). It is expected that future versions of the LSB will reference the final version of that document, and that the definitions here will be taken from that document instead of being specified here.
The DWARF Exception Header Encoding is used to describe the type of data used in the .eh_frame and .eh_frame_hdr section. The upper 4 bits indicate how the value is to be applied. The lower 4 bits indicate the format of the data.
Table 10-5. DWARF Exception Header value format
Name | Value | Meaning |
---|---|---|
DW_EH_PE_absptr | 0x00 | The Value is a literal pointer whose size is determined by the architecture. |
DW_EH_PE_uleb128 | 0x01 | Unsigned value is encoded using the Little Endian Base 128 (LEB128) as defined by DWARF Debugging Information Format, Revision 2.0.0. |
DW_EH_PE_udata2 | 0x02 | A 2 bytes unsigned value. |
DW_EH_PE_udata4 | 0x03 | A 4 bytes unsigned value. |
DW_EH_PE_udata8 | 0x04 | An 8 bytes unsigned value. |
DW_EH_PE_sleb128 | 0x09 | Signed value is encoded using the Little Endian Base 128 (LEB128) as defined by DWARF Debugging Information Format, Revision 2.0.0. |
DW_EH_PE_sdata2 | 0x0A | A 2 bytes signed value. |
DW_EH_PE_sdata4 | 0x0B | A 4 bytes signed value. |
DW_EH_PE_sdata8 | 0x0C | An 8 bytes signed value. |
Table 10-6. DWARF Exception Header application
Name | Value | Meaning |
---|---|---|
DW_EH_PE_pcrel | 0x10 | Value is relative to the current program counter. |
DW_EH_PE_textrel | 0x20 | Value is relative to the beginning of the .text section. |
DW_EH_PE_datarel | 0x30 | Value is relative to the beginning of the .got or .eh_frame_hdr section. |
DW_EH_PE_funcrel | 0x40 | Value is relative to the beginning of the function. |
DW_EH_PE_aligned | 0x50 | Value is aligned to an address unit sized boundary. |
One special encoding, 0xff (DW_EH_PE_omit), shall be used to indicate that no value ispresent.
In addition to the Call Frame Instructions defined in section 6.4.2 of DWARF Debugging Information Format, Revision 2.0.0, the following additional Call Frame Instructions may also be used.
Table 10-7. Additional DWARF Call Frame Instructions
Name | Value | Meaning |
---|---|---|
DW_CFA_expression | 0x10 | The DW_CFA_expression instruction takes two operands: an unsigned LEB128 value representing a register number, and a DW_FORM_block value representing a DWARF expression. The required action is to establish the DWARF expression as the means by which the address in which the given register contents are found may be computed. The value of the CFA is pushed on the DWARF evaluation stack prior to execution of the DWARF expression. The DW_OP_call2, DW_OP_call4, DW_OP_call_ref and DW_OP_push_object_address DWARF operators (see Section 2.4.1 of DWARF Debugging Information Format, Revision 2.0.0) cannot be used in such a DWARF expression. |
DW_CFA_offset_extended_sf | 0x11 | The DW_CFA_offset_extended_sf instruction takes two operands: an unsigned LEB128 value representing a register number and a signed LEB128 factored offset. This instruction is identical to DW_CFA_offset_extended except that the second operand is signed. |
DW_CFA_def_cfa_sf | 0x12 | The DW_CFA_def_cfa_sf instruction takes two operands: an unsigned LEB128 value representing a register number and a signed LEB128 factored offset. This instruction is identical to DW_CFA_def_cfa except that the second operand is signed and factored. |
DW_CFA_def_cfa_offset_sf | 0x13 | The DW_CFA_def_cfa_offset_sf instruction takes a signed LEB128 operand representing a factored offset. This instruction is identical to DW_CFA_def_cfa_offset except that the operand is signed and factored. |
DW_CFA_GNU_args_size | 0x2e | The DW_CFA_GNU_args_size instruction takes an unsigned LEB128 operand representing an argument size. This instruction specifies the total of the size of the arguments which have been pushed onto the stack. |
DW_CFA_GNU_negative_offset_extended | 0x2f | The DW_CFA_def_cfa_sf instruction takes two operands: an unsigned LEB128 value representing a register number and an unsigned LEB128 which represents the magnitude of the offset. This instruction is identical to DW_CFA_offset_extended_sf except that the operand is subtracted to produce the offset. This instructions is obsoleted by DW_CFA_offset_extended_sf. |
When using languages that support exceptions, such as C++, additional information must be provided to the runtime environment that describes the call frames that must be unwound during the processing of an exception. This information is contained in the special sections .eh_frame and .eh_framehdr.
Note: The format of the .eh_frame section is similar in format and purpose to the .debug_frame section which is specified in DWARF Debugging Information Format, Revision 3.0.0 (Draft). Readers are advised that there are some subtle difference, and care should be taken when comparing the two sections.
The .eh_frame section shall contain 1 or more Call Frame Information (CFI) records. The number of records present shall be determined by size of the section as contained in the section header. Each CFI record contains a Common Information Entry (CIE) record followed by 1 or more Frame Description Entry (FDE) records. Both CIEs and FDEs shall be aligned to an addressing unit sized boundary.
Table 10-8. Call Frame Information Format
Common Information Entry Record |
Frame Description Entry Record(s) |
Table 10-9. Common Information Entry Format
Length | Required |
Extended Length | Optional |
CIE ID | Required |
Version | Required |
Augmentation String | Required |
Code Alignment Factor | Required |
Data Alignment Factor | Required |
Return Address Register | Required |
Augmentation Data Length | Optional |
Augmentation Data | Optional |
Initial Instructions | Required |
Padding |
Length
A 4 byte unsigned value indicating the length in bytes of the CIE structure,
not including the Length
field itself. If
Length
contains the value 0xffffffff, then the
length is contained in the Extended Length
field.
If Length
contains the value 0, then this CIE shall
be considered a terminator and processing shall end.
Extended Length
A 8 byte unsigned value indicating the length in bytes of the CIE structure,
not including the Length
and
Extended Length
fields.
CIE ID
A 4 byte unsigned value that is used to distinguish CIE records from FDE records. This value shall always be 0, which indicates this record is a CIE.
Version
A 1 byte value that identifies the version number of the frame information structure. This value shall be 1.
Augmentation String
This value is a NUL terminated string that identifies the augmentation to the CIE or to the FDEs associated with this CIE. A zero length string indicates that no augmentation data is present. The augmentation string is case sensitive and shall be interpreted as described below.
Code Alignment Factor
An unsigned LEB128 encoded value that is factored out of all advance location instructions that are associated with this CIE or its FDEs. This value shall be multiplied by the delta argument of an adavance location instruction to obtain the new location value.
Data Alignment Factor
A signed LEB128 encoded value that is factored out of all offset instructions that are associated with this CIE or its FDEs. This value shall be multiplied by the register offset argument of an offset instruction to obtain the new offset value.
Augmentation Length
An unsigned LEB128 encoded value indicating the length in bytes of the Augmentation Data. This field is only present if the Augmentation String contains the character 'z'.
Augmentation Data
A block of data whose contents are defined by the contents of the Augmentation String as described below. This field is only present if the Augmentation String contains the character 'z'. The size of this data is given by the Augentation Length.
Initial Instructions
Initial set of Call Frame Instructions. The number of instructions is determined by the remaining space in the CIE record.
Padding
Extra bytes to align the CIE structure to an addressing unit size boundary.
The Agumentation String indicates the presence of some optional fields, and how those fields should be intepreted. This string is case sensitive. Each character in the augmentation string in the CIE can be interpreted as below:
Table 10-10. Frame Description Entry Format
Length | Required |
Extended Length | Optional |
CIE Pointer | Required |
PC Begin | Required |
PC Range | Required |
Augmentation Data Length | Optional |
Augmentation Data | Optional |
Call Frame Instructions | Required |
Padding |
Length
A 4 byte unsigned value indicating the length in bytes of the CIE structure,
not including the Length
field itself. If
Length
contains the value 0xffffffff, then the
length is contained the Extended Length
field.
If Length
contains the value 0, then this CIE shall
be considered a terminator and processing shall end.
Extended Length
A 8 byte unsigned value indicating the length in bytes of the CIE structure,
not including the Length
field itself.
CIE Pointer
A 4 byte unsigned value that when subtracted from the offset of the the CIE Pointer in the current FDE yields the offset of the start of the associated CIE. This value shall never be 0.
PC Begin
An encoded value that indicates the address of the initial location associated with this FDE. The encoding format is specified in the Augmentation Data.
PC Range
An absolute value that indicates the number of bytes of instructions associated with this FDE.
Augmentation Length
An unsigned LEB128 encoded value indicating the length in bytes of the Augmentation Data. This field is only present if the Augmentation String in the associated CIE contains the character 'z'.
Augmentation Data
A block of data whose contents are defined by the contents of the Augmentation String in the associated CIE as described above. This field is only present if the Augmentation String in the associated CIE contains the character 'z'. The size of this data is given by the Augentation Length.
Call Frame Instructions
A set of Call Frame Instructions.
Padding
Extra bytes to align the FDE structure to an addressing unit size boundary.
The .eh_frame_hdr section contains additional information about the .eh_frame section. A pointer to the start of the .eh_frame data, and optionally, a binary search table of pointers to the .eh_frame records are found in this section.
Data in this section is encoded according to Section 10.5.1.
Table 10-11. .eh_frame_hdr Section Format
Encoding | Field |
---|---|
unsigned byte | version |
unsigned byte | eh_frame_ptr_enc |
unsigned byte | fde_count_enc |
unsigned byte | table_enc |
encoded | eh_frame_ptr |
encoded | fde_count |
binary search table |
This chapter describes the Symbol Versioning mechanism. All ELF objects may provide or depend on versioned symbols. Symbol Versioning is implemented by 3 section types: SHT_GNU_versym, SHT_GNU_verdef, and SHT_GNU_verneed.
The prefix Elfxx in the following descriptions and code fragments stands for either "Elf32" or "Elf64", depending on the architecture.
Versions are described by strings. The structures that are used for symbol versions also contain a member that holds the ELF hashing values of the strings. This allows for more efficient processing.
The special section .gnu.version which has a section type of SHT_GNU_versym shall contain the Symbol Version Table. This section shall have the same number of entries as the Dynamic Symbol Table in the .dynsym section.
The .gnu.version section shall contain an array of elements of type Elfxx_Half. Each entry specifies the version defined for or required by the corresponding symbol in the Dynamic Symbol Table.
The values in the Symbol Version Table are specific to the object in which they
are located. These values are identifiers that are provided by the the
vna_other
member of the
Elfxx_Vernaux structure or the
vd_ndx
member of the
Elfxx_Verdef structure.
The values 0 and 1 are reserved.
0 | The symbol is local, not available outside the object. | |
1 | The symbol is defined in this object and is globally available. |
All other values are used to identify version strings located in one of the other Symbol Version sections. The value itself is not the version associated with the symbol. The string identified by the value defines the version of the symbol.
The special section .gnu.version_d which has a section type of SHT_GNU_verdef shall contain symbol version definitions. The number of entries in this section shall be contained in the DT_VERDEFNUM entry of the Dynamic Section .dynamic. The sh_link member of the section header (see figure 4-8 in the System V ABI) shall point to the section that contains the strings referenced by this section.
The section shall contain an array of Elfxx_Verdef structures, as described in Figure 10-1, optionally followed by an array of Elfxx_Verdaux structures, as defined in Figure 10-2.
typedef struct { Elfxx_Half vd_version; Elfxx_Half vd_flags; Elfxx_Half vd_ndx; Elfxx_Half vd_cnt; Elfxx_Word vd_hash; Elfxx_Word vd_aux; Elfxx_Word vd_next; } Elfxx_Verdef; |
Figure 10-1. Version Definition Entries
vd_version | Version revision. This field shall be set to 1. | |
vd_flags | Version information flag bitmask. | |
vd_ndx | Version index numeric value referencing the SHT_GNU_versym section. | |
vd_cnt | Number of associated verdaux array entries. | |
vd_hash | Version name hash value (ELF hash function). | |
vd_aux | Offset in bytes to a corresponding entry in an array of Elfxx_Verdaux structures as defined in Figure 10-2 | |
vd_next | Offset to the next verdef entry, in bytes. |
typedef struct { Elfxx_Word vda_name; Elfxx_Word vda_next; } Elfxx_Verdaux; |
Figure 10-2. Version Definition Auxiliary Entries
vda_name | Offset to the version or dependency name string in the section header, in bytes. | |
vda_next | Offset to the next verdaux entry, in bytes. |
The special section .gnu.version_r which has a section type of
SHT_GNU_verneed
shall contain required symbol version definitions. The number of entries in
this section shall be contained in the DT_VERNEEDNUM entry of the Dynamic
Section .dynamic.
The sh_link
member of the section header (see figure 4-8 in
System V ABI)
shall point to the section that contains the strings referenced by this section.
The section shall contain an array of Elfxx_Verneed structures, as described in Figure 10-3, optionally followed by an array of Elfxx_Vernaux structures, as defined in Figure 10-4.
typedef struct { Elfxx_Half vn_version; Elfxx_Half vn_cnt; Elfxx_Word vn_file; Elfxx_Word vn_aux; Elfxx_Word vn_next; } Elfxx_Verneed; |
Figure 10-3. Version Needed Entries
typedef struct { Elfxx_Word vna_hash; Elfxx_Half vna_flags; Elfxx_Half vna_other; Elfxx_Word vna_name; Elfxx_Word vna_next; } Elfxx_Vernaux; |
Figure 10-4. Version Needed Auxiliary Entries
When loading a sharable object the system shall analyze version definition data from the loaded object to assure that it meets the version requirements of the calling object. This step is referred to as definition testing. The dynamic loader shall retrieve the entries in the caller's Elfxx_Verneed array and attempt to find matching definition information in the loaded Elfxx_Verdef table.
Each object and dependency shall be tested in turn. If a symbol definition is missing and the vna_flags bit for VER_FLG_WEAK is not set, the loader shall return an error and exit. If the vna_flags bit for VER_FLG_WEAK is set in the Elfxx_Vernaux entry, and the loader shall issue a warning and continue operation.
When the versions referenced by undefined symbols in the loaded object are found, version availability is certified. The test completes without error and the object shall be made available.
When symbol versioning is used in an object, relocations extend definition testing beyond the simple match of symbol name strings: the version of the reference shall also equal the name of the definition.
The same index that is used in the symbol table can be referenced in the SHT_GNU_versym section, and the value of this index is then used to acquire name data. The corresponding requirement string is retrieved from the Elfxx_Verneed array, and likewise, the corresponding definition string from the Elfxx_Verdef table.
If the high order bit (bit number 15) of the version symbolis set, the object cannot be used and the static linker shall ignore the symbol's presence in the object.
When an object with a reference and an object with the definition are being linked, the following rules shall govern the result:
The object with the reference and the object with the definitions both use
versioning. All described matching is processed in this case. A fatal error
shall be triggered when no matching definition can be found in the object whose
name is the one referenced by the vn_name
element in the
Elfxx_Verneed entry.
The object with the reference does not use versioning, while the object with the definitions does. In this instance, only the definitions with index numbers 1 and 2 will be used in the reference match, the same identified by the static linker as the base definition. In cases where the static linker was not used, such as in calls to dlopen(), a version that does not have the base definition index shall be acceptable if it is the only version for which the symbol is defined.
The object with the reference uses versioning, but the object with the definitions specifies none. A matching symbol shall be accepted in this case. A fatal error shall be triggered if a corruption in the required symbols list obscures an outdated object file and causes a match on the object filename in the Elfxx_Verneed entry.
Neither the object with the reference nor the object with the definitions use versioning. The behavior in this instance shall default to pre-existing symbol rules.
Every executable shall contain a section named .note.ABI-tag of type SHT_NOTE. This section is structured as a note section as documented in the ELF spec. The section shall contain at least the following entry. The name field (namesz/name) contains the string "GNU". The type field shall be 1. The descsz field shall be at least 16, and the first 16 bytes of the desc field shall be as follows.
The first 32-bit word of the desc field shall be 0 (this signifies a Linux executable). The second, third, and fourth 32-bit words of the desc field contain the earliest compatible kernel version. For example, if the 3 words are 2, 2, and 5, this signifies a 2.2.5 kernel.
LSB-conforming implementations shall support the object file information and system actions that create running programs as specified in the System V ABI and System V ABI Update and as further required by this specification and the relevant architecture specific part of ISO/IEC 23360.
Any shared object that is loaded shall contain sufficient DT_NEEDED records to satisfy the symbols on the shared library.
In addition to the Segment Types defined in the System V ABI and System V ABI Update the following Segment Types shall also be supported.
Table 11-1. Linux Segment Types
Name | Value |
---|---|
PT_GNU_EH_FRAME | 0x6474e550 |
PT_GNU_STACK | 0x6474e551 |
PT_GNU_RELRO | 0x6474e552 |
As described in System V ABI, if an object file participates in dynamic linking, its program header table shall have an element of type PT_DYNAMIC. This `segment' contains the .dynamic section. A special symbol, _DYNAMIC, labels the section, which contains an array of the following structures.
typedef struct { Elf32_Sword d_tag; union { Elf32_Word d_val; Elf32_Addr d_ptr; } d_un; } Elf32_Dyn; extern Elf32_Dyn _DYNAMIC[]; typedef struct { Elf64_Sxword d_tag; union { Elf64_Xword d_val; Elf64_Addr d_ptr; } d_un; } Elf64_Dyn; extern Elf64_Dyn _DYNAMIC[]; |
Figure 11-1. Dynamic Structure
For each object with this type, d_tag
controls the interpretation of d_un
.
The following dynamic entries are defined in the System V ABI and System V ABI Update.
An LSB conforming object may also use the following additional Dynamic Entry types.
An LSB-conforming implementation shall support the following base libraries which provide interfaces for accessing the operating system, processor and other hardware in the system.
libc
libm
libgcc_s
libdl
librt
libcrypt
libpam
There are three main parts to the definition of each of these libraries.
The "Interfaces" section defines the required library name and version, and the required public symbols (interfaces and global data), as well as symbol versions, if any.
The "Interface Definitions" section provides complete or partial definitions of certain interfaces where either this specification is the source specification, or where there are variations from the source specification. If an interface definition requires one or more header files, one of those headers shall include the function prototype for the interface.
For source definitions of interfaces which include a reference to a header file, the contents of such header files form a part of the specification. The "Data Definitions" section provides the binary-level details for the header files from the source specifications, such as values for macros and enumerated types, as well as structure layouts, sizes and padding, etc. These data definitions, although presented in the form of header files for convenience, should not be taken a representing complete header files, as they are a supplement to the source specifications. Application developers should follow the guidelines of the source specifications when determining which header files need to be included to completely resolve all references.
Note: While the Data Definitions supplement the source specifications, this specification itself does not require conforming implementations to supply any header files.
The Program Interpreter is specified in the appropriate architecture specific part of ISO/IEC 23360.
Table 12-1 defines the library name and shared object name for the libc library
The behavior of the interfaces in this library is specified by the following specifications:
[LFS] Large File Support |
[LSB] This Specification |
[RPC & XDR] RFC 1831/1832 RPC & XDR |
[SUSv2] SUSv2 |
[SUSv3] POSIX 1003.1-2001 (ISO/IEC 9945-2003) |
[SUSv4] POSIX 1003.1-2008 (ISO/IEC 9945-2009) |
[SVID.4] SVID Issue 4 |
An LSB conforming implementation shall provide the generic functions for RPC specified in Table 12-2, with the full mandatory functionality as described in the referenced underlying specification.
Table 12-2. libc - RPC Function Interfaces
authnone_create [SVID.4] | callrpc [RPC & XDR] | clnt_create [SVID.4] | clnt_pcreateerror [SVID.4] |
clnt_perrno [SVID.4] | clnt_perror [SVID.4] | clnt_spcreateerror [SVID.4] | clnt_sperrno [SVID.4] |
clnt_sperror [SVID.4] | clntraw_create [RPC & XDR] | clnttcp_create [RPC & XDR] | clntudp_bufcreate [RPC & XDR] |
clntudp_create [RPC & XDR] | key_decryptsession [SVID.4] | pmap_getport [LSB] | pmap_set [LSB] |
pmap_unset [LSB] | svc_getreqset [SVID.4] | svc_register [LSB] | svc_run [LSB] |
svc_sendreply [LSB] | svcerr_auth [SVID.4] | svcerr_decode [SVID.4] | svcerr_noproc [SVID.4] |
svcerr_noprog [SVID.4] | svcerr_progvers [SVID.4] | svcerr_systemerr [SVID.4] | svcerr_weakauth [SVID.4] |
svcfd_create [RPC & XDR] | svcraw_create [RPC & XDR] | svctcp_create [LSB] | svcudp_create [LSB] |
xdr_accepted_reply [SVID.4] | xdr_array [SVID.4] | xdr_bool [SVID.4] | xdr_bytes [SVID.4] |
xdr_callhdr [SVID.4] | xdr_callmsg [SVID.4] | xdr_char [SVID.4] | xdr_double [SVID.4] |
xdr_enum [SVID.4] | xdr_float [SVID.4] | xdr_free [SVID.4] | xdr_int [SVID.4] |
xdr_long [SVID.4] | xdr_opaque [SVID.4] | xdr_opaque_auth [SVID.4] | xdr_pointer [SVID.4] |
xdr_reference [SVID.4] | xdr_rejected_reply [SVID.4] | xdr_replymsg [SVID.4] | xdr_short [SVID.4] |
xdr_string [SVID.4] | xdr_u_char [SVID.4] | xdr_u_int [LSB] | xdr_u_long [SVID.4] |
xdr_u_short [SVID.4] | xdr_union [SVID.4] | xdr_vector [SVID.4] | xdr_void [SVID.4] |
xdr_wrapstring [SVID.4] | xdrmem_create [SVID.4] | xdrrec_create [SVID.4] | xdrrec_endofrecord [RPC & XDR] |
xdrrec_eof [SVID.4] | xdrrec_skiprecord [RPC & XDR] | xdrstdio_create [LSB] |
An LSB conforming implementation shall provide the generic deprecated functions for RPC specified in Table 12-3, with the full mandatory functionality as described in the referenced underlying specification.
Note: These interfaces are deprecated, and applications should avoid using them. These interfaces may be withdrawn in future releases of this specification.
An LSB conforming implementation shall provide the generic functions for Epoll specified in Table 12-4, with the full mandatory functionality as described in the referenced underlying specification.
An LSB conforming implementation shall provide the generic functions for System Calls specified in Table 12-5, with the full mandatory functionality as described in the referenced underlying specification.
Table 12-5. libc - System Calls Function Interfaces
__chk_fail(GLIBC_2.3.4) [LSB] | __fxstat [LSB] | __fxstatat(GLIBC_2.4) [LSB] | __getgroups_chk(GLIBC_2.4) [LSB] |
__getpgid [LSB] | __lxstat [LSB] | __read_chk(GLIBC_2.4) [LSB] | __readlink_chk(GLIBC_2.4) [LSB] |
__stack_chk_fail(GLIBC_2.4) [LSB] | __xmknod [LSB] | __xmknodat(GLIBC_2.4) [LSB] | __xstat [LSB] |
access [SUSv3] | acct [LSB] | alarm [SUSv3] | backtrace [LSB] |
backtrace_symbols [LSB] | backtrace_symbols_fd [LSB] | brk [SUSv2] | chdir [SUSv3] |
chmod [SUSv3] | chown [SUSv3] | chroot [SUSv2] | clock [SUSv3] |
close [SUSv3] | closedir [SUSv3] | creat [SUSv3] | dup [SUSv3] |
dup2 [SUSv3] | execl [SUSv3] | execle [SUSv3] | execlp [SUSv3] |
execv [SUSv3] | execve [SUSv3] | execvp [SUSv3] | exit [SUSv3] |
faccessat(GLIBC_2.4) [SUSv4] | fchdir [SUSv3] | fchmod [SUSv3] | fchmodat(GLIBC_2.4) [SUSv4] |
fchown [SUSv3] | fchownat(GLIBC_2.4) [SUSv4] | fcntl [LSB] | fdatasync [SUSv3] |
fdopendir(GLIBC_2.4) [SUSv4] | fexecve [SUSv4] | flock [LSB] | fork [SUSv3] |
fstatfs [LSB] | fstatvfs [SUSv3] | fsync [SUSv3] | ftime [SUSv3] |
ftruncate [SUSv3] | getcontext [SUSv3] | getdtablesize [LSB] | getegid [SUSv3] |
geteuid [SUSv3] | getgid [SUSv3] | getgroups [SUSv3] | getitimer [SUSv3] |
getloadavg [LSB] | getpagesize [LSB] | getpgid [SUSv3] | getpgrp [SUSv3] |
getpid [SUSv3] | getppid [SUSv3] | getpriority [SUSv3] | getrlimit [SUSv3] |
getrusage [SUSv3] | getsid [SUSv3] | getuid [SUSv3] | getwd [SUSv3] |
initgroups [LSB] | ioctl [LSB] | kill [LSB] | killpg [SUSv3] |
lchown [SUSv3] | link [LSB] | linkat(GLIBC_2.4) [SUSv4] | lockf [SUSv3] |
lseek [SUSv3] | mkdir [SUSv3] | mkdirat(GLIBC_2.4) [SUSv4] | mkfifo [SUSv3] |
mkfifoat(GLIBC_2.4) [SUSv4] | mlock [SUSv3] | mlockall [SUSv3] | mmap [SUSv3] |
mprotect [SUSv3] | mremap [LSB] | msync [SUSv3] | munlock [SUSv3] |
munlockall [SUSv3] | munmap [SUSv3] | nanosleep [SUSv3] | nice [SUSv3] |
open [SUSv3] | openat(GLIBC_2.4) [SUSv4] | opendir [SUSv3] | pathconf [SUSv3] |
pause [SUSv3] | pipe [SUSv3] | poll [SUSv3] | pread [SUSv3] |
pselect [SUSv3] | ptrace [LSB] | pwrite [SUSv3] | read [SUSv3] |
readdir [SUSv3] | readdir_r [SUSv3] | readlink [SUSv3] | readlinkat(GLIBC_2.4) [SUSv4] |
readv [SUSv3] | rename [SUSv3] | renameat(GLIBC_2.4) [SUSv4] | rmdir [SUSv3] |
sbrk [SUSv2] | sched_get_priority_max [SUSv3] | sched_get_priority_min [SUSv3] | sched_getaffinity(GLIBC_2.3.4) [LSB] |
sched_getparam [SUSv3] | sched_getscheduler [SUSv3] | sched_rr_get_interval [SUSv3] | sched_setaffinity(GLIBC_2.3.4) [LSB] |
sched_setparam [SUSv3] | sched_setscheduler [LSB] | sched_yield [SUSv3] | select [SUSv3] |
setcontext [SUSv3] | setegid [SUSv3] | seteuid [SUSv3] | setgid [SUSv3] |
setitimer [SUSv3] | setpgid [SUSv3] | setpgrp [SUSv3] | setpriority [SUSv3] |
setregid [SUSv3] | setreuid [SUSv3] | setrlimit [SUSv3] | setrlimit64 [LFS] |
setsid [SUSv3] | setuid [SUSv3] | sleep [SUSv3] | statfs [LSB] |
statvfs [SUSv3] | stime [LSB] | symlink [SUSv3] | symlinkat(GLIBC_2.4) [SUSv4] |
sync [SUSv3] | sysconf [LSB] | sysinfo [LSB] | time [SUSv3] |
times [SUSv3] | truncate [SUSv3] | ulimit [SUSv3] | umask [SUSv3] |
uname [SUSv3] | unlink [LSB] | unlinkat(GLIBC_2.4) [SUSv4] | utime [SUSv3] |
utimes [SUSv3] | vfork [SUSv3] | wait [SUSv3] | wait4 [LSB] |
waitid [SUSv3] | waitpid [SUSv3] | write [SUSv3] | writev [SUSv3] |
An LSB conforming implementation shall provide the generic deprecated functions for System Calls specified in Table 12-6, with the full mandatory functionality as described in the referenced underlying specification.
Note: These interfaces are deprecated, and applications should avoid using them. These interfaces may be withdrawn in future releases of this specification.
An LSB conforming implementation shall provide the generic functions for Standard I/O specified in Table 12-7, with the full mandatory functionality as described in the referenced underlying specification.
Table 12-7. libc - Standard I/O Function Interfaces
_IO_feof [LSB] | _IO_getc [LSB] | _IO_putc [LSB] | _IO_puts [LSB] |
__fgets_chk(GLIBC_2.4) [LSB] | __fgets_unlocked_chk(GLIBC_2.4) [LSB] | __fgetws_unlocked_chk(GLIBC_2.4) [LSB] | __fprintf_chk [LSB] |
__printf_chk [LSB] | __snprintf_chk [LSB] | __sprintf_chk [LSB] | __vfprintf_chk [LSB] |
__vprintf_chk [LSB] | __vsnprintf_chk [LSB] | __vsprintf_chk [LSB] | asprintf [LSB] |
clearerr [SUSv3] | clearerr_unlocked [LSB] | ctermid [SUSv3] | dprintf [SUSv4] |
fclose [SUSv3] | fdopen [SUSv3] | feof [SUSv3] | feof_unlocked [LSB] |
ferror [SUSv3] | ferror_unlocked [LSB] | fflush [SUSv3] | fflush_unlocked [LSB] |
fgetc [SUSv3] | fgetc_unlocked [LSB] | fgetpos [SUSv3] | fgets [SUSv3] |
fgets_unlocked [LSB] | fgetwc_unlocked [LSB] | fgetws_unlocked [LSB] | fileno [SUSv3] |
fileno_unlocked [LSB] | flockfile [SUSv3] | fopen [SUSv3] | fprintf [SUSv3] |
fputc [SUSv3] | fputc_unlocked [LSB] | fputs [SUSv3] | fputs_unlocked [LSB] |
fputwc_unlocked [LSB] | fputws_unlocked [LSB] | fread [SUSv3] | fread_unlocked [LSB] |
freopen [SUSv3] | fscanf [LSB] | fseek [SUSv3] | fseeko [SUSv3] |
fsetpos [SUSv3] | ftell [SUSv3] | ftello [SUSv3] | fwrite [SUSv3] |
fwrite_unlocked [LSB] | getc [SUSv3] | getc_unlocked [SUSv3] | getchar [SUSv3] |
getchar_unlocked [SUSv3] | getdelim [SUSv4] | getline [SUSv4] | getw [SUSv2] |
getwc_unlocked [LSB] | getwchar_unlocked [LSB] | pclose [SUSv3] | popen [SUSv3] |
printf [SUSv3] | putc [SUSv3] | putc_unlocked [SUSv3] | putchar [SUSv3] |
putchar_unlocked [SUSv3] | puts [SUSv3] | putw [SUSv2] | putwc_unlocked [LSB] |
putwchar_unlocked [LSB] | remove [SUSv3] | rewind [SUSv3] | rewinddir [SUSv3] |
scanf [LSB] | seekdir [SUSv3] | setbuf [SUSv3] | setbuffer [LSB] |
setvbuf [SUSv3] | snprintf [SUSv3] | sprintf [SUSv3] | sscanf [LSB] |
telldir [SUSv3] | tempnam [SUSv3] | ungetc [SUSv3] | vasprintf [LSB] |
vdprintf [LSB] | vfprintf [SUSv3] | vprintf [SUSv3] | vsnprintf [SUSv3] |
vsprintf [SUSv3] |
An LSB conforming implementation shall provide the generic deprecated functions for Standard I/O specified in Table 12-8, with the full mandatory functionality as described in the referenced underlying specification.
Note: These interfaces are deprecated, and applications should avoid using them. These interfaces may be withdrawn in future releases of this specification.
An LSB conforming implementation shall provide the generic data interfaces for Standard I/O specified in Table 12-9, with the full mandatory functionality as described in the referenced underlying specification.
An LSB conforming implementation shall provide the generic functions for Signal Handling specified in Table 12-10, with the full mandatory functionality as described in the referenced underlying specification.
Table 12-10. libc - Signal Handling Function Interfaces
__libc_current_sigrtmax [LSB] | __libc_current_sigrtmin [LSB] | __sigsetjmp [LSB] | __sysv_signal [LSB] |
__xpg_sigpause [LSB] | bsd_signal [SUSv3] | psignal [LSB] | raise [SUSv3] |
sigaction [SUSv3] | sigaddset [SUSv3] | sigaltstack [SUSv3] | sigandset [LSB] |
sigdelset [SUSv3] | sigemptyset [SUSv3] | sigfillset [SUSv3] | sighold [SUSv3] |
sigignore [SUSv3] | siginterrupt [SUSv3] | sigisemptyset [LSB] | sigismember [SUSv3] |
siglongjmp [SUSv3] | signal [SUSv3] | sigorset [LSB] | sigpause [LSB] |
sigpending [SUSv3] | sigprocmask [SUSv3] | sigqueue [SUSv3] | sigrelse [SUSv3] |
sigreturn [LSB] | sigset [SUSv3] | sigsuspend [SUSv3] | sigtimedwait [SUSv3] |
sigwait [SUSv3] | sigwaitinfo [SUSv3] |
An LSB conforming implementation shall provide the generic deprecated functions for Signal Handling specified in Table 12-11, with the full mandatory functionality as described in the referenced underlying specification.
Note: These interfaces are deprecated, and applications should avoid using them. These interfaces may be withdrawn in future releases of this specification.
An LSB conforming implementation shall provide the generic data interfaces for Signal Handling specified in Table 12-12, with the full mandatory functionality as described in the referenced underlying specification.
An LSB conforming implementation shall provide the generic functions for Localization Functions specified in Table 12-13, with the full mandatory functionality as described in the referenced underlying specification.
Table 12-13. libc - Localization Functions Function Interfaces
bind_textdomain_codeset [LSB] | bindtextdomain [LSB] | catclose [SUSv3] | catgets [SUSv3] |
catopen [SUSv3] | dcgettext [LSB] | dcngettext [LSB] | dgettext [LSB] |
dngettext [LSB] | duplocale(GLIBC_2.3) [LSB] | freelocale(GLIBC_2.3) [LSB] | gettext [LSB] |
iconv [SUSv3] | iconv_close [SUSv3] | iconv_open [SUSv3] | localeconv [SUSv3] |
newlocale(GLIBC_2.3) [LSB] | ngettext [LSB] | nl_langinfo [SUSv3] | setlocale [SUSv3] |
textdomain [LSB] | uselocale(GLIBC_2.3) [LSB] |
An LSB conforming implementation shall provide the generic data interfaces for Localization Functions specified in Table 12-14, with the full mandatory functionality as described in the referenced underlying specification.
An LSB conforming implementation shall provide the generic functions for Posix Spawn Option specified in Table 12-15, with the full mandatory functionality as described in the referenced underlying specification.
Table 12-15. libc - Posix Spawn Option Function Interfaces
posix_spawn [SUSv3] | posix_spawn_file_actions_addclose [SUSv3] | posix_spawn_file_actions_adddup2 [SUSv3] | posix_spawn_file_actions_addopen [SUSv3] |
posix_spawn_file_actions_destroy [SUSv3] | posix_spawn_file_actions_init [SUSv3] | posix_spawnattr_destroy [SUSv3] | posix_spawnattr_getflags [SUSv3] |
posix_spawnattr_getpgroup [SUSv3] | posix_spawnattr_getschedparam [SUSv3] | posix_spawnattr_getschedpolicy [SUSv3] | posix_spawnattr_getsigdefault [SUSv3] |
posix_spawnattr_getsigmask [SUSv3] | posix_spawnattr_init [SUSv3] | posix_spawnattr_setflags [SUSv3] | posix_spawnattr_setpgroup [SUSv3] |
posix_spawnattr_setschedparam [SUSv3] | posix_spawnattr_setschedpolicy [SUSv3] | posix_spawnattr_setsigdefault [SUSv3] | posix_spawnattr_setsigmask [SUSv3] |
posix_spawnp [SUSv3] |
An LSB conforming implementation shall provide the generic functions for Posix Advisory Option specified in Table 12-16, with the full mandatory functionality as described in the referenced underlying specification.
An LSB conforming implementation shall provide the generic functions for Socket Interface specified in Table 12-17, with the full mandatory functionality as described in the referenced underlying specification.
Table 12-17. libc - Socket Interface Function Interfaces
__gethostname_chk(GLIBC_2.4) [LSB] | __h_errno_location [LSB] | __recv_chk(GLIBC_2.4) [LSB] | __recvfrom_chk(GLIBC_2.4) [LSB] |
accept [SUSv3] | bind [SUSv3] | bindresvport [LSB] | connect [SUSv3] |
gethostid [SUSv3] | gethostname [SUSv3] | getpeername [SUSv3] | getsockname [SUSv3] |
getsockopt [LSB] | if_freenameindex [SUSv3] | if_indextoname [SUSv3] | if_nameindex [SUSv3] |
if_nametoindex [SUSv3] | listen [SUSv3] | recv [SUSv3] | recvfrom [SUSv3] |
recvmsg [SUSv3] | send [SUSv4] | sendmsg [SUSv4] | sendto [SUSv4] |
setsockopt [LSB] | shutdown [SUSv3] | sockatmark [SUSv3] | socket [SUSv3] |
socketpair [SUSv3] |
An LSB conforming implementation shall provide the generic data interfaces for Socket Interface specified in Table 12-18, with the full mandatory functionality as described in the referenced underlying specification.
An LSB conforming implementation shall provide the generic functions for Wide Characters specified in Table 12-19, with the full mandatory functionality as described in the referenced underlying specification.
Table 12-19. libc - Wide Characters Function Interfaces
__fgetws_chk(GLIBC_2.4) [LSB] | __fwprintf_chk(GLIBC_2.4) [LSB] | __mbsnrtowcs_chk(GLIBC_2.4) [LSB] | __mbsrtowcs_chk(GLIBC_2.4) [LSB] |
__mbstowcs_chk(GLIBC_2.4) [LSB] | __swprintf_chk(GLIBC_2.4) [LSB] | __vfwprintf_chk(GLIBC_2.4) [LSB] | __vswprintf_chk(GLIBC_2.4) [LSB] |
__vwprintf_chk(GLIBC_2.4) [LSB] | __wcpcpy_chk(GLIBC_2.4) [LSB] | __wcpncpy_chk(GLIBC_2.4) [LSB] | __wcrtomb_chk(GLIBC_2.4) [LSB] |
__wcscat_chk(GLIBC_2.4) [LSB] | __wcscpy_chk(GLIBC_2.4) [LSB] | __wcsncat_chk(GLIBC_2.4) [LSB] | __wcsncpy_chk(GLIBC_2.4) [LSB] |
__wcsnrtombs_chk(GLIBC_2.4) [LSB] | __wcsrtombs_chk(GLIBC_2.4) [LSB] | __wcstod_internal [LSB] | __wcstof_internal [LSB] |
__wcstol_internal [LSB] | __wcstold_internal [LSB] | __wcstombs_chk(GLIBC_2.4) [LSB] | __wcstoul_internal [LSB] |
__wctomb_chk(GLIBC_2.4) [LSB] | __wmemcpy_chk(GLIBC_2.4) [LSB] | __wmemmove_chk(GLIBC_2.4) [LSB] | __wmempcpy_chk(GLIBC_2.4) [LSB] |
__wmemset_chk(GLIBC_2.4) [LSB] | __wprintf_chk(GLIBC_2.4) [LSB] | btowc [SUSv3] | fgetwc [SUSv3] |
fgetws [SUSv3] | fputwc [SUSv3] | fputws [SUSv3] | fwide [SUSv3] |
fwprintf [SUSv3] | fwscanf [LSB] | getwc [SUSv3] | getwchar [SUSv3] |
mblen [SUSv3] | mbrlen [SUSv3] | mbrtowc [SUSv3] | mbsinit [SUSv3] |
mbsnrtowcs [LSB] | mbsrtowcs [SUSv3] | mbstowcs [SUSv3] | mbtowc [SUSv3] |
putwc [SUSv3] | putwchar [SUSv3] | swprintf [SUSv3] | swscanf [LSB] |
towctrans [SUSv3] | towlower [SUSv3] | towupper [SUSv3] | ungetwc [SUSv3] |
vfwprintf [SUSv3] | vfwscanf [LSB] | vswprintf [SUSv3] | vswscanf [LSB] |
vwprintf [SUSv3] | vwscanf [LSB] | wcpcpy [LSB] | wcpncpy [LSB] |
wcrtomb [SUSv3] | wcscasecmp [LSB] | wcscat [SUSv3] | wcschr [SUSv3] |
wcscmp [SUSv3] | wcscoll [SUSv3] | wcscpy [SUSv3] | wcscspn [SUSv3] |
wcsdup [LSB] | wcsftime [SUSv3] | wcslen [SUSv3] | wcsncasecmp [LSB] |
wcsncat [SUSv3] | wcsncmp [SUSv3] | wcsncpy [SUSv3] | wcsnlen [LSB] |
wcsnrtombs [LSB] | wcspbrk [SUSv3] | wcsrchr [SUSv3] | wcsrtombs [SUSv3] |
wcsspn [SUSv3] | wcsstr [SUSv3] | wcstod [SUSv3] | wcstof [SUSv3] |
wcstoimax [SUSv3] | wcstok [SUSv3] | wcstol [SUSv3] | wcstold [SUSv3] |
wcstoll [SUSv3] | wcstombs [SUSv3] | wcstoq [LSB] | wcstoul [SUSv3] |
wcstoull [SUSv3] | wcstoumax [SUSv3] | wcstouq [LSB] | wcswcs [SUSv3] |
wcswidth [SUSv3] | wcsxfrm [SUSv3] | wctob [SUSv3] | wctomb [SUSv3] |
wctrans [SUSv3] | wctype [SUSv3] | wcwidth [SUSv3] | wmemchr [SUSv3] |
wmemcmp [SUSv3] | wmemcpy [SUSv3] | wmemmove [SUSv3] | wmemset [SUSv3] |
wprintf [SUSv3] | wscanf [LSB] |
An LSB conforming implementation shall provide the generic functions for String Functions specified in Table 12-20, with the full mandatory functionality as described in the referenced underlying specification.
Table 12-20. libc - String Functions Function Interfaces
__memcpy_chk(GLIBC_2.3.4) [LSB] | __memmove_chk(GLIBC_2.3.4) [LSB] | __mempcpy [LSB] | __mempcpy_chk(GLIBC_2.3.4) [LSB] |
__memset_chk(GLIBC_2.3.4) [LSB] | __rawmemchr [LSB] | __stpcpy [LSB] | __stpcpy_chk(GLIBC_2.3.4) [LSB] |
__stpncpy_chk(GLIBC_2.4) [LSB] | __strcat_chk(GLIBC_2.3.4) [LSB] | __strcpy_chk(GLIBC_2.3.4) [LSB] | __strdup [LSB] |
__strncat_chk(GLIBC_2.3.4) [LSB] | __strncpy_chk(GLIBC_2.3.4) [LSB] | __strtod_internal [LSB] | __strtof_internal [LSB] |
__strtok_r [LSB] | __strtol_internal [LSB] | __strtold_internal [LSB] | __strtoll_internal [LSB] |
__strtoul_internal [LSB] | __strtoull_internal [LSB] | __xpg_strerror_r(GLIBC_2.3.4) [LSB] | bcmp [SUSv3] |
bcopy [SUSv3] | bzero [SUSv3] | ffs [SUSv3] | index [SUSv3] |
memccpy [SUSv3] | memchr [SUSv3] | memcmp [SUSv3] | memcpy [SUSv3] |
memmove [SUSv3] | memrchr [LSB] | memset [SUSv3] | rindex [SUSv3] |
stpcpy [LSB] | stpncpy [LSB] | strcasecmp [SUSv3] | strcasestr [LSB] |
strcat [SUSv3] | strchr [SUSv3] | strcmp [SUSv3] | strcoll [SUSv3] |
strcpy [SUSv3] | strcspn [SUSv3] | strdup [SUSv3] | strerror [SUSv3] |
strerror_r [LSB] | strfmon [SUSv3] | strftime [SUSv3] | strlen [SUSv3] |
strncasecmp [SUSv3] | strncat [SUSv3] | strncmp [SUSv3] | strncpy [SUSv3] |
strndup [LSB] | strnlen [LSB] | strpbrk [SUSv3] | strptime [LSB] |
strrchr [SUSv3] | strsep [LSB] | strsignal [LSB] | strspn [SUSv3] |
strstr [SUSv3] | strtof [SUSv3] | strtoimax [SUSv3] | strtok [SUSv3] |
strtok_r [SUSv3] | strtold [SUSv3] | strtoll [SUSv3] | strtoq [LSB] |
strtoull [SUSv3] | strtoumax [SUSv3] | strtouq [LSB] | strxfrm [SUSv3] |
swab [SUSv3] |
An LSB conforming implementation shall provide the generic deprecated functions for String Functions specified in Table 12-21, with the full mandatory functionality as described in the referenced underlying specification.
Note: These interfaces are deprecated, and applications should avoid using them. These interfaces may be withdrawn in future releases of this specification.
An LSB conforming implementation shall provide the generic functions for IPC Functions specified in Table 12-22, with the full mandatory functionality as described in the referenced underlying specification.
An LSB conforming implementation shall provide the generic functions for Regular Expressions specified in Table 12-23, with the full mandatory functionality as described in the referenced underlying specification.
An LSB conforming implementation shall provide the generic functions for Character Type Functions specified in Table 12-24, with the full mandatory functionality as described in the referenced underlying specification.
Table 12-24. libc - Character Type Functions Function Interfaces
__ctype_b_loc(GLIBC_2.3) [LSB] | __ctype_get_mb_cur_max [LSB] | __ctype_tolower_loc(GLIBC_2.3) [LSB] | __ctype_toupper_loc(GLIBC_2.3) [LSB] |
_tolower [SUSv3] | _toupper [SUSv3] | isalnum [SUSv3] | isalpha [SUSv3] |
isascii [SUSv3] | iscntrl [SUSv3] | isdigit [SUSv3] | isgraph [SUSv3] |
islower [SUSv3] | isprint [SUSv3] | ispunct [SUSv3] | isspace [SUSv3] |
isupper [SUSv3] | iswalnum [SUSv3] | iswalpha [SUSv3] | iswblank [SUSv3] |
iswcntrl [SUSv3] | iswctype [SUSv3] | iswdigit [SUSv3] | iswgraph [SUSv3] |
iswlower [SUSv3] | iswprint [SUSv3] | iswpunct [SUSv3] | iswspace [SUSv3] |
iswupper [SUSv3] | iswxdigit [SUSv3] | isxdigit [SUSv3] | toascii [SUSv3] |
tolower [SUSv3] | toupper [SUSv3] |
An LSB conforming implementation shall provide the generic functions for Time Manipulation specified in Table 12-25, with the full mandatory functionality as described in the referenced underlying specification.
Table 12-25. libc - Time Manipulation Function Interfaces
adjtime [LSB] | asctime [SUSv3] | asctime_r [SUSv3] | ctime [SUSv3] |
ctime_r [SUSv3] | difftime [SUSv3] | gmtime [SUSv3] | gmtime_r [SUSv3] |
localtime [SUSv3] | localtime_r [SUSv3] | mktime [SUSv3] | tzset [SUSv3] |
ualarm [SUSv3] |
An LSB conforming implementation shall provide the generic data interfaces for Time Manipulation specified in Table 12-26, with the full mandatory functionality as described in the referenced underlying specification.
An LSB conforming implementation shall provide the generic functions for Terminal Interface Functions specified in Table 12-27, with the full mandatory functionality as described in the referenced underlying specification.
Table 12-27. libc - Terminal Interface Functions Function Interfaces
cfgetispeed [SUSv3] | cfgetospeed [SUSv3] | cfmakeraw [LSB] | cfsetispeed [SUSv3] |
cfsetospeed [SUSv3] | cfsetspeed [LSB] | tcdrain [SUSv3] | tcflow [SUSv3] |
tcflush [SUSv3] | tcgetattr [SUSv3] | tcgetpgrp [SUSv3] | tcgetsid [SUSv3] |
tcsendbreak [SUSv3] | tcsetattr [SUSv3] | tcsetpgrp [SUSv3] |
An LSB conforming implementation shall provide the generic functions for System Database Interface specified in Table 12-28, with the full mandatory functionality as described in the referenced underlying specification.
Table 12-28. libc - System Database Interface Function Interfaces
endgrent [SUSv3] | endprotoent [SUSv3] | endpwent [SUSv3] | endservent [SUSv3] |
endutent [LSB] | endutxent [SUSv3] | getgrent [SUSv3] | getgrent_r [LSB] |
getgrgid [SUSv3] | getgrgid_r [SUSv3] | getgrnam [SUSv3] | getgrnam_r [SUSv3] |
getgrouplist [LSB] | gethostbyaddr [SUSv3] | gethostbyaddr_r [LSB] | gethostbyname [SUSv3] |
gethostbyname2 [LSB] | gethostbyname2_r [LSB] | gethostbyname_r [LSB] | getprotobyname [SUSv3] |
getprotobyname_r [LSB] | getprotobynumber [SUSv3] | getprotobynumber_r [LSB] | getprotoent [SUSv3] |
getprotoent_r [LSB] | getpwent [SUSv3] | getpwent_r [LSB] | getpwnam [SUSv3] |
getpwnam_r [SUSv3] | getpwuid [SUSv3] | getpwuid_r [SUSv3] | getservbyname [SUSv3] |
getservbyname_r [LSB] | getservbyport [SUSv3] | getservbyport_r [LSB] | getservent [SUSv3] |
getservent_r [LSB] | getutent [LSB] | getutent_r [LSB] | getutxent [SUSv3] |
getutxid [SUSv3] | getutxline [SUSv3] | pututxline [SUSv3] | setgrent [SUSv3] |
setgroups [LSB] | setprotoent [SUSv3] | setpwent [SUSv3] | setservent [SUSv3] |
setutent [LSB] | setutxent [SUSv3] | utmpname [LSB] |
An LSB conforming implementation shall provide the generic deprecated functions for System Database Interface specified in Table 12-29, with the full mandatory functionality as described in the referenced underlying specification.
Note: These interfaces are deprecated, and applications should avoid using them. These interfaces may be withdrawn in future releases of this specification.
An LSB conforming implementation shall provide the generic functions for Language Support specified in Table 12-30, with the full mandatory functionality as described in the referenced underlying specification.
An LSB conforming implementation shall provide the generic functions for Large File Support specified in Table 12-31, with the full mandatory functionality as described in the referenced underlying specification.
Table 12-31. libc - Large File Support Function Interfaces
__fxstat64 [LSB] | __fxstatat64(GLIBC_2.4) [LSB] | __lxstat64 [LSB] | __xstat64 [LSB] |
creat64 [LFS] | fgetpos64 [LFS] | fopen64 [LFS] | freopen64 [LFS] |
fseeko64 [LFS] | fsetpos64 [LFS] | fstatfs64 [LSB] | fstatvfs64 [LFS] |
ftello64 [LFS] | ftruncate64 [LFS] | ftw64 [LFS] | getrlimit64 [LFS] |
lockf64 [LFS] | lseek64 [LFS] | mkstemp64 [LSB] | mmap64 [LFS] |
nftw64 [LFS] | open64 [LFS] | openat64(GLIBC_2.4) [LSB] | posix_fadvise64 [LSB] |
posix_fallocate64 [LSB] | pread64 [LSB] | pwrite64 [LSB] | readdir64 [LFS] |
readdir64_r [LSB] | statfs64 [LSB] | statvfs64 [LFS] | tmpfile64 [LFS] |
truncate64 [LFS] |
An LSB conforming implementation shall provide the generic deprecated functions for Large File Support specified in Table 12-32, with the full mandatory functionality as described in the referenced underlying specification.
Note: These interfaces are deprecated, and applications should avoid using them. These interfaces may be withdrawn in future releases of this specification.
An LSB conforming implementation shall provide the generic functions for Inotify specified in Table 12-33, with the full mandatory functionality as described in the referenced underlying specification.
An LSB conforming implementation shall provide the generic functions for Standard Library specified in Table 12-34, with the full mandatory functionality as described in the referenced underlying specification.
Table 12-34. libc - Standard Library Function Interfaces
_Exit [SUSv3] | __assert_fail [LSB] | __confstr_chk(GLIBC_2.4) [LSB] | __cxa_atexit [LSB] |
__cxa_finalize [LSB] | __errno_location [LSB] | __fpending [LSB] | __getcwd_chk(GLIBC_2.4) [LSB] |
__getlogin_r_chk(GLIBC_2.4) [LSB] | __getpagesize [LSB] | __isinf [LSB] | __isinff [LSB] |
__isinfl [LSB] | __isnan [LSB] | __isnanf [LSB] | __isnanl [LSB] |
__pread64_chk(GLIBC_2.4) [LSB] | __pread_chk(GLIBC_2.4) [LSB] | __realpath_chk(GLIBC_2.4) [LSB] | __sysconf [LSB] |
__syslog_chk(GLIBC_2.4) [LSB] | __ttyname_r_chk(GLIBC_2.4) [LSB] | __vsyslog_chk(GLIBC_2.4) [LSB] | __xpg_basename [LSB] |
_exit [SUSv3] | _longjmp [SUSv3] | _setjmp [SUSv3] | a64l [SUSv3] |
abort [SUSv3] | abs [SUSv3] | alphasort [SUSv4] | alphasort64 [LSB] |
atof [SUSv3] | atoi [SUSv3] | atol [SUSv3] | atoll [SUSv3] |
basename [LSB] | bsearch [SUSv3] | calloc [SUSv3] | closelog [SUSv3] |
confstr [SUSv3] | cuserid [SUSv2] | daemon [LSB] | dirfd [SUSv4] |
dirname [SUSv3] | div [SUSv3] | dl_iterate_phdr [LSB] | drand48 [SUSv3] |
drand48_r [LSB] | ecvt [SUSv3] | erand48 [SUSv3] | erand48_r [LSB] |
err [LSB] | error [LSB] | errx [LSB] | fcvt [SUSv3] |
fmemopen [SUSv4] | fmtmsg [SUSv3] | fnmatch [SUSv3] | fpathconf [SUSv3] |
free [SUSv3] | freeaddrinfo [SUSv3] | ftrylockfile [SUSv3] | ftw [SUSv3] |
funlockfile [SUSv3] | gai_strerror [SUSv3] | gcvt [SUSv3] | getaddrinfo [SUSv3] |
getcwd [SUSv3] | getdate [SUSv3] | getdomainname [LSB] | getenv [SUSv3] |
getlogin [SUSv3] | getlogin_r [SUSv3] | getnameinfo [SUSv3] | getopt [LSB] |
getopt_long [LSB] | getopt_long_only [LSB] | getsubopt [SUSv3] | gettimeofday [SUSv3] |
glob [SUSv3] | glob64 [LSB] | globfree [SUSv3] | globfree64 [LSB] |
grantpt [SUSv3] | hcreate [SUSv3] | hcreate_r [LSB] | hdestroy [SUSv3] |
hdestroy_r [LSB] | hsearch [SUSv3] | hsearch_r [LSB] | htonl [SUSv3] |
htons [SUSv3] | imaxabs [SUSv3] | imaxdiv [SUSv3] | inet_addr [SUSv3] |
inet_aton [LSB] | inet_ntoa [SUSv3] | inet_ntop [SUSv3] | inet_pton [SUSv3] |
initstate [SUSv3] | initstate_r [LSB] | insque [SUSv3] | isatty [SUSv3] |
isblank [SUSv3] | jrand48 [SUSv3] | jrand48_r [LSB] | l64a [SUSv3] |
labs [SUSv3] | lcong48 [SUSv3] | lcong48_r [LSB] | ldiv [SUSv3] |
lfind [SUSv3] | llabs [SUSv3] | lldiv [SUSv3] | longjmp [SUSv3] |
lrand48 [SUSv3] | lrand48_r [LSB] | lsearch [SUSv3] | makecontext [SUSv3] |
malloc [SUSv3] | memmem [LSB] | mkdtemp [SUSv4] | mkstemp [SUSv3] |
mktemp [SUSv3] | mrand48 [SUSv3] | mrand48_r [LSB] | nftw [SUSv3] |
nrand48 [SUSv3] | nrand48_r [LSB] | ntohl [SUSv3] | ntohs [SUSv3] |
open_memstream [SUSv4] | open_wmemstream(GLIBC_2.4) [SUSv4] | openlog [SUSv3] | perror [SUSv3] |
posix_openpt [SUSv3] | ptsname [SUSv3] | putenv [SUSv3] | qsort [SUSv3] |
rand [SUSv3] | rand_r [SUSv3] | random [SUSv3] | random_r [LSB] |
realloc [SUSv3] | realpath [SUSv3] | remque [SUSv3] | scandir [SUSv4] |
scandir64 [LSB] | seed48 [SUSv3] | seed48_r [LSB] | sendfile [LSB] |
sendfile64(GLIBC_2.3) [LSB] | setenv [SUSv3] | sethostname [LSB] | setlogmask [SUSv3] |
setstate [SUSv3] | setstate_r [LSB] | srand [SUSv3] | srand48 [SUSv3] |
srand48_r [LSB] | srandom [SUSv3] | srandom_r [LSB] | strtod [SUSv3] |
strtol [SUSv3] | strtoul [SUSv3] | swapcontext [SUSv3] | syslog [SUSv3] |
system [LSB] | tdelete [SUSv3] | tfind [SUSv3] | tmpfile [SUSv3] |
tmpnam [SUSv3] | tsearch [SUSv3] | ttyname [SUSv3] | ttyname_r [SUSv3] |
twalk [SUSv3] | unlockpt [SUSv3] | unsetenv [SUSv3] | usleep [SUSv3] |
verrx [LSB] | vfscanf [LSB] | vscanf [LSB] | vsscanf [LSB] |
vsyslog [LSB] | warn [LSB] | warnx [LSB] | wordexp [SUSv3] |
wordfree [SUSv3] |
An LSB conforming implementation shall provide the generic deprecated functions for Standard Library specified in Table 12-35, with the full mandatory functionality as described in the referenced underlying specification.
Note: These interfaces are deprecated, and applications should avoid using them. These interfaces may be withdrawn in future releases of this specification.
Table 12-35. libc - Standard Library Deprecated Function Interfaces
basename [LSB] | getdomainname [LSB] | inet_aton [LSB] | tmpnam [SUSv3] |
An LSB conforming implementation shall provide the generic data interfaces for Standard Library specified in Table 12-36, with the full mandatory functionality as described in the referenced underlying specification.
An LSB conforming implementation shall provide the generic functions for GNU Extensions for libc specified in Table 12-37, with the full mandatory functionality as described in the referenced underlying specification.
This section defines global identifiers and their values that are associated with interfaces contained in libc. These definitions are organized into groups that correspond to system headers. This convention is used as a convenience for the reader, and does not imply the existence of these headers, or their content. Where an interface is defined as requiring a particular system header file all of the data definitions for that system header file presented here shall be in effect.
This section gives data definitions to promote binary application portability, not to repeat source interface definitions available elsewhere. System providers and application developers should use this ABI to supplement - not to replace - source interface definition specifications.
This specification uses the ISO C (1999) C Language as the reference programming language, and data definitions are specified in ISO C format. The C language is used here as a convenient notation. Using a C language description of these data objects does not preclude their use by other programming languages.
extern uint32_t htonl(uint32_t); extern uint16_t htons(uint16_t); extern in_addr_t inet_addr(const char *__cp); extern int inet_aton(const char *__cp, struct in_addr *__inp); extern char *inet_ntoa(struct in_addr __in); extern const char *inet_ntop(int __af, const void *__cp, char *__buf, socklen_t __len); extern int inet_pton(int __af, const char *__cp, void *__buf); extern uint32_t ntohl(uint32_t); extern uint16_t ntohs(uint16_t); |
#ifdef NDEBUG #define assert(expr) ((void)0) #else #define assert(expr) ((void) ((expr) ? 0 : (__assert_fail (#expr, __FILE__, __LINE__, __PRETTY_FUNCTION__), 0))) #endif extern void __assert_fail(const char *__assertion, const char *__file, unsigned int __line, const char *__function); |
#define C_IXOTH 000001 #define C_IWOTH 000002 #define C_IROTH 000004 #define C_IXGRP 000010 #define C_IWGRP 000020 #define C_IRGRP 000040 #define C_IXUSR 000100 #define C_IWUSR 000200 #define C_IRUSR 000400 #define C_ISVTX 001000 #define C_ISGID 002000 #define C_ISUID 004000 #define C_ISFIFO 010000 #define C_ISREG 0100000 #define C_ISCTG 0110000 #define C_ISLNK 0120000 #define C_ISSOCK 0140000 #define C_ISCHR 020000 #define C_ISDIR 040000 #define C_ISBLK 060000 #define MAGIC "070707" |
extern const unsigned short **__ctype_b_loc(void); extern const int32_t **__ctype_tolower_loc(void); extern const int32_t **__ctype_toupper_loc(void); extern int _tolower(int); extern int _toupper(int); extern int isalnum(int); extern int isalpha(int); extern int isascii(int __c); extern int isblank(int); extern int iscntrl(int); extern int isdigit(int); extern int isgraph(int); extern int islower(int); extern int isprint(int); extern int ispunct(int); extern int isspace(int); extern int isupper(int); extern int isxdigit(int); extern int toascii(int __c); extern int tolower(int __c); extern int toupper(int __c); |
typedef struct __dirstream DIR; struct dirent { long int d_ino; off_t d_off; unsigned short d_reclen; unsigned char d_type; char d_name[256]; }; struct dirent64 { uint64_t d_ino; int64_t d_off; unsigned short d_reclen; unsigned char d_type; char d_name[256]; }; extern int alphasort(const struct dirent **__e1, const struct dirent **__e2); extern int alphasort64(const struct dirent64 **__e1, const struct dirent64 **__e2); extern int closedir(DIR * __dirp); extern int dirfd(DIR * __dirp); extern DIR *fdopendir(int __fd); extern DIR *opendir(const char *__name); extern struct dirent *readdir(DIR * __dirp); extern struct dirent64 *readdir64(DIR * __dirp); extern int readdir64_r(DIR * __dirp, struct dirent64 *__entry, struct dirent64 **__result); extern int readdir_r(DIR * __dirp, struct dirent *__entry, struct dirent **__result); extern void rewinddir(DIR * __dirp); extern int scandir(const char *__dir, struct dirent ***__namelist, int (*__selector) (const struct dirent *), int (*__cmp) (const struct dirent * *, const struct dirent * *)); extern int scandir64(const char *__dir, struct dirent64 ***__namelist, int (*__selector) (const struct dirent64 *), int (*__cmp) (const struct dirent64 * *, const struct dirent64 * *)); extern void seekdir(DIR * __dirp, long int __pos); extern long int telldir(DIR * __dirp); |
#define ELFMAG1 'E' #define ELFMAG3 'F' #define ELFMAG2 'L' #define ELF32_ST_INFO(bind,type) (((bind) << 4) + ((type) & 0xf)) #define ELF32_ST_BIND(val) (((unsigned char) (val)) >> 4) #define ELF32_ST_TYPE(val) ((val) & 0xf) #define PF_X (1 << 0) #define SHF_WRITE (1 << 0) #define PF_W (1 << 1) #define SHF_ALLOC (1 << 1) #define SHF_TLS (1 << 10) #define PF_R (1 << 2) #define SHF_EXECINSTR (1 << 2) #define SHF_MERGE (1 << 4) #define SHF_STRINGS (1 << 5) #define SHF_LINK_ORDER (1 << 7) #define EI_NIDENT (16) #define DT_ADDRTAGIDX(tag) (DT_ADDRRNGHI - (tag)) #define DT_VALTAGIDX(tag) (DT_VALRNGHI - (tag)) #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) #define PT_IA_64_UNWIND (PT_LOPROC + 1) #define SHT_IA_64_EXT (SHT_LOPROC + 0) #define SHT_IA_64_UNWIND (SHT_LOPROC + 1) #define DT_NULL 0 #define EI_MAG0 0 #define ELFCLASSNONE 0 #define ELFDATANONE 0 #define ELFOSABI_NONE 0 #define ELFOSABI_SYSV 0 #define ET_NONE 0 #define EV_NONE 0 #define PT_NULL 0 #define SHN_UNDEF 0 #define SHT_NULL 0 #define STB_LOCAL 0 #define STT_NOTYPE 0 #define DF_ORIGIN 0x00000001 /* Object may use DF_ORIGIN */ #define DF_SYMBOLIC 0x00000002 /* Symbol resolutions start with this object */ #define DF_TEXTREL 0x00000004 /* Object contains text relocations */ #define DF_BIND_NOW 0x00000008 /* No lazy binding for this object */ #define DF_STATIC_TLS 0x00000010 /* Module uses the static TLS model */ #define SHF_IA_64_SHORT 0x10000000 #define PT_LOOS 0x60000000 #define DT_LOOS 0x6000000d #define PT_GNU_EH_FRAME 0x6474e550 #define PT_GNU_STACK 0x6474e551 #define PT_GNU_RELRO 0x6474e552 #define DT_HIOS 0x6ffff000 #define DT_VALRNGLO 0x6ffffd00 #define DT_GNU_PRELINKED 0x6ffffdf5 #define DT_GNU_CONFLICTSZ 0x6ffffdf6 #define DT_GNU_LIBLISTSZ 0x6ffffdf7 #define DT_CHECKSUM 0x6ffffdf8 #define DT_PLTPADSZ 0x6ffffdf9 #define DT_MOVEENT 0x6ffffdfa #define DT_MOVESZ 0x6ffffdfb #define DT_FEATURE_1 0x6ffffdfc #define DT_POSFLAG_1 0x6ffffdfd #define DT_SYMINSZ 0x6ffffdfe #define DT_SYMINENT 0x6ffffdff #define DT_VALRNGHI 0x6ffffdff #define DT_ADDRRNGLO 0x6ffffe00 #define DT_GNU_HASH 0x6ffffef5 #define DT_TLSDESC_PLT 0x6ffffef6 #define DT_TLSDESC_GOT 0x6ffffef7 #define DT_GNU_CONFLICT 0x6ffffef8 #define DT_GNU_LIBLIST 0x6ffffef9 #define DT_CONFIG 0x6ffffefa #define DT_DEPAUDIT 0x6ffffefb #define DT_AUDIT 0x6ffffefc #define DT_PLTPAD 0x6ffffefd #define DT_MOVETAB 0x6ffffefe #define DT_ADDRRNGHI 0x6ffffeff #define DT_SYMINFO 0x6ffffeff #define DT_VERSYM 0x6ffffff0 #define DT_RELACOUNT 0x6ffffff9 #define DT_RELCOUNT 0x6ffffffa #define DT_FLAGS_1 0x6ffffffb #define DT_VERDEF 0x6ffffffc #define DT_VERDEFNUM 0x6ffffffd #define SHT_GNU_verdef 0x6ffffffd #define DT_VERNEED 0x6ffffffe #define SHT_GNU_verneed 0x6ffffffe #define DT_VERNEEDNUM 0x6fffffff #define SHT_GNU_versym 0x6fffffff #define DT_LOPROC 0x70000000 #define PT_LOPROC 0x70000000 #define SHT_LOPROC 0x70000000 #define ELFMAG0 0x7f #define DT_AUXILIARY 0x7ffffffd #define DT_FILTER 0x7fffffff #define DT_HIPROC 0x7fffffff #define PT_HIPROC 0x7fffffff #define SHT_HIPROC 0x7fffffff #define SHT_LOUSER 0x80000000 #define SHT_HIUSER 0x8fffffff #define ET_LOOS 0xfe00 #define ET_HIOS 0xfeff #define ET_LOPROC 0xff00 #define SHN_LOPROC 0xff00 #define SHN_LORESERVE 0xff00 #define SHN_HIPROC 0xff1f #define SHN_LOOS 0xff20 #define SHN_HIOS 0xff3f #define SHN_ABS 0xfff1 #define SHN_COMMON 0xfff2 #define ET_HIPROC 0xffff #define SHN_HIRESERVE 0xffff #define SHN_XINDEX 0xffff #define DT_NEEDED 1 #define EI_MAG1 1 #define ELFCLASS32 1 #define ELFDATA2LSB 1 #define ET_REL 1 #define EV_CURRENT 1 #define PT_LOAD 1 #define SHT_PROGBITS 1 #define STB_GLOBAL 1 #define STT_OBJECT 1 #define DT_STRSZ 10 #define SHT_SHLIB 10 #define STB_LOOS 10 #define DT_ADDRNUM 11 #define DT_SYMENT 11 #define SHT_DYNSYM 11 #define DT_INIT 12 #define DT_VALNUM 12 #define STB_HIOS 12 #define DT_FINI 13 #define STB_LOPROC 13 #define DT_SONAME 14 #define SHT_INIT_ARRAY 14 #define DT_RPATH 15 #define SHT_FINI_ARRAY 15 #define STB_HIPROC 15 #define DT_SYMBOLIC 16 #define DT_VERSIONTAGNUM 16 #define SHT_PREINIT_ARRAY 16 #define DT_REL 17 #define DT_RELSZ 18 #define DT_RELENT 19 #define DT_PLTRELSZ 2 #define EI_MAG2 2 #define ELFCLASS64 2 #define ELFDATA2MSB 2 #define ET_EXEC 2 #define EV_NUM 2 #define PT_DYNAMIC 2 #define SHT_SYMTAB 2 #define STB_WEAK 2 #define STT_FUNC 2 #define DT_PLTREL 20 #define DT_DEBUG 21 #define DT_TEXTREL 22 #define DT_JMPREL 23 #define DT_BIND_NOW 24 #define DT_INIT_ARRAY 25 #define DT_FINI_ARRAY 26 #define DT_INIT_ARRAYSZ 27 #define DT_FINI_ARRAYSZ 28 #define DT_RUNPATH 29 #define DT_EXTRANUM 3 #define DT_PLTGOT 3 #define EI_MAG3 3 #define ELFCLASSNUM 3 #define ELFDATANUM 3 #define ELFOSABI_LINUX 3 #define ET_DYN 3 #define PT_INTERP 3 #define SHT_STRTAB 3 #define STB_NUM 3 #define DT_FLAGS 30 #define DT_ENCODING 32 #define DT_PREINIT_ARRAY 32 #define DT_PREINIT_ARRAYSZ 33 #define DT_NUM 34 #define DT_HASH 4 #define EI_CLASS 4 #define ET_CORE 4 #define PT_NOTE 4 #define SELFMAG 4 #define SHT_RELA 4 #define DT_STRTAB 5 #define EI_DATA 5 #define ET_NUM 5 #define PT_SHLIB 5 #define SHT_HASH 5 #define DT_SYMTAB 6 #define EI_VERSION 6 #define PT_PHDR 6 #define SHT_DYNAMIC 6 #define DT_RELA 7 #define EI_OSABI 7 #define PT_TLS 7 #define SHT_NOTE 7 #define DT_RELASZ 8 #define EI_ABIVERSION 8 #define PT_NUM 8 #define SHT_NOBITS 8 #define DT_RELAENT 9 #define SHT_REL 9 #define ELF64_ST_BIND(val) ELF32_ST_BIND (val) #define ELF64_ST_INFO(bind,type) ELF32_ST_INFO ((bind), (type)) #define ELF64_ST_TYPE(val) ELF32_ST_TYPE (val) #define ELFMAG "\177ELF" typedef uint32_t Elf32_Addr; typedef uint64_t Elf64_Addr; typedef uint32_t Elf32_Word; typedef uint32_t Elf64_Word; typedef int32_t Elf32_Sword; typedef int32_t Elf64_Sword; typedef uint64_t Elf32_Xword; typedef uint64_t Elf64_Xword; typedef int64_t Elf32_Sxword; typedef int64_t Elf64_Sxword; typedef uint32_t Elf32_Off; typedef uint64_t Elf64_Off; typedef struct { Elf32_Word p_type; /* Segment type */ Elf32_Off p_offset; /* Segment file offset */ Elf32_Addr p_vaddr; /* Segment virtual address */ Elf32_Addr p_paddr; /* Segment physical address */ Elf32_Word p_filesz; /* Segment size in file */ Elf32_Word p_memsz; /* Segment size in memory */ Elf32_Word p_flags; /* Segment flags */ Elf32_Word p_align; /* Segment alignment */ } Elf32_Phdr; typedef struct { Elf64_Word p_type; /* Segment type */ Elf64_Word p_flags; /* Segment flags */ Elf64_Off p_offset; /* Segment file offset */ Elf64_Addr p_vaddr; /* Segment virtual address */ Elf64_Addr p_paddr; /* Segment physical address */ Elf64_Xword p_filesz; /* Segment size in file */ Elf64_Xword p_memsz; /* Segment size in memory */ Elf64_Xword p_align; /* Segment alignment */ } Elf64_Phdr; typedef uint16_t Elf32_Half; typedef uint16_t Elf64_Half; typedef uint16_t Elf32_Section; typedef uint16_t Elf64_Section; typedef struct { Elf32_Word n_namesz; Elf32_Word n_descsz; Elf32_Word n_type; } Elf32_Nhdr; typedef struct { Elf64_Word n_namesz; Elf64_Word n_descsz; Elf64_Word n_type; } Elf64_Nhdr; typedef struct { Elf64_Word st_name; unsigned char st_info; unsigned char st_other; Elf64_Section st_shndx; Elf64_Addr st_value; Elf64_Xword st_size; } Elf64_Sym; typedef struct { Elf32_Word st_name; Elf32_Addr st_value; Elf32_Word st_size; unsigned char st_info; unsigned char st_other; Elf32_Section st_shndx; } Elf32_Sym; typedef struct { Elf64_Addr r_offset; Elf64_Xword r_info; } Elf64_Rel; typedef struct { Elf32_Addr r_offset; Elf32_Word r_info; } Elf32_Rel; typedef struct { Elf64_Addr r_offset; Elf64_Xword r_info; Elf64_Sxword r_addend; } Elf64_Rela; typedef struct { Elf32_Addr r_offset; Elf32_Word r_info; Elf32_Sword r_addend; } Elf32_Rela; typedef struct { Elf32_Half vd_version; Elf32_Half vd_flags; Elf32_Half vd_ndx; Elf32_Half vd_cnt; Elf32_Word vd_hash; Elf32_Word vd_aux; Elf32_Word vd_next; } Elf32_Verdef; typedef struct { Elf64_Half vd_version; Elf64_Half vd_flags; Elf64_Half vd_ndx; Elf64_Half vd_cnt; Elf64_Word vd_hash; Elf64_Word vd_aux; Elf64_Word vd_next; } Elf64_Verdef; typedef struct { Elf64_Word vda_name; Elf64_Word vda_next; } Elf64_Verdaux; typedef struct { Elf32_Word vda_name; Elf32_Word vda_next; } Elf32_Verdaux; typedef struct { Elf32_Half vn_version; Elf32_Half vn_cnt; Elf32_Word vn_file; Elf32_Word vn_aux; Elf32_Word vn_next; } Elf32_Verneed; typedef struct { Elf64_Half vn_version; Elf64_Half vn_cnt; Elf64_Word vn_file; Elf64_Word vn_aux; Elf64_Word vn_next; } Elf64_Verneed; typedef struct { Elf32_Word vna_hash; Elf32_Half vna_flags; Elf32_Half vna_other; Elf32_Word vna_name; Elf32_Word vna_next; } Elf32_Vernaux; typedef struct { Elf64_Word vna_hash; Elf64_Half vna_flags; Elf64_Half vna_other; Elf64_Word vna_name; Elf64_Word vna_next; } Elf64_Vernaux; typedef struct { unsigned char e_ident[EI_NIDENT]; Elf64_Half e_type; Elf64_Half e_machine; Elf64_Word e_version; Elf64_Addr e_entry; Elf64_Off e_phoff; Elf64_Off e_shoff; Elf64_Word e_flags; Elf64_Half e_ehsize; Elf64_Half e_phentsize; Elf64_Half e_phnum; Elf64_Half e_shentsize; Elf64_Half e_shnum; Elf64_Half e_shstrndx; } Elf64_Ehdr; typedef struct { unsigned char e_ident[EI_NIDENT]; Elf32_Half e_type; Elf32_Half e_machine; Elf32_Word e_version; Elf32_Addr e_entry; Elf32_Off e_phoff; Elf32_Off e_shoff; Elf32_Word e_flags; Elf32_Half e_ehsize; Elf32_Half e_phentsize; Elf32_Half e_phnum; Elf32_Half e_shentsize; Elf32_Half e_shnum; Elf32_Half e_shstrndx; } Elf32_Ehdr; typedef struct { Elf32_Word sh_name; Elf32_Word sh_type; Elf32_Word sh_flags; Elf32_Addr sh_addr; Elf32_Off sh_offset; Elf32_Word sh_size; Elf32_Word sh_link; Elf32_Word sh_info; Elf32_Word sh_addralign; Elf32_Word sh_entsize; } Elf32_Shdr; typedef struct { Elf64_Word sh_name; Elf64_Word sh_type; Elf64_Xword sh_flags; Elf64_Addr sh_addr; Elf64_Off sh_offset; Elf64_Xword sh_size; Elf64_Word sh_link; Elf64_Word sh_info; Elf64_Xword sh_addralign; Elf64_Xword sh_entsize; } Elf64_Shdr; typedef struct { Elf32_Sword d_tag; union { Elf32_Word d_val; Elf32_Addr d_ptr; } d_un; } Elf32_Dyn; typedef struct { Elf64_Sxword d_tag; union { Elf64_Xword d_val; Elf64_Addr d_ptr; } d_un; } Elf64_Dyn; |
#define __LITTLE_ENDIAN 1234 #define __BIG_ENDIAN 4321 #define BIG_ENDIAN __BIG_ENDIAN #define BYTE_ORDER __BYTE_ORDER #define LITTLE_ENDIAN __LITTLE_ENDIAN |
extern void err(int __status, const char *__format, ...); extern void error(int, int, const char *, ...); extern void errx(int __status, const char *__format, ...); extern void warn(const char *__format, ...); extern void warnx(const char *__format, ...); |
#define errno (*__errno_location()) #define EPERM 1 /* Operation not permitted */ #define ECHILD 10 /* No child processes */ #define ENETDOWN 100 /* Network is down */ #define ENETUNREACH 101 /* Network is unreachable */ #define ENETRESET 102 /* Network dropped connection because of reset */ #define ECONNABORTED 103 /* Software caused connection abort */ #define ECONNRESET 104 /* Connection reset by peer */ #define ENOBUFS 105 /* No buffer space available */ #define EISCONN 106 /* Transport endpoint is already connected */ #define ENOTCONN 107 /* Transport endpoint is not connected */ #define ESHUTDOWN 108 /* Cannot send after transport endpoint shutdown */ #define ETOOMANYREFS 109 /* Too many references: cannot splice */ #define EAGAIN 11 /* Try again */ #define ETIMEDOUT 110 /* Connection timed out */ #define ECONNREFUSED 111 /* Connection refused */ #define EHOSTDOWN 112 /* Host is down */ #define EHOSTUNREACH 113 /* No route to host */ #define EALREADY 114 /* Operation already in progress */ #define EINPROGRESS 115 /* Operation now in progress */ #define ESTALE 116 /* Stale NFS file handle */ #define EUCLEAN 117 /* Structure needs cleaning */ #define ENOTNAM 118 /* Not a XENIX named type file */ #define ENAVAIL 119 /* No XENIX semaphores available */ #define ENOMEM 12 /* Out of memory */ #define EISNAM 120 /* Is a named type file */ #define EREMOTEIO 121 /* Remote I/O error */ #define EDQUOT 122 /* Quota exceeded */ #define ENOMEDIUM 123 /* No medium found */ #define EMEDIUMTYPE 124 /* Wrong medium type */ #define ECANCELED 125 /* Operation Canceled */ #define EACCES 13 /* Permission denied */ #define EOWNERDEAD 130 #define ENOTRECOVERABLE 131 #define EFAULT 14 /* Bad address */ #define ENOTBLK 15 /* Block device required */ #define EBUSY 16 /* Device or resource busy */ #define EEXIST 17 /* File exists */ #define EXDEV 18 /* Cross-device link */ #define ENODEV 19 /* No such device */ #define ENOENT 2 /* No such file or directory */ #define ENOTDIR 20 /* Not a directory */ #define EISDIR 21 /* Is a directory */ #define EINVAL 22 /* Invalid argument */ #define ENFILE 23 /* File table overflow */ #define EMFILE 24 /* Too many open files */ #define ENOTTY 25 /* Not a typewriter */ #define ETXTBSY 26 /* Text file busy */ #define EFBIG 27 /* File too large */ #define ENOSPC 28 /* No space left on device */ #define ESPIPE 29 /* Illegal seek */ #define ESRCH 3 /* No such process */ #define EROFS 30 /* Read-only file system */ #define EMLINK 31 /* Too many links */ #define EPIPE 32 /* Broken pipe */ #define EDOM 33 /* Math argument out of domain of func */ #define ERANGE 34 /* Math result not representable */ #define EDEADLK 35 /* Resource deadlock would occur */ #define ENAMETOOLONG 36 /* File name too long */ #define ENOLCK 37 /* No record locks available */ #define ENOSYS 38 /* Function not implemented */ #define ENOTEMPTY 39 /* Directory not empty */ #define EINTR 4 /* Interrupted system call */ #define ELOOP 40 /* Too many symbolic links encountered */ #define ENOMSG 42 /* No message of desired type */ #define EIDRM 43 /* Identifier removed */ #define ECHRNG 44 /* Channel number out of range */ #define EL2NSYNC 45 /* Level 2 not synchronized */ #define EL3HLT 46 /* Level 3 halted */ #define EL3RST 47 /* Level 3 reset */ #define ELNRNG 48 /* Link number out of range */ #define EUNATCH 49 /* Protocol driver not attached */ #define EIO 5 /* I/O error */ #define ENOANO 55 /* No anode */ #define EBADRQC 56 /* Invalid request code */ #define EBADSLT 57 /* Invalid slot */ #define EBFONT 59 /* Bad font file format */ #define ENXIO 6 /* No such device or address */ #define ENOSTR 60 /* Device not a stream */ #define ENODATA 61 /* No data available */ #define ETIME 62 /* Timer expired */ #define ENOSR 63 /* Out of streams resources */ #define ENONET 64 /* Machine is not on the network */ #define ENOPKG 65 /* Package not installed */ #define EREMOTE 66 /* Object is remote */ #define ENOLINK 67 /* Link has been severed */ #define EADV 68 /* Advertise error */ #define ESRMNT 69 /* Srmount error */ #define E2BIG 7 /* Argument list too long */ #define ECOMM 70 /* Communication error on send */ #define EPROTO 71 /* Protocol error */ #define EMULTIHOP 72 /* Multihop attempted */ #define EDOTDOT 73 /* RFS specific error */ #define EBADMSG 74 /* Not a data message */ #define EOVERFLOW 75 /* Value too large for defined data type */ #define ENOTUNIQ 76 /* Name not unique on network */ #define EBADFD 77 /* File descriptor in bad state */ #define EREMCHG 78 /* Remote address changed */ #define ELIBACC 79 /* Can not access a needed shared library */ #define ENOEXEC 8 /* Exec format error */ #define ELIBBAD 80 /* Accessing a corrupted shared library */ #define ELIBSCN 81 /* .lib section in a.out corrupted */ #define ELIBMAX 82 /* Attempting to link in too many shared libraries */ #define ELIBEXEC 83 /* Cannot exec a shared library directly */ #define EILSEQ 84 /* Illegal byte sequence */ #define ERESTART 85 /* Interrupted system call should be restarted */ #define ESTRPIPE 86 /* Streams pipe error */ #define EUSERS 87 /* Too many users */ #define ENOTSOCK 88 /* Socket operation on non-socket */ #define EDESTADDRREQ 89 /* Destination address required */ #define EBADF 9 /* Bad file number */ #define EMSGSIZE 90 /* Message too long */ #define EPROTOTYPE 91 /* Protocol wrong type for socket */ #define ENOPROTOOPT 92 /* Protocol not available */ #define EPROTONOSUPPORT 93 /* Protocol not supported */ #define ESOCKTNOSUPPORT 94 /* Socket type not supported */ #define EOPNOTSUPP 95 /* Operation not supported on transport endpoint */ #define EPFNOSUPPORT 96 /* Protocol family not supported */ #define EAFNOSUPPORT 97 /* Address family not supported by protocol */ #define EADDRINUSE 98 /* Address already in use */ #define EADDRNOTAVAIL 99 /* Cannot assign requested address */ #define EWOULDBLOCK EAGAIN /* Operation would block */ #define ENOTSUP EOPNOTSUPP extern int *__errno_location(void); |
extern int backtrace(void **__array, int __size); extern char **backtrace_symbols(void *const *__array, int __size); extern void backtrace_symbols_fd(void *const *__array, int __size, int __fd); |
#define POSIX_FADV_NORMAL 0 #define O_RDONLY 00 #define O_ACCMODE 0003 #define O_WRONLY 01 #define O_CREAT 0100 #define O_TRUNC 01000 #define O_DSYNC 010000 #define O_RSYNC 010000 #define O_SYNC 010000 #define O_RDWR 02 #define O_EXCL 0200 #define O_APPEND 02000 #define O_ASYNC 020000 #define O_NOCTTY 0400 #define O_NDELAY 04000 #define O_NONBLOCK 04000 #define FD_CLOEXEC 1 #define POSIX_FADV_RANDOM 1 #define POSIX_FADV_SEQUENTIAL 2 #define POSIX_FADV_WILLNEED 3 struct flock { short l_type; short l_whence; off_t l_start; off_t l_len; pid_t l_pid; }; struct flock64 { short l_type; short l_whence; loff_t l_start; loff_t l_len; pid_t l_pid; }; #define AT_FDCWD -100 #define AT_SYMLINK_NOFOLLOW 0x100 #define AT_EACCESS 0x200 #define AT_REMOVEDIR 0x200 #define AT_SYMLINK_FOLLOW 0x400 #define F_DUPFD 0 #define F_RDLCK 0 #define F_GETFD 1 #define F_WRLCK 1 #define F_SETSIG 10 #define F_GETSIG 11 #define F_SETFD 2 #define F_UNLCK 2 #define F_GETFL 3 #define F_SETFL 4 #define F_GETLK 5 #define F_SETLK 6 #define F_SETLKW 7 #define F_SETOWN 8 #define F_GETOWN 9 extern int creat(const char *__file, mode_t __mode); extern int creat64(const char *__file, mode_t __mode); extern int fcntl(int __fd, int __cmd, ...); extern int open(const char *__file, int __oflag, ...); extern int open64(const char *__file, int __oflag, ...); extern int openat(int __fd, const char *__file, int __oflag, ...); extern int openat64(int __fd, const char *__file, int __oflag, ...); extern int posix_fadvise(int __fd, off_t __offset, off_t __len, int __advise); extern int posix_fadvise64(int __fd, off64_t __offset, off64_t __len, int __advise); extern int posix_fallocate(int __fd, off_t __offset, off_t __len); extern int posix_fallocate64(int __fd, off64_t __offset, off64_t __len); |
#define MM_HARD 1 /* Source of the condition is hardware. */ #define MM_NRECOV 128 /* Non-recoverable error. */ #define MM_UTIL 16 /* Condition detected by utility. */ #define MM_SOFT 2 /* Source of the condition is software. */ #define MM_PRINT 256 /* Display message in standard error. */ #define MM_OPSYS 32 /* Condition detected by operating system. */ #define MM_FIRM 4 /* Source of the condition is firmware. */ #define MM_CONSOLE 512 /* Display message on system console. */ #define MM_RECOVER 64 /* Recoverable error. */ #define MM_APPL 8 /* Condition detected by application. */ #define MM_NOSEV 0 /* No severity level provided for the message. */ #define MM_HALT 1 /* Error causing application to halt. */ #define MM_ERROR 2 /* Application has encountered a non-fatal fault. */ #define MM_WARNING 3 /* Application has detected unusual non-error condition. */ #define MM_INFO 4 /* Informative message. */ #define MM_NULLACT ((char *) 0) #define MM_NULLLBL ((char *) 0) #define MM_NULLTAG ((char *) 0) #define MM_NULLTXT ((char *) 0) #define MM_NULLMC ((long int) 0) #define MM_NULLSEV 0 #define MM_NOTOK -1 /* The function failed completely. */ #define MM_OK 0 /* The function succeeded. */ #define MM_NOMSG 1 /* The function was unable to generate a message on standard error, but otherwise succeeded. */ #define MM_NOCON 4 /* The function was unable to generate a console message, but otherwise succeeded. */ extern int fmtmsg(long int __classification, const char *__label, int __severity, const char *__text, const char *__action, const char *__tag); |
#define FNM_PATHNAME (1<<0) #define FNM_NOESCAPE (1<<1) #define FNM_PERIOD (1<<2) #define FNM_NOMATCH 1 extern int fnmatch(const char *__pattern, const char *__name, int __flags); |
#define FTW_D FTW_D #define FTW_DNR FTW_DNR #define FTW_DP FTW_DP #define FTW_F FTW_F #define FTW_NS FTW_NS #define FTW_SL FTW_SL #define FTW_SLN FTW_SLN enum { FTW_F, FTW_D, FTW_DNR, FTW_NS, FTW_SL, FTW_DP, FTW_SLN }; enum { FTW_PHYS = 1, FTW_MOUNT = 2, FTW_CHDIR = 4, FTW_DEPTH = 8 }; struct FTW { int base; int level; }; typedef int (*__ftw_func_t) (const char *__filename, const struct stat * __status, int __flag); typedef int (*__ftw64_func_t) (const char *__filename, const struct stat64 * __status, int __flag); typedef int (*__nftw_func_t) (const char *__filename, const struct stat * __status, int __flag, struct FTW * __info); typedef int (*__nftw64_func_t) (const char *__filename, const struct stat64 * __status, int __flag, struct FTW * __info); extern int ftw(const char *__dir, __ftw_func_t __func, int __descriptors); extern int ftw64(const char *__dir, __ftw64_func_t __func, int __descriptors); extern int nftw(const char *__dir, __nftw_func_t __func, int __descriptors, int __flag); extern int nftw64(const char *__dir, __nftw64_func_t __func, int __descriptors, int __flag); |
#define no_argument 0 #define required_argument 1 #define optional_argument 2 struct option { const char *name; int has_arg; int *flag; int val; }; extern int getopt_long(int ___argc, char *const ___argv[], const char *__shortopts, const struct option *__longopts, int *__longind); extern int getopt_long_only(int ___argc, char *const ___argv[], const char *__shortopts, const struct option *__longopts, int *__longind); |
#define GLOB_ERR (1<<0) #define GLOB_MARK (1<<1) #define GLOB_BRACE (1<<10) #define GLOB_NOMAGIC (1<<11) #define GLOB_TILDE (1<<12) #define GLOB_ONLYDIR (1<<13) #define GLOB_TILDE_CHECK (1<<14) #define GLOB_NOSORT (1<<2) #define GLOB_DOOFFS (1<<3) #define GLOB_NOCHECK (1<<4) #define GLOB_APPEND (1<<5) #define GLOB_NOESCAPE (1<<6) #define GLOB_PERIOD (1<<7) #define GLOB_MAGCHAR (1<<8) #define GLOB_ALTDIRFUNC (1<<9) #define GLOB_NOSPACE 1 #define GLOB_ABORTED 2 #define GLOB_NOMATCH 3 #define GLOB_NOSYS 4 typedef struct { size_t gl_pathc; char **gl_pathv; size_t gl_offs; int gl_flags; void (*gl_closedir) (void *); struct dirent *(*gl_readdir) (void *); void *(*gl_opendir) (const char *); int (*gl_lstat) (const char *, struct stat *); int (*gl_stat) (const char *, struct stat *); } glob_t; typedef struct { size_t gl_pathc; char **gl_pathv; size_t gl_offs; int gl_flags; void (*gl_closedir) (void *); struct dirent64 *(*gl_readdir) (void *); void *(*gl_opendir) (const char *); int (*gl_lstat) (const char *, struct stat *); int (*gl_stat) (const char *, struct stat *); } glob64_t; extern int glob(const char *__pattern, int __flags, int (*__errfunc) (const char *, int), glob_t * __pglob); extern int glob64(const char *__pattern, int __flags, int (*__errfunc) (const char *, int), glob64_t * __pglob); extern void globfree(glob_t * __pglob); extern void globfree64(glob64_t * __pglob); |
extern const char *gnu_get_libc_release(void); extern const char *gnu_get_libc_version(void); |
struct group { char *gr_name; char *gr_passwd; gid_t gr_gid; char **gr_mem; }; extern void endgrent(void); extern struct group *getgrent(void); extern int getgrent_r(struct group *__resultbuf, char *__buffer, size_t __buflen, struct group **__result); extern struct group *getgrgid(gid_t __gid); extern int getgrgid_r(gid_t __gid, struct group *__resultbuf, char *__buffer, size_t __buflen, struct group **__result); extern struct group *getgrnam(const char *__name); extern int getgrnam_r(const char *__name, struct group *__resultbuf, char *__buffer, size_t __buflen, struct group **__result); extern int getgrouplist(const char *__user, gid_t __group, gid_t * __groups, int *__ngroups); extern int initgroups(const char *__user, gid_t __group); extern void setgrent(void); extern int setgroups(size_t __n, const gid_t * __groups); |
typedef void *iconv_t; extern size_t iconv(iconv_t __cd, char **__inbuf, size_t * __inbytesleft, char **__outbuf, size_t * __outbytesleft); extern int iconv_close(iconv_t __cd); extern iconv_t iconv_open(const char *__tocode, const char *__fromcode); |
typedef lldiv_t imaxdiv_t; #define __PDP_ENDIAN 3412 #define PDP_ENDIAN __PDP_ENDIAN extern intmax_t imaxabs(intmax_t __n); extern imaxdiv_t imaxdiv(intmax_t __numer, intmax_t __denom); extern intmax_t strtoimax(const char *__nptr, char **__endptr, int __base); extern uintmax_t strtoumax(const char *__nptr, char **__endptr, int __base); extern intmax_t wcstoimax(const wchar_t * __nptr, wchar_t * *__endptr, int __base); extern uintmax_t wcstoumax(const wchar_t * __nptr, wchar_t * *__endptr, int __base); |
#define ABDAY_1 0x20000 /* Sun. */ #define ABDAY_2 0x20001 #define ABDAY_3 0x20002 #define ABDAY_4 0x20003 #define ABDAY_5 0x20004 #define ABDAY_6 0x20005 #define ABDAY_7 0x20006 #define DAY_1 0x20007 #define DAY_2 0x20008 #define DAY_3 0x20009 #define DAY_4 0x2000A #define DAY_5 0x2000B #define DAY_6 0x2000C #define DAY_7 0x2000D #define ABMON_1 0x2000E #define ABMON_2 0x2000F #define ABMON_3 0x20010 #define ABMON_4 0x20011 #define ABMON_5 0x20012 #define ABMON_6 0x20013 #define ABMON_7 0x20014 #define ABMON_8 0x20015 #define ABMON_9 0x20016 #define ABMON_10 0x20017 #define ABMON_11 0x20018 #define ABMON_12 0x20019 #define MON_1 0x2001A #define MON_2 0x2001B #define MON_3 0x2001C #define MON_4 0x2001D #define MON_5 0x2001E #define MON_6 0x2001F #define MON_7 0x20020 #define MON_8 0x20021 #define MON_9 0x20022 #define MON_10 0x20023 #define MON_11 0x20024 #define MON_12 0x20025 #define AM_STR 0x20026 #define PM_STR 0x20027 #define D_T_FMT 0x20028 #define D_FMT 0x20029 #define T_FMT 0x2002A #define T_FMT_AMPM 0x2002B #define ERA 0x2002C #define ERA_D_FMT 0x2002E #define ALT_DIGITS 0x2002F #define ERA_D_T_FMT 0x20030 #define ERA_T_FMT 0x20031 #define CODESET 14 #define CRNCYSTR 0x4000F #define RADIXCHAR 0x10000 #define THOUSEP 0x10001 #define YESEXPR 0x50000 #define NOEXPR 0x50001 #define YESSTR 0x50002 #define NOSTR 0x50003 extern char *nl_langinfo(nl_item __item); |
#define basename __xpg_basename extern char *__xpg_basename(char *__path); extern char *dirname(char *__path); |
extern char *bind_textdomain_codeset(const char *__domainname, const char *__codeset); extern char *bindtextdomain(const char *__domainname, const char *__dirname); extern char *dcgettext(const char *__domainname, const char *__msgid, int __category); extern char *dcngettext(const char *__domainname, const char *__msgid1, const char *__msgid2, unsigned long int __n, int __category); extern char *dgettext(const char *__domainname, const char *__msgid); extern char *dngettext(const char *__domainname, const char *__msgid1, const char *__msgid2, unsigned long int __n); extern char *gettext(const char *__msgid); extern char *ngettext(const char *__msgid1, const char *__msgid2, unsigned long int __n); extern char *textdomain(const char *__domainname); |
#define LLONG_MIN (-LLONG_MAX-1LL) #define _POSIX_AIO_MAX 1 #define _POSIX_QLIMIT 1 #define _POSIX2_BC_STRING_MAX 1000 #define _POSIX2_CHARCLASS_NAME_MAX 14 #define _POSIX_NAME_MAX 14 #define _POSIX_UIO_MAXIOV 16 #define ULLONG_MAX 18446744073709551615ULL #define _POSIX2_COLL_WEIGHTS_MAX 2 #define _POSIX_AIO_LISTIO_MAX 2 #define _POSIX_OPEN_MAX 20 #define _POSIX_CLOCKRES_MIN 20000000 #define CHARCLASS_NAME_MAX 2048 #define LINE_MAX 2048 #define _POSIX2_BC_DIM_MAX 2048 #define _POSIX2_LINE_MAX 2048 #define _POSIX_CHILD_MAX 25 #define COLL_WEIGHTS_MAX 255 #define _POSIX2_RE_DUP_MAX 255 #define _POSIX_HOST_NAME_MAX 255 #define _POSIX_MAX_CANON 255 #define _POSIX_MAX_INPUT 255 #define _POSIX_RE_DUP_MAX 255 #define _POSIX_SYMLINK_MAX 255 #define _POSIX_PATH_MAX 256 #define _POSIX_SEM_NSEMS_MAX 256 #define NGROUPS_MAX 32 #define _POSIX2_EXPR_NEST_MAX 32 #define _POSIX_DELAYTIMER_MAX 32 #define _POSIX_MQ_PRIO_MAX 32 #define _POSIX_SIGQUEUE_MAX 32 #define _POSIX_TIMER_MAX 32 #define _POSIX_SEM_VALUE_MAX 32767 #define _POSIX_SSIZE_MAX 32767 #define PATH_MAX 4096 #define _POSIX_ARG_MAX 4096 #define _POSIX_PIPE_BUF 512 #define _POSIX_TZNAME_MAX 6 #define _POSIX_LINK_MAX 8 #define _POSIX_MQ_OPEN_MAX 8 #define _POSIX_NGROUPS_MAX 8 #define _POSIX_RTSIG_MAX 8 #define _POSIX_STREAM_MAX 8 #define _POSIX_SYMLOOP_MAX 8 #define _POSIX_LOGIN_NAME_MAX 9 #define _POSIX_TTY_NAME_MAX 9 #define LLONG_MAX 9223372036854775807LL #define _POSIX2_BC_BASE_MAX 99 #define _POSIX2_BC_SCALE_MAX 99 #define SSIZE_MAX LONG_MAX /* Maximum value of an object of type ssize_t */ #define BC_BASE_MAX _POSIX2_BC_BASE_MAX #define BC_DIM_MAX _POSIX2_BC_DIM_MAX #define BC_SCALE_MAX _POSIX2_BC_SCALE_MAX #define BC_STRING_MAX _POSIX2_BC_STRING_MAX #define EXPR_NEST_MAX _POSIX2_EXPR_NEST_MAX #define _POSIX_FD_SETSIZE _POSIX_OPEN_MAX #define _POSIX_HIWAT _POSIX_PIPE_BUF #define MB_LEN_MAX 16 #define SCHAR_MIN (-128) #define SCHAR_MAX 127 #define UCHAR_MAX 255 #define CHAR_BIT 8 #define SHRT_MIN (-32768) #define SHRT_MAX 32767 #define USHRT_MAX 65535 #define INT_MIN (-INT_MAX-1) #define INT_MAX 2147483647 #define UINT_MAX 4294967295U #define LONG_MIN (-LONG_MAX-1L) #define PTHREAD_KEYS_MAX 1024 #define PTHREAD_THREADS_MAX 16384 #define PTHREAD_DESTRUCTOR_ITERATIONS 4 |
extern int dl_iterate_phdr(int (*callback) (struct dl_phdr_info *, size_t, void *), void *data); |
struct lconv { char *decimal_point; char *thousands_sep; char *grouping; char *int_curr_symbol; char *currency_symbol; char *mon_decimal_point; char *mon_thousands_sep; char *mon_grouping; char *positive_sign; char *negative_sign; char int_frac_digits; char frac_digits; char p_cs_precedes; char p_sep_by_space; char n_cs_precedes; char n_sep_by_space; char p_sign_posn; char n_sign_posn; char int_p_cs_precedes; char int_p_sep_by_space; char int_n_cs_precedes; char int_n_sep_by_space; char int_p_sign_posn; char int_n_sign_posn; }; #define LC_GLOBAL_LOCALE ((locale_t) -1L) #define LC_CTYPE 0 #define LC_NUMERIC 1 #define LC_TELEPHONE 10 #define LC_MEASUREMENT 11 #define LC_IDENTIFICATION 12 #define LC_TIME 2 #define LC_COLLATE 3 #define LC_MONETARY 4 #define LC_MESSAGES 5 #define LC_ALL 6 #define LC_PAPER 7 #define LC_NAME 8 #define LC_ADDRESS 9 struct __locale_struct { struct locale_data *__locales[13]; const unsigned short *__ctype_b; const int *__ctype_tolower; const int *__ctype_toupper; const char *__names[13]; }; typedef struct __locale_struct *__locale_t; typedef struct __locale_struct *locale_t; #define LC_ADDRESS_MASK (1 << LC_ADDRESS) #define LC_COLLATE_MASK (1 << LC_COLLATE) #define LC_IDENTIFICATION_MASK (1 << LC_IDENTIFICATION) #define LC_MEASUREMENT_MASK (1 << LC_MEASUREMENT) #define LC_MESSAGES_MASK (1 << LC_MESSAGES) #define LC_MONETARY_MASK (1 << LC_MONETARY) #define LC_NAME_MASK (1 << LC_NAME) #define LC_NUMERIC_MASK (1 << LC_NUMERIC) #define LC_PAPER_MASK (1 << LC_PAPER) #define LC_TELEPHONE_MASK (1 << LC_TELEPHONE) #define LC_TIME_MASK (1 << LC_TIME) #define LC_CTYPE_MASK (1<<LC_CTYPE) #define LC_ALL_MASK \ (LC_CTYPE_MASK| LC_NUMERIC_MASK| LC_TIME_MASK| LC_COLLATE_MASK| LC_MONETARY_MASK|\ LC_MESSAGES_MASK| LC_PAPER_MASK| LC_NAME_MASK| LC_ADDRESS_MASK| LC_TELEPHONE_MASK|\ LC_MEASUREMENT_MASK| LC_IDENTIFICATION_MASK) extern locale_t duplocale(locale_t __dataset); extern void freelocale(locale_t __dataset); extern struct lconv *localeconv(void); extern locale_t newlocale(int __category_mask, const char *__locale, locale_t __base); extern char *setlocale(int __category, const char *__locale); extern locale_t uselocale(locale_t __dataset); |
#define IF_NAMESIZE 16 #define IFF_UP 0x01 /* Interface is up. */ #define IFF_BROADCAST 0x02 /* Broadcast address valid. */ #define IFF_DEBUG 0x04 /* Turn on debugging. */ #define IFF_LOOPBACK 0x08 /* Is a loopback net. */ #define IFF_POINTOPOINT 0x10 /* Interface is point-to-point link. */ #define IFF_PROMISC 0x100 /* Receive all packets. */ #define IFF_MULTICAST 0x1000 /* Supports multicast. */ #define IFF_NOTRAILERS 0x20 /* Avoid use of trailers. */ #define IFF_RUNNING 0x40 /* Resources allocated. */ #define IFF_NOARP 0x80 /* No address resolution protocol. */ struct if_nameindex { unsigned int if_index; /* 1, 2, ... */ char *if_name; /* null terminated name: */ }; struct ifaddr { struct sockaddr ifa_addr; /* Address of interface. */ union { struct sockaddr ifu_broadaddr; struct sockaddr ifu_dstaddr; } ifa_ifu; void *ifa_ifp; void *ifa_next; }; #define ifr_name ifr_ifrn.ifrn_name /* interface name */ #define ifr_addr ifr_ifru.ifru_addr /* address */ #define ifr_broadaddr ifr_ifru.ifru_broadaddr /* broadcast address */ #define ifr_data ifr_ifru.ifru_data /* for use by interface */ #define ifr_dstaddr ifr_ifru.ifru_dstaddr /* other end of p-p lnk */ #define ifr_flags ifr_ifru.ifru_flags /* flags */ #define ifr_hwaddr ifr_ifru.ifru_hwaddr /* interface name */ #define ifr_bandwidth ifr_ifru.ifru_ivalue /* link bandwidth */ #define ifr_ifindex ifr_ifru.ifru_ivalue /* interface index */ #define ifr_metric ifr_ifru.ifru_ivalue /* metric */ #define ifr_qlen ifr_ifru.ifru_ivalue /* queue length */ #define ifr_mtu ifr_ifru.ifru_mtu /* mtu */ #define ifr_netmask ifr_ifru.ifru_netmask /* interface net mask */ #define ifr_slave ifr_ifru.ifru_slave /* slave device */ #define IFNAMSIZ IF_NAMESIZE struct ifreq { union { char ifrn_name[IFNAMSIZ]; } ifr_ifrn; union { struct sockaddr ifru_addr; struct sockaddr ifru_dstaddr; struct sockaddr ifru_broadaddr; struct sockaddr ifru_netmask; struct sockaddr ifru_hwaddr; short ifru_flags; int ifru_ivalue; int ifru_mtu; char ifru_slave[IFNAMSIZ]; char ifru_newname[IFNAMSIZ]; caddr_t ifru_data; struct ifmap ifru_map; } ifr_ifru; }; #define ifc_buf ifc_ifcu.ifcu_buf /* Buffer address. */ #define ifc_req ifc_ifcu.ifcu_req /* Array of structures. */ struct ifconf { int ifc_len; union { caddr_t ifcu_buf; struct ifreq *ifcu_req; } ifc_ifcu; }; extern void if_freenameindex(struct if_nameindex *__ptr); extern char *if_indextoname(unsigned int __ifindex, char *__ifname); extern struct if_nameindex *if_nameindex(void); extern unsigned int if_nametoindex(const char *__ifname); |
#define h_errno (*__h_errno_location ()) #define NETDB_INTERNAL -1 /* See errno. */ #define NETDB_SUCCESS 0 /* No problem. */ #define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found. */ #define IPPORT_RESERVED 1024 #define NI_MAXHOST 1025 #define TRY_AGAIN 2 /* Non-Authoritative Host not found, or SERVERFAIL. */ #define NO_RECOVERY 3 /* Non recoverable errors, FORMERR, REFUSED, NOTIMP. */ #define NI_MAXSERV 32 #define NO_DATA 4 /* Valid name, no data record of requested type. */ #define h_addr h_addr_list[0] #define NO_ADDRESS NO_DATA /* No address, look for MX record. */ struct servent { char *s_name; char **s_aliases; int s_port; char *s_proto; }; struct hostent { char *h_name; char **h_aliases; int h_addrtype; int h_length; char **h_addr_list; }; struct protoent { char *p_name; char **p_aliases; int p_proto; }; struct netent { char *n_name; char **n_aliases; int n_addrtype; unsigned int n_net; }; #define AI_PASSIVE 0x0001 /* Socket address is intended for `bind' */ #define AI_CANONNAME 0x0002 /* Request for canonical name */ #define AI_NUMERICHOST 0x0004 /* Don't use name resolution */ #define AI_V4MAPPED 0x0008 /* IPv4 mapped addresses are acceptable. */ #define AI_ALL 0x0010 /* Return IPv4 mapped and IPv6 addresses. */ #define AI_ADDRCONFIG 0x0020 /* Use configuration of this host to choose returned address type.. */ #define AI_NUMERICSERV 0x0400 /* Don't use name resolution */ struct addrinfo { int ai_flags; int ai_family; int ai_socktype; int ai_protocol; socklen_t ai_addrlen; struct sockaddr *ai_addr; char *ai_canonname; struct addrinfo *ai_next; }; #define NI_NUMERICHOST 1 #define NI_DGRAM 16 #define NI_NUMERICSERV 2 #define NI_NOFQDN 4 #define NI_NAMEREQD 8 #define EAI_BADFLAGS -1 /* Invalid value for `ai_flags' field. */ #define EAI_MEMORY -10 /* Memory allocation failure. */ #define EAI_SYSTEM -11 /* System error returned in `errno'. */ #define EAI_NONAME -2 /* NAME or SERVICE is unknown. */ #define EAI_AGAIN -3 /* Temporary failure in name resolution. */ #define EAI_FAIL -4 /* Non-recoverable failure in name res. */ #define EAI_NODATA -5 /* No address associated with NAME. */ #define EAI_FAMILY -6 /* `ai_family' not supported. */ #define EAI_SOCKTYPE -7 /* `ai_family' not supported. */ #define EAI_SERVICE -8 /* SERVICE not supported for `ai_socktype'. */ #define EAI_ADDRFAMILY -9 /* Address family for NAME not supported. */ extern int *__h_errno_location(void); extern void endprotoent(void); extern void endservent(void); extern void freeaddrinfo(struct addrinfo *__ai); extern const char *gai_strerror(int __ecode); extern int getaddrinfo(const char *__name, const char *__service, const struct addrinfo *__req, struct addrinfo **__pai); extern struct hostent *gethostbyaddr(const void *__addr, socklen_t __len, int __type); extern int gethostbyaddr_r(const void *__addr, socklen_t __len, int __type, struct hostent *__result_buf, char *__buf, size_t __buflen, struct hostent **__result, int *__h_errnop); extern struct hostent *gethostbyname(const char *__name); extern struct hostent *gethostbyname2(const char *__name, int __af); extern int gethostbyname2_r(const char *__name, int __af, struct hostent *__result_buf, char *__buf, size_t __buflen, struct hostent **__result, int *__h_errnop); extern int gethostbyname_r(const char *__name, struct hostent *__result_buf, char *__buf, size_t __buflen, struct hostent **__result, int *__h_errnop); extern struct protoent *getprotobyname(const char *__name); extern int getprotobyname_r(const char *__name, struct protoent *__result_buf, char *__buf, size_t __buflen, struct protoent **__result); extern struct protoent *getprotobynumber(int __proto); extern int getprotobynumber_r(int __proto, struct protoent *__result_buf, char *__buf, size_t __buflen, struct protoent **__result); extern struct protoent *getprotoent(void); extern int getprotoent_r(struct protoent *__result_buf, char *__buf, size_t __buflen, struct protoent **__result); extern struct servent *getservbyname(const char *__name, const char *__proto); extern int getservbyname_r(const char *__name, const char *__proto, struct servent *__result_buf, char *__buf, size_t __buflen, struct servent **__result); extern struct servent *getservbyport(int __port, const char *__proto); extern int getservbyport_r(int __port, const char *__proto, struct servent *__result_buf, char *__buf, size_t __buflen, struct servent **__result); extern struct servent *getservent(void); extern int getservent_r(struct servent *__result_buf, char *__buf, size_t __buflen, struct servent **__result); extern void setprotoent(int __stay_open); extern void setservent(int __stay_open); |
#define ICMP6_FILTER_WILLBLOCK(type,filterp) ((((filterp)->icmp6_filt[(type) >> 5]) & (1 << ((type) & 31))) != 0) #define ICMP6_FILTER_WILLPASS(type,filterp) ((((filterp)->icmp6_filt[(type) >> 5]) & (1 << ((type) & 31))) == 0) #define ICMP6_FILTER_SETPASS(type,filterp) ((((filterp)->icmp6_filt[(type) >> 5]) &= ~(1 << ((type) & 31)))) #define ICMP6_FILTER_SETBLOCK(type,filterp) ((((filterp)->icmp6_filt[(type) >> 5]) |= (1 << ((type) & 31)))) #define ICMP6_DST_UNREACH_NOROUTE 0 #define ICMP6_PARAMPROB_HEADER 0 #define ICMP6_TIME_EXCEED_TRANSIT 0 #define ICMP6_RR_FLAGS_PREVDONE 0x08 #define ICMP6_RR_FLAGS_SPECSITE 0x10 #define ICMP6_RR_PCOUSE_RAFLAGS_AUTO 0x10 #define ICMP6_RR_FLAGS_FORCEAPPLY 0x20 #define ICMP6_RR_PCOUSE_RAFLAGS_ONLINK 0x20 #define ND_OPT_PI_FLAG_RADDR 0x20 #define ND_RA_FLAG_HOME_AGENT 0x20 #define ICMP6_RR_FLAGS_REQRESULT 0x40 #define ND_OPT_PI_FLAG_AUTO 0x40 #define ND_RA_FLAG_OTHER 0x40 #define ICMP6_INFOMSG_MASK 0x80 #define ICMP6_RR_FLAGS_TEST 0x80 #define ND_OPT_PI_FLAG_ONLINK 0x80 #define ND_RA_FLAG_MANAGED 0x80 #define ICMP6_DST_UNREACH 1 #define ICMP6_DST_UNREACH_ADMIN 1 #define ICMP6_FILTER 1 #define ICMP6_FILTER_BLOCK 1 #define ICMP6_PARAMPROB_NEXTHEADER 1 #define ICMP6_TIME_EXCEED_REASSEMBLY 1 #define ND_OPT_SOURCE_LINKADDR 1 #define RPM_PCO_ADD 1 #define ICMP6_ECHO_REQUEST 128 #define ICMP6_ECHO_REPLY 129 #define MLD_LISTENER_QUERY 130 #define MLD_LISTENER_REPORT 131 #define MLD_LISTENER_REDUCTION 132 #define ND_ROUTER_SOLICIT 133 #define ND_ROUTER_ADVERT 134 #define ND_NEIGHBOR_SOLICIT 135 #define ND_NEIGHBOR_ADVERT 136 #define ND_REDIRECT 137 #define ICMP6_ROUTER_RENUMBERING 138 #define ICMP6_DST_UNREACH_BEYONDSCOPE 2 #define ICMP6_FILTER_PASS 2 #define ICMP6_PACKET_TOO_BIG 2 #define ICMP6_PARAMPROB_OPTION 2 #define ND_OPT_TARGET_LINKADDR 2 #define RPM_PCO_CHANGE 2 #define ICMP6_DST_UNREACH_ADDR 3 #define ICMP6_FILTER_BLOCKOTHERS 3 #define ICMP6_TIME_EXCEEDED 3 #define ND_OPT_PREFIX_INFORMATION 3 #define RPM_PCO_SETGLOBAL 3 #define ICMP6_DST_UNREACH_NOPORT 4 #define ICMP6_FILTER_PASSONLY 4 #define ICMP6_PARAM_PROB 4 #define ND_OPT_REDIRECTED_HEADER 4 #define ND_OPT_MTU 5 #define ND_OPT_RTR_ADV_INTERVAL 7 #define ND_OPT_HOME_AGENT_INFO 8 #define icmp6_id icmp6_data16[0] #define icmp6_maxdelay icmp6_data16[0] #define icmp6_seq icmp6_data16[1] #define icmp6_mtu icmp6_data32[0] #define icmp6_pptr icmp6_data32[0] #define icmp6_data16 icmp6_dataun.icmp6_un_data16 #define icmp6_data32 icmp6_dataun.icmp6_un_data32 #define icmp6_data8 icmp6_dataun.icmp6_un_data8 #define ICMP6_FILTER_SETPASSALL(filterp) memset (filterp, 0, sizeof (struct icmp6_filter)); #define ICMP6_FILTER_SETBLOCKALL(filterp) memset (filterp, 0xFF, sizeof (struct icmp6_filter)); #define mld_cksum mld_icmp6_hdr.icmp6_cksum #define mld_code mld_icmp6_hdr.icmp6_code #define mld_maxdelay mld_icmp6_hdr.icmp6_data16[0] #define mld_reserved mld_icmp6_hdr.icmp6_data16[1] #define mld_type mld_icmp6_hdr.icmp6_type #define nd_na_cksum nd_na_hdr.icmp6_cksum #define nd_na_code nd_na_hdr.icmp6_code #define nd_na_flags_reserved nd_na_hdr.icmp6_data32[0] #define nd_na_type nd_na_hdr.icmp6_type #define nd_ns_cksum nd_ns_hdr.icmp6_cksum #define nd_ns_code nd_ns_hdr.icmp6_code #define nd_ns_reserved nd_ns_hdr.icmp6_data32[0] #define nd_ns_type nd_ns_hdr.icmp6_type #define nd_ra_cksum nd_ra_hdr.icmp6_cksum #define nd_ra_code nd_ra_hdr.icmp6_code #define nd_ra_router_lifetime nd_ra_hdr.icmp6_data16[1] #define nd_ra_curhoplimit nd_ra_hdr.icmp6_data8[0] #define nd_ra_flags_reserved nd_ra_hdr.icmp6_data8[1] #define nd_ra_type nd_ra_hdr.icmp6_type #define nd_rd_cksum nd_rd_hdr.icmp6_cksum #define nd_rd_code nd_rd_hdr.icmp6_code #define nd_rd_reserved nd_rd_hdr.icmp6_data32[0] #define nd_rd_type nd_rd_hdr.icmp6_type #define nd_rs_cksum nd_rs_hdr.icmp6_cksum #define nd_rs_code nd_rs_hdr.icmp6_code #define nd_rs_reserved nd_rs_hdr.icmp6_data32[0] #define nd_rs_type nd_rs_hdr.icmp6_type #define rr_cksum rr_hdr.icmp6_cksum #define rr_code rr_hdr.icmp6_code #define rr_seqnum rr_hdr.icmp6_data32[0] #define rr_type rr_hdr.icmp6_type struct icmp6_filter { uint32_t icmp6_filt[8]; }; struct icmp6_hdr { uint8_t icmp6_type; uint8_t icmp6_code; uint16_t icmp6_cksum; union { uint32_t icmp6_un_data32[1]; uint16_t icmp6_un_data16[2]; uint8_t icmp6_un_data8[4]; } icmp6_dataun; }; struct nd_router_solicit { struct icmp6_hdr nd_rs_hdr; }; struct nd_router_advert { struct icmp6_hdr nd_ra_hdr; uint32_t nd_ra_reachable; uint32_t nd_ra_retransmit; }; struct nd_neighbor_solicit { struct icmp6_hdr nd_ns_hdr; struct in6_addr nd_ns_target; }; struct nd_neighbor_advert { struct icmp6_hdr nd_na_hdr; struct in6_addr nd_na_target; }; struct nd_redirect { struct icmp6_hdr nd_rd_hdr; struct in6_addr nd_rd_target; struct in6_addr nd_rd_dst; }; struct nd_opt_hdr { uint8_t nd_opt_type; uint8_t nd_opt_len; }; struct nd_opt_prefix_info { uint8_t nd_opt_pi_type; uint8_t nd_opt_pi_len; uint8_t nd_opt_pi_prefix_len; uint8_t nd_opt_pi_flags_reserved; uint32_t nd_opt_pi_valid_time; uint32_t nd_opt_pi_preferred_time; uint32_t nd_opt_pi_reserved2; struct in6_addr nd_opt_pi_prefix; }; struct nd_opt_rd_hdr { uint8_t nd_opt_rh_type; uint8_t nd_opt_rh_len; uint16_t nd_opt_rh_reserved1; uint32_t nd_opt_rh_reserved2; }; struct nd_opt_mtu { uint8_t nd_opt_mtu_type; uint8_t nd_opt_mtu_len; uint16_t nd_opt_mtu_reserved; uint32_t nd_opt_mtu_mtu; }; struct mld_hdr { struct icmp6_hdr mld_icmp6_hdr; struct in6_addr mld_addr; }; struct icmp6_router_renum { struct icmp6_hdr rr_hdr; uint8_t rr_segnum; uint8_t rr_flags; uint16_t rr_maxdelay; uint32_t rr_reserved; }; struct rr_pco_match { uint8_t rpm_code; uint8_t rpm_len; uint8_t rpm_ordinal; uint8_t rpm_matchlen; uint8_t rpm_minlen; uint8_t rpm_maxlen; uint16_t rpm_reserved; struct in6_addr rpm_prefix; }; struct rr_pco_use { uint8_t rpu_uselen; uint8_t rpu_keeplen; uint8_t rpu_ramask; uint8_t rpu_raflags; uint32_t rpu_vltime; uint32_t rpu_pltime; uint32_t rpu_flags; struct in6_addr rpu_prefix; }; struct rr_result { uint16_t rrr_flags; uint8_t rrr_ordinal; uint8_t rrr_matchedlen; uint32_t rrr_ifid; struct in6_addr rrr_prefix; }; struct nd_opt_adv_interval { uint8_t nd_opt_adv_interval_type; uint8_t nd_opt_adv_interval_len; uint16_t nd_opt_adv_interval_reserved; uint32_t nd_opt_adv_interval_ival; }; struct nd_opt_home_agent_info { uint8_t nd_opt_home_agent_info_type; uint8_t nd_opt_home_agent_info_len; uint16_t nd_opt_home_agent_info_reserved; int16_t nd_opt_home_agent_info_preference; uint16_t nd_opt_home_agent_info_lifetime; }; |
#define IGMP_MEMBERSHIP_QUERY 0x11 #define IGMP_V1_MEMBERSHIP_REPORT 0x12 #define IGMP_DVMRP 0x13 #define IGMP_PIM 0x14 #define IGMP_TRACE 0x15 #define IGMP_V2_MEMBERSHIP_REPORT 0x16 #define IGMP_V2_LEAVE_GROUP 0x17 #define IGMP_MTRACE_RESP 0x1e #define IGMP_MTRACE 0x1f #define IGMP_DELAYING_MEMBER 1 #define IGMP_v1_ROUTER 1 #define IGMP_MAX_HOST_REPORT_DELAY 10 #define IGMP_TIMER_SCALE 10 #define IGMP_IDLE_MEMBER 2 #define IGMP_v2_ROUTER 2 #define IGMP_LAZY_MEMBER 3 #define IGMP_SLEEPING_MEMBER 4 #define IGMP_AWAKENING_MEMBER 5 #define IGMP_MINLEN 8 #define IGMP_HOST_MEMBERSHIP_QUERY IGMP_MEMBERSHIP_QUERY #define IGMP_HOST_MEMBERSHIP_REPORT IGMP_V1_MEMBERSHIP_REPORT #define IGMP_HOST_LEAVE_MESSAGE IGMP_V2_LEAVE_GROUP #define IGMP_HOST_NEW_MEMBERSHIP_REPORT IGMP_V2_MEMBERSHIP_REPORT struct igmp { u_int8_t igmp_type; u_int8_t igmp_code; u_int16_t igmp_cksum; struct in_addr igmp_group; }; |
#define IPPROTO_IP 0 #define IPPROTO_ICMP 1 #define IPPROTO_UDP 17 #define IPPROTO_IGMP 2 #define IPPROTO_RAW 255 #define IPPROTO_IPV6 41 #define IPPROTO_ICMPV6 58 #define IPPROTO_TCP 6 typedef uint16_t in_port_t; struct in_addr { uint32_t s_addr; }; typedef uint32_t in_addr_t; #define INADDR_NONE ((in_addr_t) 0xffffffff) #define INADDR_BROADCAST (0xffffffff) #define INADDR_ANY 0 #define INADDR_LOOPBACK 0x7f000001 /* 127.0.0.1 */ #define s6_addr16 in6_u.u6_addr16 #define s6_addr32 in6_u.u6_addr32 #define s6_addr in6_u.u6_addr8 struct in6_addr { union { uint8_t u6_addr8[16]; uint16_t u6_addr16[8]; uint32_t u6_addr32[4]; } in6_u; }; #define IN6ADDR_ANY_INIT { { { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } } } #define IN6ADDR_LOOPBACK_INIT { { { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 } } } #define IN_MULTICAST(a) ((((in_addr_t)(a))&0xf0000000)==0xe0000000) #define INET_ADDRSTRLEN 16 struct sockaddr_in { sa_family_t sin_family; unsigned short sin_port; struct in_addr sin_addr; unsigned char sin_zero[8]; }; #define IN6_IS_ADDR_LINKLOCAL(a) ((((const uint32_t *) (a))[0] & htonl (0xffc00000)) == htonl (0xfe800000)) #define IN6_IS_ADDR_SITELOCAL(a) ((((const uint32_t *) (a))[0] & htonl (0xffc00000)) == htonl (0xfec00000)) #define IN6_ARE_ADDR_EQUAL(a,b) ((((const uint32_t *) (a))[0] == ((const uint32_t *) (b))[0]) && (((const uint32_t *) (a))[1] == ((const uint32_t *) (b))[1]) && (((const uint32_t *) (a))[2] == ((const uint32_t *) (b))[2]) && (((const uint32_t *) (a))[3] == ((const uint32_t *) (b))[3])) #define IN6_IS_ADDR_V4COMPAT(a) ((((const uint32_t *) (a))[0] == 0) && (((const uint32_t *) (a))[1] == 0) && (((const uint32_t *) (a))[2] == 0) && (ntohl (((const uint32_t *) (a))[3]) > 1)) #define IN6_IS_ADDR_V4MAPPED(a) ((((const uint32_t *) (a))[0] == 0) && (((const uint32_t *) (a))[1] == 0) && (((const uint32_t *) (a))[2] == htonl (0xffff))) #define IN6_IS_ADDR_UNSPECIFIED(a) (((const uint32_t *) (a))[0] == 0 && ((const uint32_t *) (a))[1] == 0 && ((const uint32_t *) (a))[2] == 0 && ((const uint32_t *) (a))[3] == 0) #define IN6_IS_ADDR_LOOPBACK(a) (((const uint32_t *) (a))[0] == 0 && ((const uint32_t *) (a))[1] == 0 && ((const uint32_t *) (a))[2] == 0 && ((const uint32_t *) (a))[3] == htonl (1)) #define IN6_IS_ADDR_MULTICAST(a) (((const uint8_t *) (a))[0] == 0xff) #define IN6_IS_ADDR_MC_NODELOCAL(a) (IN6_IS_ADDR_MULTICAST(a) && ((((const uint8_t *) (a))[1] & 0xf) == 0x1)) #define IN6_IS_ADDR_MC_LINKLOCAL(a) (IN6_IS_ADDR_MULTICAST(a) && ((((const uint8_t *) (a))[1] & 0xf) == 0x2)) #define IN6_IS_ADDR_MC_SITELOCAL(a) (IN6_IS_ADDR_MULTICAST(a) && ((((const uint8_t *) (a))[1] & 0xf) == 0x5)) #define IN6_IS_ADDR_MC_ORGLOCAL(a) (IN6_IS_ADDR_MULTICAST(a) && ((((const uint8_t *) (a))[1] & 0xf) == 0x8)) #define IN6_IS_ADDR_MC_GLOBAL(a) (IN6_IS_ADDR_MULTICAST(a) && ((((const uint8_t *) (a))[1] & 0xf) == 0xe)) #define INET6_ADDRSTRLEN 46 struct sockaddr_in6 { unsigned short sin6_family; /* AF_INET6 */ uint16_t sin6_port; /* Transport layer port # */ uint32_t sin6_flowinfo; /* IPv6 flow information */ struct in6_addr sin6_addr; /* IPv6 address */ uint32_t sin6_scope_id; /* scope id (new in RFC2553) */ }; #define SOL_IP 0 #define IP_TOS 1 /* IP type of service and precedence */ #define IPV6_UNICAST_HOPS 16 #define IPV6_MULTICAST_IF 17 #define IPV6_MULTICAST_HOPS 18 #define IPV6_MULTICAST_LOOP 19 #define IP_TTL 2 /* IP time to live */ #define IPV6_JOIN_GROUP 20 #define IPV6_LEAVE_GROUP 21 #define IPV6_V6ONLY 26 #define IP_MULTICAST_IF 32 /* set/get IP multicast i/f */ #define IP_MULTICAST_TTL 33 /* set/get IP multicast ttl */ #define IP_MULTICAST_LOOP 34 /* set/get IP multicast loopback */ #define IP_ADD_MEMBERSHIP 35 /* add an IP group membership */ #define IP_DROP_MEMBERSHIP 36 /* drop an IP group membership */ #define IP_OPTIONS 4 /* IP per-packet options */ #define IPV6_ADD_MEMBERSHIP IPV6_JOIN_GROUP #define IPV6_DROP_MEMBERSHIP IPV6_LEAVE_GROUP struct ipv6_mreq { struct in6_addr ipv6mr_multiaddr; /* IPv6 multicast address of group */ int ipv6mr_interface; /* local IPv6 address of interface */ }; struct ip_mreq { struct in_addr imr_multiaddr; /* IP multicast address of group */ struct in_addr imr_interface; /* local IP address of interface */ }; extern int bindresvport(int, struct sockaddr_in *); extern const struct in6_addr in6addr_any; extern const struct in6_addr in6addr_loopback; |
typedef u_int16_t n_short; typedef u_int32_t n_long; typedef u_int32_t n_time; |
#define IPOPT_CLASS(o) ((o) & IPOPT_CLASS_MASK) #define IPOPT_COPIED(o) ((o) & IPOPT_COPY) #define IPOPT_NUMBER(o) ((o) & IPOPT_NUMBER_MASK) #define IPOPT_EOL 0 #define IPOPT_OPTVAL 0 #define IPOPT_TS_TSONLY 0 #define IPOPT_CONTROL 0x00 #define IPOPT_SECUR_UNCLASS 0x0000 #define IPOPT_NUMBER_MASK 0x1f #define IP_OFFMASK 0x1fff #define IPOPT_RESERVED1 0x20 #define IP_MF 0x2000 #define IPOPT_DEBMEAS 0x40 #define IP_DF 0x4000 #define IPOPT_CLASS_MASK 0x60 #define IPOPT_RESERVED2 0x60 #define IPOPT_SECUR_TOPSECRET 0x6bc5 #define IPOPT_SECUR_EFTO 0x789a #define IPOPT_COPY 0x80 #define IP_RF 0x8000 #define IPOPT_SECUR_RESTR 0xaf13 #define IPOPT_SECUR_MMMM 0xbc4d #define IPOPT_SECUR_SECRET 0xd788 #define IPOPT_SECUR_CONFID 0xf135 #define IPOPT_NOP 1 #define IPOPT_OLEN 1 #define IPOPT_TS_TSANDADDR 1 #define IPTTLDEC 1 #define IPOPT_SECURITY 130 #define IPOPT_LSRR 131 #define IPOPT_SATID 136 #define IPOPT_SSRR 137 #define IPOPT_RA 148 #define IPOPT_OFFSET 2 #define MAXTTL 255 #define IPOPT_TS_PRESPEC 3 #define IPOPT_MINOFF 4 #define IPVERSION 4 #define MAX_IPOPTLEN 40 #define IP_MSS 576 #define IPFRAGTTL 60 #define IPDEFTTL 64 #define IP_MAXPACKET 65535 #define IPOPT_TS 68 #define IPOPT_RR 7 #define IPOPT_MEASUREMENT IPOPT_DEBMEAS #define IPOPT_END IPOPT_EOL #define IPOPT_NOOP IPOPT_NOP #define IPOPT_SID IPOPT_SATID #define IPOPT_SEC IPOPT_SECURITY #define IPOPT_TIMESTAMP IPOPT_TS #define IPTOS_TOS(tos) ((tos) & IPTOS_TOS_MASK) #define IPTOS_LOWCOST 0x02 #define IPTOS_RELIABILITY 0x04 #define IPTOS_THROUGHPUT 0x08 #define IPTOS_LOWDELAY 0x10 #define IPTOS_TOS_MASK 0x1e #define IPTOS_MINCOST IPTOS_LOWCOST #define IPTOS_PREC(tos) ((tos) & IPTOS_PREC_MASK) #define IPTOS_PREC_MASK 0xe0 |
#define IP6OPT_TYPE(o) ((o) & 0xc0) #define IP6OPT_PAD1 0 #define IP6OPT_TYPE_SKIP 0x00 #define IP6OPT_TUNNEL_LIMIT 0x04 #define IP6OPT_ROUTER_ALERT 0x05 #define IP6OPT_TYPE_MUTABLE 0x20 #define IP6OPT_TYPE_DISCARD 0x40 #define IP6OPT_TYPE_FORCEICMP 0x80 #define IP6OPT_TYPE_ICMP 0xc0 #define IP6OPT_JUMBO 0xc2 #define IP6OPT_NSAP_ADDR 0xc3 #define IP6OPT_PADN 1 #define IP6OPT_JUMBO_LEN 6 #define ip6_flow ip6_ctlun.ip6_un1.ip6_un1_flow #define ip6_hlim ip6_ctlun.ip6_un1.ip6_un1_hlim #define ip6_hops ip6_ctlun.ip6_un1.ip6_un1_hlim #define ip6_nxt ip6_ctlun.ip6_un1.ip6_un1_nxt #define ip6_plen ip6_ctlun.ip6_un1.ip6_un1_plen #define ip6_vfc ip6_ctlun.ip6_un2_vfc struct ip6_hdrctl { uint32_t ip6_un1_flow; uint16_t ip6_un1_plen; uint8_t ip6_un1_nxt; uint8_t ip6_un1_hlim; }; struct ip6_hdr { struct in6_addr ip6_src; struct in6_addr ip6_dst; }; struct ip6_ext { uint8_t ip6e_nxt; uint8_t ip6e_len; }; struct ip6_hbh { uint8_t ip6h_nxt; uint8_t ip6h_len; }; struct ip6_dest { uint8_t ip6d_nxt; uint8_t ip6d_len; }; struct ip6_rthdr { uint8_t ip6r_nxt; uint8_t ip6r_len; uint8_t ip6r_type; uint8_t ip6r_segleft; }; struct ip6_frag { uint8_t ip6f_nxt; uint8_t ip6f_reserved; uint16_t ip6f_offlg; uint32_t ip6f_ident; }; struct ip6_opt { uint8_t ip6o_type; uint8_t ip6o_len; }; struct ip6_opt_jumbo { uint8_t ip6oj_type; uint8_t ip6oj_len; uint8_t ip6oj_jumbo_len[4]; }; struct ip6_opt_nsap { uint8_t ip6on_type; uint8_t ip6on_len; uint8_t ip6on_src_nsap_len; uint8_t ip6on_dst_nsap_len; }; struct ip6_opt_tunnel { uint8_t ip6ot_type; uint8_t ip6ot_len; uint8_t ip6ot_encap_limit; }; struct ip6_opt_router { uint8_t ip6or_type; uint8_t ip6or_len; uint8_t ip6or_value[2]; }; |
#define ICMP_INFOTYPE(type) ((type) == ICMP_ECHOREPLY || (type) == ICMP_ECHO || (type) == ICMP_ROUTERADVERT || (type) == ICMP_ROUTERSOLICIT || (type) == ICMP_TSTAMP || (type) == ICMP_TSTAMPREPLY || (type) == ICMP_IREQ || (type) == ICMP_IREQREPLY || (type) == ICMP_MASKREQ || (type) == ICMP_MASKREPLY) #define ICMP_ADVLEN(p) (8 + ((p)->icmp_ip.ip_hl << 2) + 8) #define ICMP_TSLEN (8 + 3 * sizeof (n_time)) #define ICMP_ADVLENMIN (8 + sizeof (struct ip) + 8) #define ICMP_ECHOREPLY 0 #define ICMP_EXC_TTL 0 #define ICMP_NET_UNREACH 0 #define ICMP_REDIRECT_NET 0 #define ICMP_REDIR_NET 0 #define ICMP_TIMXCEED_INTRANS 0 #define ICMP_UNREACH_NET 0 #define ICMP_EXC_FRAGTIME 1 #define ICMP_HOST_UNREACH 1 #define ICMP_PARAMPROB_OPTABSENT 1 #define ICMP_REDIRECT_HOST 1 #define ICMP_REDIR_HOST 1 #define ICMP_TIMXCEED_REASS 1 #define ICMP_UNREACH_HOST 1 #define ICMP_HOST_ANO 10 #define ICMP_ROUTERSOLICIT 10 #define ICMP_UNREACH_HOST_PROHIB 10 #define ICMP_NET_UNR_TOS 11 #define ICMP_TIME_EXCEEDED 11 #define ICMP_TIMXCEED 11 #define ICMP_UNREACH_TOSNET 11 #define ICMP_HOST_UNR_TOS 12 #define ICMP_MASKLEN 12 #define ICMP_PARAMETERPROB 12 #define ICMP_PARAMPROB 12 #define ICMP_UNREACH_TOSHOST 12 #define ICMP_PKT_FILTERED 13 #define ICMP_TIMESTAMP 13 #define ICMP_TSTAMP 13 #define ICMP_UNREACH_FILTER_PROHIB 13 #define ICMP_PREC_VIOLATION 14 #define ICMP_TIMESTAMPREPLY 14 #define ICMP_TSTAMPREPLY 14 #define ICMP_UNREACH_HOST_PRECEDENCE 14 #define ICMP_INFO_REQUEST 15 #define ICMP_IREQ 15 #define ICMP_PREC_CUTOFF 15 #define ICMP_UNREACH_PRECEDENCE_CUTOFF 15 #define NR_ICMP_UNREACH 15 #define ICMP_INFO_REPLY 16 #define ICMP_IREQREPLY 16 #define ICMP_ADDRESS 17 #define ICMP_MASKREQ 17 #define ICMP_ADDRESSREPLY 18 #define ICMP_MASKREPLY 18 #define ICMP_MAXTYPE 18 #define NR_ICMP_TYPES 18 #define ICMP_PROT_UNREACH 2 #define ICMP_REDIRECT_TOSNET 2 #define ICMP_REDIR_NETTOS 2 #define ICMP_UNREACH_PROTOCOL 2 #define ICMP_DEST_UNREACH 3 #define ICMP_PORT_UNREACH 3 #define ICMP_REDIRECT_TOSHOST 3 #define ICMP_REDIR_HOSTTOS 3 #define ICMP_UNREACH 3 #define ICMP_UNREACH_PORT 3 #define ICMP_FRAG_NEEDED 4 #define ICMP_SOURCEQUENCH 4 #define ICMP_SOURCE_QUENCH 4 #define ICMP_UNREACH_NEEDFRAG 4 #define ICMP_REDIRECT 5 #define ICMP_SR_FAILED 5 #define ICMP_UNREACH_SRCFAIL 5 #define ICMP_NET_UNKNOWN 6 #define ICMP_UNREACH_NET_UNKNOWN 6 #define ICMP_HOST_UNKNOWN 7 #define ICMP_UNREACH_HOST_UNKNOWN 7 #define ICMP_ECHO 8 #define ICMP_HOST_ISOLATED 8 #define ICMP_MINLEN 8 #define ICMP_UNREACH_ISOLATED 8 #define ICMP_NET_ANO 9 #define ICMP_ROUTERADVERT 9 #define ICMP_UNREACH_NET_PROHIB 9 #define icmp_data icmp_dun.id_data #define icmp_ip icmp_dun.id_ip.idi_ip #define icmp_mask icmp_dun.id_mask #define icmp_radv icmp_dun.id_radv #define icmp_otime icmp_dun.id_ts.its_otime #define icmp_rtime icmp_dun.id_ts.its_rtime #define icmp_ttime icmp_dun.id_ts.its_ttime #define icmp_gwaddr icmp_hun.ih_gwaddr #define icmp_id icmp_hun.ih_idseq.icd_id #define icmp_seq icmp_hun.ih_idseq.icd_seq #define icmp_nextmtu icmp_hun.ih_pmtu.ipm_nextmtu #define icmp_pmvoid icmp_hun.ih_pmtu.ipm_void #define icmp_pptr icmp_hun.ih_pptr #define icmp_lifetime icmp_hun.ih_rtradv.irt_lifetime #define icmp_num_addrs icmp_hun.ih_rtradv.irt_num_addrs #define icmp_wpa icmp_hun.ih_rtradv.irt_wpa #define icmp_void icmp_hun.ih_void struct icmphdr { u_int8_t type; u_int8_t code; u_int16_t checksum; union { struct { u_int16_t id; u_int16_t sequence; } echo; u_int32_t gateway; struct { u_int16_t __unused; u_int16_t mtu; } frag; } un; }; struct icmp_ra_addr { u_int32_t ira_addr; u_int32_t ira_preference; }; struct ih_idseq { u_int16_t icd_id; u_int16_t icd_seq; }; struct ih_pmtu { u_int16_t ipm_void; u_int16_t ipm_nextmtu; }; struct ih_rtradv { u_int8_t irt_num_addrs; u_int8_t irt_wpa; u_int16_t irt_lifetime; }; struct icmp { u_int8_t icmp_type; u_int8_t icmp_code; u_int16_t icmp_cksum; union { u_int16_t ih_pptr; struct in_addr ih_gwaddr; struct ih_idseq ih_idseq; u_int32_t ih_void; struct ih_pmtu ih_pmtu; struct ih_rtradv ih_rtradv; } icmp_hun; union { struct { u_int32_t its_otime; u_int32_t its_rtime; u_int32_t its_ttime; } id_ts; struct { struct ip idi_ip; } id_ip; struct icmp_ra_addr id_radv; u_int32_t id_mask; u_int8_t id_data[1]; } icmp_dun; }; |
#define TCPOLEN_TSTAMP_APPA (TCPOLEN_TIMESTAMP+2) #define TCPOPT_TSTAMP_HDR (TCPOPT_NOP<<24|TCPOPT_NOP<<16|TCPOPT_TIMESTAMP<<8|TCPOLEN_TIMESTAMP) #define TCPOPT_EOL 0 #define TCPI_OPT_TIMESTAMPS 1 #define TCPOPT_NOP 1 #define TCP_NODELAY 1 #define TCPOLEN_TIMESTAMP 10 #define TCP_WINDOW_CLAMP 10 #define TCP_INFO 11 #define TCP_QUICKACK 12 #define TCP_CONGESTION 13 #define TCP_MAX_WINSHIFT 14 #define TCPI_OPT_SACK 2 #define TCPOLEN_SACK_PERMITTED 2 #define TCPOPT_MAXSEG 2 #define TCP_MAXSEG 2 #define TCPOLEN_WINDOW 3 #define TCPOPT_WINDOW 3 #define TCP_CORK 3 #define TCPI_OPT_WSCALE 4 #define TCPOLEN_MAXSEG 4 #define TCPOPT_SACK_PERMITTED 4 #define TCP_KEEPIDLE 4 #define TCPOPT_SACK 5 #define TCP_KEEPINTVL 5 #define TCP_MSS 512 #define SOL_TCP 6 #define TCP_KEEPCNT 6 #define TCP_MAXWIN 65535 #define TCP_SYNCNT 7 #define TCPI_OPT_ECN 8 #define TCPOPT_TIMESTAMP 8 #define TCP_LINGER2 8 #define TCP_DEFER_ACCEPT 9 enum tcp_ca_state { TCP_CA_Open, TCP_CA_Disorder, TCP_CA_CWR, TCP_CA_Recovery, TCP_CA_Loss }; struct tcp_info { uint8_t tcpi_state; uint8_t tcpi_ca_state; uint8_t tcpi_retransmits; uint8_t tcpi_probes; uint8_t tcpi_backoff; uint8_t tcpi_options; uint8_t tcpi_snd_wscale:4; uint8_t tcpi_rcv_wscale:4; uint32_t tcpi_rto; uint32_t tcpi_ato; uint32_t tcpi_snd_mss; uint32_t tcpi_rcv_mss; uint32_t tcpi_unacked; uint32_t tcpi_sacked; uint32_t tcpi_lost; uint32_t tcpi_retrans; uint32_t tcpi_fackets; uint32_t tcpi_last_data_sent; uint32_t tcpi_last_ack_sent; uint32_t tcpi_last_data_recv; uint32_t tcpi_last_ack_recv; uint32_t tcpi_pmtu; uint32_t tcpi_rcv_ssthresh; uint32_t tcpi_rtt; uint32_t tcpi_rttvar; uint32_t tcpi_snd_ssthresh; uint32_t tcpi_snd_cwnd; uint32_t tcpi_advmss; uint32_t tcpi_reordering; }; enum { TCP_ESTABLISHED = 1, TCP_SYN_SENT = 2, TCP_SYN_RECV = 3, TCP_FIN_WAIT1 = 4, TCP_FIN_WAIT2 = 5, TCP_TIME_WAIT = 6, TCP_CLOSE = 7, TCP_CLOSE_WAIT = 8, TCP_LAST_ACK = 9, TCP_LISTEN = 10, TCP_CLOSING = 11 }; |
#define SOL_UDP 17 struct udphdr { u_int16_t source; u_int16_t dest; u_int16_t len; u_int16_t check; }; |
#define NL_CAT_LOCALE 1 #define NL_SETD 1 typedef void *nl_catd; typedef int nl_item; extern int catclose(nl_catd __catalog); extern char *catgets(nl_catd __catalog, int __set, int __number, const char *__string); extern nl_catd catopen(const char *__cat_name, int __flag); |
extern int forkpty(int *__amaster, char *__name, const struct termios *__termp, const struct winsize *__winp); extern int openpty(int *__amaster, int *__aslave, char *__name, const struct termios *__termp, const struct winsize *__winp); |
struct passwd { char *pw_name; char *pw_passwd; uid_t pw_uid; gid_t pw_gid; char *pw_gecos; char *pw_dir; char *pw_shell; }; extern void endpwent(void); extern struct passwd *getpwent(void); extern int getpwent_r(struct passwd *__resultbuf, char *__buffer, size_t __buflen, struct passwd **__result); extern struct passwd *getpwnam(const char *__name); extern int getpwnam_r(const char *__name, struct passwd *__resultbuf, char *__buffer, size_t __buflen, struct passwd **__result); extern struct passwd *getpwuid(uid_t __uid); extern int getpwuid_r(uid_t __uid, struct passwd *__resultbuf, char *__buffer, size_t __buflen, struct passwd **__result); extern void setpwent(void); |
#define RE_DUP_MAX (0x7fff) typedef unsigned long int reg_syntax_t; typedef struct re_pattern_buffer { unsigned char *buffer; unsigned long int allocated; unsigned long int used; reg_syntax_t syntax; char *fastmap; char *translate; size_t re_nsub; unsigned int can_be_null:1; unsigned int regs_allocated:2; unsigned int fastmap_accurate:1; unsigned int no_sub:1; unsigned int not_bol:1; unsigned int not_eol:1; unsigned int newline_anchor:1; } regex_t; typedef int regoff_t; typedef struct { regoff_t rm_so; regoff_t rm_eo; } regmatch_t; #define REG_ICASE (REG_EXTENDED<<1) #define REG_NEWLINE (REG_ICASE<<1) #define REG_NOSUB (REG_NEWLINE<<1) #define REG_EXTENDED 1 #define REG_NOTEOL (1<<1) #define REG_NOTBOL 1 typedef enum { REG_ENOSYS = -1, REG_NOERROR = 0, REG_NOMATCH = 1, REG_BADPAT = 2, REG_ECOLLATE = 3, REG_ECTYPE = 4, REG_EESCAPE = 5, REG_ESUBREG = 6, REG_EBRACK = 7, REG_EPAREN = 8, REG_EBRACE = 9, REG_BADBR = 10, REG_ERANGE = 11, REG_ESPACE = 12, REG_BADRPT = 13, REG_EEND = 14, REG_ESIZE = 15, REG_ERPAREN = 16 } reg_errcode_t; extern int regcomp(regex_t * __preg, const char *__pattern, int __cflags); extern size_t regerror(int __errcode, const regex_t * __preg, char *__errbuf, size_t __errbuf_size); extern int regexec(const regex_t * __preg, const char *__string, size_t __nmatch, regmatch_t __pmatch[], int __eflags); extern void regfree(regex_t * __preg); |
#define auth_destroy(auth) ((*((auth)->ah_ops->ah_destroy))(auth)) enum auth_stat { AUTH_OK = 0, AUTH_BADCRED = 1, /* bogus credentials (seal broken) */ AUTH_REJECTEDCRED = 2, /* client should begin new session */ AUTH_BADVERF = 3, /* bogus verifier (seal broken) */ AUTH_REJECTEDVERF = 4, /* verifier expired or was replayed */ AUTH_TOOWEAK = 5, /* Rpc calls return an enum clnt_stat. */ AUTH_INVALIDRESP = 6, /* bogus response verifier */ AUTH_FAILED = 7 /* some unknown reason */ }; union des_block { struct { u_int32_t high; u_int32_t low; } key; char c[8]; }; struct opaque_auth { enum_t oa_flavor; /* flavor of auth */ caddr_t oa_base; /* address of more auth stuff */ u_int oa_length; /* not to exceed MAX_AUTH_BYTES */ }; typedef struct AUTH { struct opaque_auth ah_cred; struct opaque_auth ah_verf; union des_block ah_key; struct auth_ops *ah_ops; caddr_t ah_private; } AUTH; struct auth_ops { void (*ah_nextverf) (struct AUTH *); int (*ah_marshal) (struct AUTH *, XDR *); /* nextverf & serialize */ int (*ah_validate) (struct AUTH *, struct opaque_auth *); /* validate verifier */ int (*ah_refresh) (struct AUTH *); /* refresh credentials */ void (*ah_destroy) (struct AUTH *); /* Rpc calls return an enum clnt_stat. */ }; extern struct AUTH *authnone_create(void); extern int key_decryptsession(char *, union des_block *); extern bool_t xdr_opaque_auth(XDR *, struct opaque_auth *); |
#define clnt_control(cl,rq,in) ((*(cl)->cl_ops->cl_control)(cl,rq,in)) #define clnt_abort(rh) ((*(rh)->cl_ops->cl_abort)(rh)) #define clnt_destroy(rh) ((*(rh)->cl_ops->cl_destroy)(rh)) #define clnt_freeres(rh,xres,resp) ((*(rh)->cl_ops->cl_freeres)(rh,xres,resp)) #define clnt_geterr(rh,errp) ((*(rh)->cl_ops->cl_geterr)(rh, errp)) #define NULLPROC ((u_long)0) /* By convention, procedure 0 takes null arguments and returns */ #define CLSET_TIMEOUT 1 /* set timeout (timeval) */ #define CLGET_XID 10 /* Get xid */ #define CLSET_XID 11 /* Set xid */ #define CLGET_VERS 12 /* Get version number */ #define CLSET_VERS 13 /* Set version number */ #define CLGET_PROG 14 /* Get program number */ #define CLSET_PROG 15 /* Set program number */ #define CLGET_TIMEOUT 2 /* get timeout (timeval) */ #define CLGET_SERVER_ADDR 3 /* get server's address (sockaddr) */ #define CLSET_RETRY_TIMEOUT 4 /* set retry timeout (timeval) */ #define CLGET_RETRY_TIMEOUT 5 /* get retry timeout (timeval) */ #define CLGET_FD 6 /* get connections file descriptor */ #define CLGET_SVC_ADDR 7 /* get server's address (netbuf) */ #define CLSET_FD_CLOSE 8 /* close fd while clnt_destroy */ #define CLSET_FD_NCLOSE 9 /* Do not close fd while clnt_destroy */ #define clnt_call(rh, proc, xargs, argsp, xres, resp, secs) \ ((*(rh)->cl_ops->cl_call)(rh, proc, xargs, argsp, xres, resp, secs)) enum clnt_stat { RPC_SUCCESS = 0, /* call succeeded */ RPC_CANTENCODEARGS = 1, /* can't encode arguments */ RPC_CANTDECODERES = 2, /* can't decode results */ RPC_CANTSEND = 3, /* failure in sending call */ RPC_CANTRECV = 4, /* failure in receiving result */ RPC_TIMEDOUT = 5, /* call timed out */ RPC_VERSMISMATCH = 6, /* rpc versions not compatible */ RPC_AUTHERROR = 7, /* authentication error */ RPC_PROGUNAVAIL = 8, /* program not available */ RPC_PROGVERSMISMATCH = 9, /* program version mismatched */ RPC_PROCUNAVAIL = 10, /* procedure unavailable */ RPC_CANTDECODEARGS = 11, /* decode arguments error */ RPC_SYSTEMERROR = 12, /* generic "other problem" */ RPC_NOBROADCAST = 21, /* Broadcasting not supported */ RPC_UNKNOWNHOST = 13, /* unknown host name */ RPC_UNKNOWNPROTO = 17, /* unknown protocol */ RPC_UNKNOWNADDR = 19, /* Remote address unknown */ RPC_RPCBFAILURE = 14, /* portmapper failed in its call */ RPC_PROGNOTREGISTERED = 15, /* remote program is not registered */ RPC_N2AXLATEFAILURE = 22, /* Name to addr translation failed */ RPC_FAILED = 16, RPC_INTR = 18, RPC_TLIERROR = 20, RPC_UDERROR = 23, RPC_INPROGRESS = 24, RPC_STALERACHANDLE = 25 }; struct rpc_err { enum clnt_stat re_status; union { int RE_errno; enum auth_stat RE_why; struct { u_long low; u_long high; } RE_vers; struct { long int s1; long int s2; } RE_lb; } ru; }; typedef struct CLIENT { struct AUTH *cl_auth; struct clnt_ops *cl_ops; caddr_t cl_private; } CLIENT; struct clnt_ops { enum clnt_stat (*cl_call) (struct CLIENT *, u_long, xdrproc_t, caddr_t, xdrproc_t, caddr_t, struct timeval); void (*cl_abort) (void); void (*cl_geterr) (struct CLIENT *, struct rpc_err *); bool_t(*cl_freeres) (struct CLIENT *, xdrproc_t, caddr_t); void (*cl_destroy) (struct CLIENT *); bool_t(*cl_control) (struct CLIENT *, int, char *); }; extern int callrpc(const char *__host, const u_long __prognum, const u_long __versnum, const u_long __procnum, const xdrproc_t __inproc, const char *__in, const xdrproc_t __outproc, char *__out); extern struct CLIENT *clnt_create(const char *__host, const u_long __prog, const u_long __vers, const char *__prot); extern void clnt_pcreateerror(const char *__msg); extern void clnt_perrno(enum clnt_stat __num); extern void clnt_perror(struct CLIENT *__clnt, const char *__msg); extern char *clnt_spcreateerror(const char *__msg); extern char *clnt_sperrno(enum clnt_stat __num); extern char *clnt_sperror(struct CLIENT *__clnt, const char *__msg); extern struct CLIENT *clntraw_create(u_long __prog, u_long __vers); extern struct CLIENT *clnttcp_create(struct sockaddr_in *__raddr, u_long __prog, u_long __version, int *__sockp, u_int __sendsz, u_int __recvsz); extern struct CLIENT *clntudp_bufcreate(struct sockaddr_in *__raddr, u_long __program, u_long __version, struct timeval __wait_resend, int *__sockp, u_int __sendsz, u_int __recvsz); extern struct CLIENT *clntudp_create(struct sockaddr_in *__raddr, u_long __program, u_long __version, struct timeval __wait_resend, int *__sockp); |
extern u_short pmap_getport(struct sockaddr_in *__address, const u_long __program, const u_long __version, u_int __protocol); extern bool_t pmap_set(const u_long __program, const u_long __vers, int __protocol, u_short __port); extern bool_t pmap_unset(u_long __program, u_long __vers); |
enum msg_type { CALL = 0, REPLY = 1 }; enum reply_stat { MSG_ACCEPTED = 0, MSG_DENIED = 1 }; enum accept_stat { SUCCESS = 0, PROG_UNAVAIL = 1, PROG_MISMATCH = 2, PROC_UNAVAIL = 3, GARBAGE_ARGS = 4, SYSTEM_ERR = 5 }; enum reject_stat { RPC_MISMATCH = 0, AUTH_ERROR = 1 }; #define ar_results ru.AR_results #define ar_vers ru.AR_versions struct accepted_reply { struct opaque_auth ar_verf; enum accept_stat ar_stat; union { struct { unsigned long int low; unsigned long int high; } AR_versions; struct { caddr_t where; xdrproc_t proc; } AR_results; } ru; }; #define rj_vers ru.RJ_versions #define rj_why ru.RJ_why struct rejected_reply { enum reject_stat rj_stat; union { struct { unsigned long int low; unsigned long int high; } RJ_versions; enum auth_stat RJ_why; /* why authentication did not work */ } ru; }; #define rp_acpt ru.RP_ar #define rp_rjct ru.RP_dr struct reply_body { enum reply_stat rp_stat; union { struct accepted_reply RP_ar; struct rejected_reply RP_dr; } ru; }; struct call_body { unsigned long int cb_rpcvers; /* must be equal to two */ unsigned long int cb_prog; unsigned long int cb_vers; unsigned long int cb_proc; struct opaque_auth cb_cred; struct opaque_auth cb_verf; /* protocol specific - provided by client */ }; #define rm_call ru.RM_cmb #define rm_reply ru.RM_rmb #define acpted_rply ru.RM_rmb.ru.RP_ar #define rjcted_rply ru.RM_rmb.ru.RP_dr struct rpc_msg { unsigned long int rm_xid; enum msg_type rm_direction; union { struct call_body RM_cmb; struct reply_body RM_rmb; } ru; }; extern bool_t xdr_accepted_reply(XDR *, struct accepted_reply *); extern bool_t xdr_callhdr(XDR * __xdrs, struct rpc_msg *__cmsg); extern bool_t xdr_callmsg(XDR * __xdrs, struct rpc_msg *__cmsg); extern bool_t xdr_rejected_reply(XDR *, struct rejected_reply *); extern bool_t xdr_replymsg(XDR * __xdrs, struct rpc_msg *__rmsg); |
#define svc_getcaller(x) (&(x)->xp_raddr) #define svc_destroy(xprt) (*(xprt)->xp_ops->xp_destroy)(xprt) #define svc_recv(xprt,msg) (*(xprt)->xp_ops->xp_recv)((xprt), (msg)) #define svc_reply(xprt,msg) (*(xprt)->xp_ops->xp_reply) ((xprt), (msg)) #define svc_stat(xprt) (*(xprt)->xp_ops->xp_stat)(xprt) #define RPC_ANYSOCK -1 #define svc_freeargs(xprt,xargs, argsp) \ (*(xprt)->xp_ops->xp_freeargs)((xprt), (xargs), (argsp)) #define svc_getargs(xprt,xargs, argsp) \ (*(xprt)->xp_ops->xp_getargs)((xprt), (xargs), (argsp)) enum xprt_stat { XPRT_DIED, XPRT_MOREREQS, XPRT_IDLE }; typedef struct SVCXPRT { int xp_sock; u_short xp_port; struct xp_ops *xp_ops; int xp_addrlen; struct sockaddr_in xp_raddr; struct opaque_auth xp_verf; caddr_t xp_p1; caddr_t xp_p2; char xp_pad[256]; } SVCXPRT; struct svc_req { rpcprog_t rq_prog; rpcvers_t rq_vers; rpcproc_t rq_proc; struct opaque_auth rq_cred; caddr_t rq_clntcred; SVCXPRT *rq_xprt; }; typedef void (*__dispatch_fn_t) (struct svc_req *, SVCXPRT *); struct xp_ops { bool_t(*xp_recv) (SVCXPRT * __xprt, struct rpc_msg * __msg); enum xprt_stat (*xp_stat) (SVCXPRT * __xprt); bool_t(*xp_getargs) (SVCXPRT * __xprt, xdrproc_t __xdr_args, caddr_t args_ptr); bool_t(*xp_reply) (SVCXPRT * __xprt, struct rpc_msg * __msg); bool_t(*xp_freeargs) (SVCXPRT * __xprt, xdrproc_t __xdr_args, caddr_t args_ptr); void (*xp_destroy) (SVCXPRT * __xprt); }; extern void svc_getreqset(fd_set * __readfds); extern bool_t svc_register(SVCXPRT * __xprt, rpcprog_t __prog, rpcvers_t __vers, __dispatch_fn_t __dispatch, rpcprot_t __protocol); extern void svc_run(void); extern bool_t svc_sendreply(SVCXPRT * xprt, xdrproc_t __xdr_results, caddr_t __xdr_location); extern void svcerr_auth(SVCXPRT * __xprt, enum auth_stat __why); extern void svcerr_decode(SVCXPRT * __xprt); extern void svcerr_noproc(SVCXPRT * __xprt); extern void svcerr_noprog(SVCXPRT * __xprt); extern void svcerr_progvers(SVCXPRT * __xprt, rpcvers_t __low_vers, rpcvers_t __high_vers); extern void svcerr_systemerr(SVCXPRT * __xprt); extern void svcerr_weakauth(SVCXPRT * __xprt); extern SVCXPRT *svcraw_create(void); extern SVCXPRT *svctcp_create(int __sock, u_int __sendsize, u_int __recvsize); extern SVCXPRT *svcudp_create(int __sock); |
typedef int bool_t; typedef int enum_t; typedef unsigned long int rpcprog_t; typedef unsigned long int rpcvers_t; typedef unsigned long int rpcproc_t; typedef unsigned long int rpcprot_t; |
#define XDR_DESTROY(xdrs) \ do { if ((xdrs)->x_ops->x_destroy) (*(xdrs)->x_ops->x_destroy)(xdrs); \ } while (0) #define xdr_destroy(xdrs) \ do { if ((xdrs)->x_ops->x_destroy) (*(xdrs)->x_ops->x_destroy)(xdrs); \ } while (0) #define XDR_GETBYTES(xdrs,addr,len) (*(xdrs)->x_ops->x_getbytes)(xdrs, addr, len) #define xdr_getbytes(xdrs,addr,len) (*(xdrs)->x_ops->x_getbytes)(xdrs, addr, len) #define XDR_GETINT32(xdrs,int32p) (*(xdrs)->x_ops->x_getint32)(xdrs, int32p) #define xdr_getint32(xdrs,int32p) (*(xdrs)->x_ops->x_getint32)(xdrs, int32p) #define XDR_GETLONG(xdrs,longp) (*(xdrs)->x_ops->x_getlong)(xdrs, longp) #define xdr_getlong(xdrs,longp) (*(xdrs)->x_ops->x_getlong)(xdrs, longp) #define XDR_GETPOS(xdrs) (*(xdrs)->x_ops->x_getpostn)(xdrs) #define xdr_getpos(xdrs) (*(xdrs)->x_ops->x_getpostn)(xdrs) #define XDR_INLINE(xdrs,len) (*(xdrs)->x_ops->x_inline)(xdrs, len) #define xdr_inline(xdrs,len) (*(xdrs)->x_ops->x_inline)(xdrs, len) #define XDR_PUTBYTES(xdrs,addr,len) (*(xdrs)->x_ops->x_putbytes)(xdrs, addr, len) #define xdr_putbytes(xdrs,addr,len) (*(xdrs)->x_ops->x_putbytes)(xdrs, addr, len) #define XDR_PUTINT32(xdrs,int32p) (*(xdrs)->x_ops->x_putint32)(xdrs, int32p) #define xdr_putint32(xdrs,int32p) (*(xdrs)->x_ops->x_putint32)(xdrs, int32p) #define XDR_PUTLONG(xdrs,longp) (*(xdrs)->x_ops->x_putlong)(xdrs, longp) #define xdr_putlong(xdrs,longp) (*(xdrs)->x_ops->x_putlong)(xdrs, longp) #define XDR_SETPOS(xdrs,pos) (*(xdrs)->x_ops->x_setpostn)(xdrs, pos) #define xdr_setpos(xdrs,pos) (*(xdrs)->x_ops->x_setpostn)(xdrs, pos) enum xdr_op { XDR_ENCODE, XDR_DECODE, XDR_FREE }; typedef struct XDR { enum xdr_op x_op; struct xdr_ops *x_ops; caddr_t x_public; caddr_t x_private; caddr_t x_base; int x_handy; } XDR; struct xdr_ops { bool_t(*x_getlong) (XDR * __xdrs, long int *__lp); bool_t(*x_putlong) (XDR * __xdrs, long int *__lp); bool_t(*x_getbytes) (XDR * __xdrs, caddr_t __addr, u_int __len); bool_t(*x_putbytes) (XDR * __xdrs, char *__addr, u_int __len); u_int(*x_getpostn) (XDR * __xdrs); bool_t(*x_setpostn) (XDR * __xdrs, u_int __pos); int32_t *(*x_inline) (XDR * __xdrs, int __len); void (*x_destroy) (XDR * __xdrs); bool_t(*x_getint32) (XDR * __xdrs, int32_t * __ip); bool_t(*x_putint32) (XDR * __xdrs, int32_t * __ip); }; typedef bool_t(*xdrproc_t) (XDR *, void *, ...); struct xdr_discrim { int value; xdrproc_t proc; }; extern bool_t xdr_array(XDR * _xdrs, caddr_t * __addrp, u_int * __sizep, u_int __maxsize, u_int __elsize, xdrproc_t __elproc); extern bool_t xdr_bool(XDR * __xdrs, bool_t * __bp); extern bool_t xdr_bytes(XDR * __xdrs, char **__cpp, u_int * __sizep, u_int __maxsize); extern bool_t xdr_char(XDR * __xdrs, char *__cp); extern bool_t xdr_double(XDR * __xdrs, double *__dp); extern bool_t xdr_enum(XDR * __xdrs, enum_t * __ep); extern bool_t xdr_float(XDR * __xdrs, float *__fp); extern void xdr_free(xdrproc_t __proc, char *__objp); extern bool_t xdr_int(XDR * __xdrs, int *__ip); extern bool_t xdr_long(XDR * __xdrs, long int *__lp); extern bool_t xdr_opaque(XDR * __xdrs, caddr_t __cp, u_int __cnt); extern bool_t xdr_pointer(XDR * __xdrs, char **__objpp, u_int __obj_size, xdrproc_t __xdr_obj); extern bool_t xdr_reference(XDR * __xdrs, caddr_t * __xpp, u_int __size, xdrproc_t __proc); extern bool_t xdr_short(XDR * __xdrs, short *__sp); extern bool_t xdr_string(XDR * __xdrs, char **__cpp, u_int __maxsize); extern bool_t xdr_u_char(XDR * __xdrs, u_char * __cp); extern bool_t xdr_u_int(XDR * __xdrs, u_int * __up); extern bool_t xdr_u_long(XDR * __xdrs, u_long * __ulp); extern bool_t xdr_u_short(XDR * __xdrs, u_short * __usp); extern bool_t xdr_union(XDR * __xdrs, enum_t * __dscmp, char *__unp, const struct xdr_discrim *__choices, xdrproc_t dfault); extern bool_t xdr_vector(XDR * __xdrs, char *__basep, u_int __nelem, u_int __elemsize, xdrproc_t __xdr_elem); extern bool_t xdr_void(void); extern bool_t xdr_wrapstring(XDR * __xdrs, char **__cpp); extern void xdrmem_create(XDR * __xdrs, caddr_t __addr, u_int __size, enum xdr_op __xop); extern void xdrrec_create(XDR * __xdrs, u_int __sendsize, u_int __recvsize, caddr_t __tcp_handle, int (*__readit) (char *, char *, int), int (*__writeit) (char *, char *, int)); extern bool_t xdrrec_endofrecord(XDR * __xdrs, bool_t __sendnow); extern bool_t xdrrec_eof(XDR * __xdrs); extern bool_t xdrrec_skiprecord(XDR * __xdrs); extern void xdrstdio_create(XDR * __xdrs, FILE * __file, enum xdr_op __xop); |
#define __CPU_ALLOC_SIZE(count) ((((count) + __NCPUBITS - 1) / __NCPUBITS) * 8) #define __CPUELT(cpu) ((cpu) / __NCPUBITS) #define __CPUMASK(cpu) ((__cpu_mask) 1 << ((cpu) % __NCPUBITS)) #define __NCPUBITS (8 * sizeof (__cpu_mask)) #define SCHED_OTHER 0 #define SCHED_FIFO 1 #define __CPU_SETSIZE 1024 #define SCHED_RR 2 #define __CPU_OP_S(setsize, destset, srcset1, srcset2, op) \ (__extension__\ ({ cpu_set_t *__dest = (destset); \ cpu_set_t *__arr1 = (srcset1); \ cpu_set_t *__arr2 = (srcset2); \ size_t __imax = (setsize) / sizeof (__cpu_mask); \ size_t __i; \ for (__i = 0; __i < __imax; ++__i)\ __dest->__bits[__i] = __arr1->__bits[__i] op __arr2->__bits[__i]; \ __dest; })) #define __CPU_SET_S(cpu, setsize, cpusetp) \ (__extension__\ ({ size_t __cpu = (cpu); \ __cpu < 8 * (setsize) \ ? ((cpusetp)->__bits[__CPUELT (__cpu)] |= __CPUMASK (__cpu)) : 0; })) #define __CPU_ISSET_S(cpu, setsize, cpusetp) \ (__extension__\ ({ size_t __cpu = (cpu); \ __cpu < 8 * (setsize)\ ? (((cpusetp)->__bits[__CPUELT (__cpu)] & __CPUMASK (__cpu))) != 0 \ : 0; })) #define __CPU_CLR_S(cpu, setsize, cpusetp) \ (__extension__\ ({ size_t __cpu = (cpu); \ __cpu < 8 * (setsize)\ ? ((cpusetp)->__bits[__CPUELT (__cpu)] &= ~__CPUMASK (__cpu)) : 0; })) #define __CPU_ZERO_S(setsize, cpusetp) \ do {\ size_t __i; \ size_t __imax = (setsize) / sizeof (__cpu_mask); \ cpu_set_t *__arr = (cpusetp); \ for (__i = 0; __i < __imax; ++__i)\ __arr->__bits[__i] = 0; \ } while (0) #define CPU_ALLOC_SIZE(count) __CPU_ALLOC_SIZE (count) #define CPU_CLR(cpu, cpusetp) __CPU_CLR_S (cpu, sizeof (cpu_set_t), cpusetp) #define CPU_ISSET(cpu, cpusetp) __CPU_ISSET_S (cpu, sizeof (cpu_set_t), cpusetp) #define CPU_AND_S(setsize, destset, srcset1, srcset2) __CPU_OP_S (setsize, destset, srcset1, srcset2, &) #define CPU_XOR_S(setsize, destset, srcset1, srcset2) __CPU_OP_S (setsize, destset, srcset1, srcset2, ^) #define CPU_OR_S(setsize, destset, srcset1, srcset2) __CPU_OP_S (setsize, destset, srcset1, srcset2, |) #define CPU_AND(destset, srcset1, srcset2) __CPU_OP_S (sizeof (cpu_set_t), destset, srcset1, srcset2, &) #define CPU_XOR(destset, srcset1, srcset2) __CPU_OP_S (sizeof (cpu_set_t), destset, srcset1, srcset2, ^) #define CPU_OR(destset, srcset1, srcset2) __CPU_OP_S (sizeof (cpu_set_t), destset, srcset1, srcset2, |) #define CPU_SETSIZE __CPU_SETSIZE #define CPU_SET(cpu, cpusetp) __CPU_SET_S (cpu, sizeof (cpu_set_t), cpusetp) #define CPU_ZERO(cpusetp) __CPU_ZERO_S (sizeof (cpu_set_t), cpusetp) struct sched_param { int sched_priority; }; typedef unsigned long int __cpu_mask; typedef struct { __cpu_mask __bits[__CPU_SETSIZE / __NCPUBITS]; } cpu_set_t; extern int sched_get_priority_max(int __algorithm); extern int sched_get_priority_min(int __algorithm); extern int sched_getaffinity(pid_t __pid, size_t __cpusetsize, cpu_set_t * __cpuset); extern int sched_getparam(pid_t __pid, struct sched_param *__param); extern int sched_getscheduler(pid_t __pid); extern int sched_rr_get_interval(pid_t __pid, struct timespec *__t); extern int sched_setaffinity(pid_t __pid, size_t __cpusetsize, const cpu_set_t * __cpuset); extern int sched_setparam(pid_t __pid, const struct sched_param *__param); extern int sched_setscheduler(pid_t __pid, int __policy, const struct sched_param *__param); extern int sched_yield(void); |
typedef struct entry { char *key; void *data; } ENTRY; typedef enum { FIND, ENTER } ACTION; struct _ENTRY; typedef enum { preorder, postorder, endorder, leaf } VISIT; struct hsearch_data { struct _ENTRY *table; unsigned int size; unsigned int filled; }; typedef void (*__action_fn_t) (const void *__nodep, VISIT __value, int __level); extern int hcreate(size_t __nel); extern int hcreate_r(size_t __nel, struct hsearch_data *__htab); extern void hdestroy(void); extern void hdestroy_r(struct hsearch_data *__htab); extern ENTRY *hsearch(ENTRY __item, ACTION __action); extern int hsearch_r(ENTRY __item, ACTION __action, ENTRY * *__retval, struct hsearch_data *__htab); extern void insque(void *__elem, void *__prev); extern void *lfind(const void *__key, const void *__base, size_t * __nmemb, size_t __size, __compar_fn_t __compar); extern void *lsearch(const void *__key, void *__base, size_t * __nmemb, size_t __size, __compar_fn_t __compar); extern void remque(void *__elem); extern void *tdelete(const void *__key, void **__rootp, __compar_fn_t __compar); extern void *tfind(const void *__key, void *const *__rootp, __compar_fn_t __compar); extern void *tsearch(const void *__key, void **__rootp, __compar_fn_t __compar); extern void twalk(const void *__root, __action_fn_t __action); |
#define setjmp(env) _setjmp(env) #define sigsetjmp(a,b) __sigsetjmp(a,b) struct __jmp_buf_tag { __jmp_buf __jmpbuf; int __mask_was_saved; sigset_t __saved_mask; }; typedef struct __jmp_buf_tag jmp_buf[1]; typedef jmp_buf sigjmp_buf; extern int __sigsetjmp(jmp_buf __env, int __savemask); extern void _longjmp(jmp_buf __env, int __val); extern int _setjmp(jmp_buf __env); extern void longjmp(jmp_buf __env, int __val); extern void siglongjmp(sigjmp_buf __env, int __val); |
#define sigpause __xpg_sigpause #define _SIGSET_NWORDS (1024/(8*sizeof(unsigned long))) #define SIGRTMAX (__libc_current_sigrtmax ()) #define SIGRTMIN (__libc_current_sigrtmin ()) #define NSIG 65 #define SIG_BLOCK 0 /* Block signals. */ #define SIG_UNBLOCK 1 /* Unblock signals. */ #define SIG_SETMASK 2 /* Set the set of blocked signals. */ typedef int sig_atomic_t; typedef void (*sighandler_t) (int); #define SIG_HOLD ((sighandler_t) 2) /* Request that signal be held. */ #define SIG_DFL ((sighandler_t)0) /* Request for default signal handling. */ #define SIG_IGN ((sighandler_t)1) /* Request that signal be ignored. */ #define SIG_ERR ((sighandler_t)-1) /* Return value from signal() in case of error. */ #define SIGHUP 1 /* Hangup. */ #define SIGINT 2 /* Terminal interrupt signal. */ #define SIGQUIT 3 /* Terminal quit signal. */ #define SIGILL 4 /* Illegal instruction. */ #define SIGTRAP 5 /* Trace/breakpoint trap. */ #define SIGABRT 6 /* Process abort signal. */ #define SIGIOT 6 /* IOT trap */ #define SIGBUS 7 /* Access to an undefined portion of a memory object. */ #define SIGFPE 8 /* Erroneous arithmetic operation. */ #define SIGKILL 9 /* Kill (cannot be caught or ignored). */ #define SIGUSR1 10 /* User-defined signal 1. */ #define SIGSEGV 11 /* Invalid memory reference. */ #define SIGUSR2 12 /* User-defined signal 2. */ #define SIGPIPE 13 /* Write on a pipe with no one to read it. */ #define SIGALRM 14 /* Alarm clock. */ #define SIGTERM 15 /* Termination signal. */ #define SIGSTKFLT 16 /* Stack fault. */ #define SIGCHLD 17 /* Child process terminated, stopped, or continued. */ #define SIGCLD SIGCHLD /* Same as SIGCHLD */ #define SIGCONT 18 /* Continue executing, if stopped. */ #define SIGSTOP 19 /* Stop executing (cannot be caught or ignored). */ #define SIGTSTP 20 /* Terminal stop signal. */ #define SIGTTIN 21 /* Background process attempting read. */ #define SIGTTOU 22 /* Background process attempting write. */ #define SIGURG 23 /* High bandwidth data is available at a socket. */ #define SIGXCPU 24 /* CPU time limit exceeded. */ #define SIGXFSZ 25 /* File size limit exceeded. */ #define SIGVTALRM 26 /* Virtual timer expired. */ #define SIGPROF 27 /* Profiling timer expired. */ #define SIGWINCH 28 /* Window size change. */ #define SIGIO 29 /* I/O now possible. */ #define SIGPOLL SIGIO /* Pollable event. */ #define SIGPWR 30 /* Power failure restart */ #define SIGSYS 31 /* Bad system call. */ #define SIGUNUSED 31 #define SV_ONSTACK (1<<0) /* Take the signal on the signal stack. */ #define SV_INTERRUPT (1<<1) /* Do not restart system calls. */ #define SV_RESETHAND (1<<2) /* Reset handler to SIG_DFL on receipt. */ typedef union sigval { int sival_int; void *sival_ptr; } sigval_t; #define SIGEV_SIGNAL 0 /* Notify via signal. */ #define SIGEV_NONE 1 /* Other notification: meaningless. */ #define SIGEV_THREAD 2 /* Deliver via thread creation. */ #define SIGEV_MAX_SIZE 64 typedef struct sigevent { sigval_t sigev_value; int sigev_signo; int sigev_notify; union { int _pad[SIGEV_PAD_SIZE]; struct { void (*_function) (sigval_t); void *_attribute; } _sigev_thread; } _sigev_un; } sigevent_t; #define SI_MAX_SIZE 128 #define si_pid _sifields._kill._pid #define si_uid _sifields._kill._uid #define si_value _sifields._rt._sigval #define si_int _sifields._rt._sigval.sival_int #define si_ptr _sifields._rt._sigval.sival_ptr #define si_status _sifields._sigchld._status #define si_stime _sifields._sigchld._stime #define si_utime _sifields._sigchld._utime #define si_addr _sifields._sigfault._addr #define si_band _sifields._sigpoll._band #define si_fd _sifields._sigpoll._fd #define si_timer1 _sifields._timer._timer1 #define si_timer2 _sifields._timer._timer2 typedef struct siginfo { int si_signo; /* Signal number. */ int si_errno; int si_code; /* Signal code. */ union { int _pad[SI_PAD_SIZE]; struct { pid_t _pid; uid_t _uid; } _kill; struct { unsigned int _timer1; unsigned int _timer2; } _timer; struct { pid_t _pid; uid_t _uid; sigval_t _sigval; } _rt; struct { pid_t _pid; uid_t _uid; int _status; clock_t _utime; clock_t _stime; } _sigchld; struct { void *_addr; } _sigfault; struct { int _band; int _fd; } _sigpoll; } _sifields; } siginfo_t; #define SI_QUEUE -1 /* Sent by sigqueue. */ #define SI_TIMER -2 /* Sent by timer expiration. */ #define SI_MESGQ -3 /* Sent by real time mesq state change. */ #define SI_ASYNCIO -4 /* Sent by AIO completion. */ #define SI_SIGIO -5 /* Sent by queued SIGIO. */ #define SI_TKILL -6 /* Sent by tkill. */ #define SI_ASYNCNL -60 /* Sent by asynch name lookup completion. */ #define SI_USER 0 /* Sent by kill, sigsend, raise. */ #define SI_KERNEL 0x80 /* Sent by kernel. */ #define ILL_ILLOPC 1 /* Illegal opcode. */ #define ILL_ILLOPN 2 /* Illegal operand. */ #define ILL_ILLADR 3 /* Illegal addressing mode. */ #define ILL_ILLTRP 4 /* Illegal trap. */ #define ILL_PRVOPC 5 /* Privileged opcode. */ #define ILL_PRVREG 6 /* Privileged register. */ #define ILL_COPROC 7 /* Coprocessor error. */ #define ILL_BADSTK 8 /* Internal stack error. */ #define FPE_INTDIV 1 /* Integer divide by zero. */ #define FPE_INTOVF 2 /* Integer overflow. */ #define FPE_FLTDIV 3 /* Floating-point divide by zero. */ #define FPE_FLTOVF 4 /* Floating-point overflow. */ #define FPE_FLTUND 5 /* Floating-point underflow. */ #define FPE_FLTRES 6 /* Floating-point inexact result. */ #define FPE_FLTINV 7 /* Invalid floating-point operation. */ #define FPE_FLTSUB 8 /* Subscript out of range. */ #define SEGV_MAPERR 1 /* Address not mapped to object. */ #define SEGV_ACCERR 2 /* Invalid permissions for mapped object. */ #define BUS_ADRALN 1 /* Invalid address alignment. */ #define BUS_ADRERR 2 /* Nonexistent physical address. */ #define BUS_OBJERR 3 /* Object-specific hardware error. */ #define TRAP_BRKPT 1 /* Process breakpoint. */ #define TRAP_TRACE 2 /* Process trace trap. */ #define CLD_EXITED 1 /* Child has exited. */ #define CLD_KILLED 2 /* Child has terminated abnormally and did not create a core fi */ #define CLD_DUMPED 3 /* Child has terminated abnormally and created a core file. */ #define CLD_TRAPPED 4 /* Traced child has trapped. */ #define CLD_STOPPED 5 /* Child has stopped. */ #define CLD_CONTINUED 6 /* Stopped child has continued. */ #define POLL_IN 1 /* Data input available. */ #define POLL_OUT 2 /* Output buffers available. */ #define POLL_MSG 3 /* Input message available. */ #define POLL_ERR 4 /* I/O error. */ #define POLL_PRI 5 /* High priority input available. */ #define POLL_HUP 6 /* Device disconnected. */ typedef struct { unsigned long int sig[_SIGSET_NWORDS]; } sigset_t; #define SA_INTERRUPT 0x20000000 #define sa_handler __sigaction_handler._sa_handler #define sa_sigaction __sigaction_handler._sa_sigaction #define SA_ONSTACK 0x08000000 /* Use signal stack by using `sa_restorer`. */ #define SA_RESETHAND 0x80000000 /* Reset to SIG_DFL on entry to handler. */ #define SA_NOCLDSTOP 0x00000001 /* Don't send SIGCHLD when children stop. */ #define SA_SIGINFO 0x00000004 /* Invoke signal-catching function with three arguments instead of one. */ #define SA_NODEFER 0x40000000 /* Don't automatically block the signal when its handler is being executed. */ #define SA_RESTART 0x10000000 /* Restart syscall on signal return. */ #define SA_NOCLDWAIT 0x00000002 /* Don't create zombie on child death. */ #define SA_NOMASK SA_NODEFER #define SA_ONESHOT SA_RESETHAND typedef struct sigaltstack { void *ss_sp; int ss_flags; size_t ss_size; } stack_t; #define SS_ONSTACK 1 #define SS_DISABLE 2 extern int __libc_current_sigrtmax(void); extern int __libc_current_sigrtmin(void); extern sighandler_t __sysv_signal(int __sig, sighandler_t __handler); extern int __xpg_sigpause(int); extern char *const _sys_siglist[]; extern sighandler_t bsd_signal(int __sig, sighandler_t __handler); extern int kill(pid_t __pid, int __sig); extern int killpg(pid_t __pgrp, int __sig); extern void psignal(int __sig, const char *__s); extern int pthread_kill(pthread_t, int); extern int pthread_sigmask(int, const sigset_t *, sigset_t *); extern int raise(int __sig); extern int sigaction(int __sig, const struct sigaction *__act, struct sigaction *__oact); extern int sigaddset(sigset_t * __set, int __signo); extern int sigaltstack(const struct sigaltstack *__ss, struct sigaltstack *__oss); extern int sigandset(sigset_t * __set, const sigset_t * __left, const sigset_t * __right); extern int sigdelset(sigset_t * __set, int __signo); extern int sigemptyset(sigset_t * __set); extern int sigfillset(sigset_t * __set); extern int sighold(int __sig); extern int sigignore(int __sig); extern int siginterrupt(int __sig, int __interrupt); extern int sigisemptyset(const sigset_t * __set); extern int sigismember(const sigset_t * __set, int __signo); extern sighandler_t signal(int __sig, sighandler_t __handler); extern int sigorset(sigset_t * __set, const sigset_t * __left, const sigset_t * __right); extern int sigpending(sigset_t * __set); extern int sigprocmask(int __how, const sigset_t * __set, sigset_t * __oset); extern int sigqueue(pid_t __pid, int __sig, const union sigval __val); extern int sigrelse(int __sig); extern int sigreturn(struct sigcontext *__scp); extern sighandler_t sigset(int __sig, sighandler_t __disp); extern int sigsuspend(const sigset_t * __set); extern int sigtimedwait(const sigset_t * __set, siginfo_t * __info, const struct timespec *__timeout); extern int sigwait(const sigset_t * __set, int *__sig); extern int sigwaitinfo(const sigset_t * __set, siginfo_t * __info); |
#define POSIX_SPAWN_RESETIDS 0x01 #define POSIX_SPAWN_SETPGROUP 0x02 #define POSIX_SPAWN_SETSIGDEF 0x04 #define POSIX_SPAWN_SETSIGMASK 0x08 #define POSIX_SPAWN_SETSCHEDPARAM 0x10 #define POSIX_SPAWN_SETSCHEDULER 0x20 typedef struct { int __allocated; int __used; struct __spawn_action *__actions; int __pad[16]; } posix_spawn_file_actions_t; typedef struct { short __flags; pid_t __pgrp; sigset_t __sd; sigset_t __ss; struct sched_param __sp; int __policy; int __pad[16]; } posix_spawnattr_t; extern int posix_spawn(pid_t * __pid, const char *__path, const posix_spawn_file_actions_t * __file_actions, const posix_spawnattr_t * __attrp, char *const argv[], char *const envp[]); extern int posix_spawn_file_actions_addclose(posix_spawn_file_actions_t * __file_actions, int __fd); extern int posix_spawn_file_actions_adddup2(posix_spawn_file_actions_t * __file_actions, int __fd, int __newfd); extern int posix_spawn_file_actions_addopen(posix_spawn_file_actions_t * __file_actions, int __fd, const char *__path, int __oflag, mode_t __mode); extern int posix_spawn_file_actions_destroy(posix_spawn_file_actions_t * __file_actions); extern int posix_spawn_file_actions_init(posix_spawn_file_actions_t * __file_actions); extern int posix_spawnattr_destroy(posix_spawnattr_t * __attr); extern int posix_spawnattr_getflags(const posix_spawnattr_t * __attr, short int *__flags); extern int posix_spawnattr_getpgroup(const posix_spawnattr_t * __attr, pid_t * __pgroup); extern int posix_spawnattr_getschedparam(const posix_spawnattr_t * __attr, struct sched_param *__schedparam); extern int posix_spawnattr_getschedpolicy(const posix_spawnattr_t * __attr, int *__schedpolicy); extern int posix_spawnattr_getsigdefault(const posix_spawnattr_t * __attr, sigset_t * __sigdefault); extern int posix_spawnattr_getsigmask(const posix_spawnattr_t * __attr, sigset_t * __sigmask); extern int posix_spawnattr_init(posix_spawnattr_t * __attr); extern int posix_spawnattr_setflags(posix_spawnattr_t * _attr, short int __flags); extern int posix_spawnattr_setpgroup(posix_spawnattr_t * __attr, pid_t __pgroup); extern int posix_spawnattr_setschedparam(posix_spawnattr_t * __attr, const struct sched_param *__schedparam); extern int posix_spawnattr_setschedpolicy(posix_spawnattr_t * __attr, int __schedpolicy); extern int posix_spawnattr_setsigdefault(posix_spawnattr_t * __attr, const sigset_t * __sigdefault); extern int posix_spawnattr_setsigmask(posix_spawnattr_t * __attr, const sigset_t * __sigmask); extern int posix_spawnp(pid_t * __pid, const char *__file, const posix_spawn_file_actions_t * __file_actions, const posix_spawnattr_t * __attrp, char *const argv[], char *const envp[]); |
#define offsetof(TYPE,MEMBER) ((size_t)&((TYPE*)0)->MEMBER) #ifndef NULL # ifdef __cplusplus # define NULL (0L) # else # define NULL ((void*) 0) # endif #endif |
#define INT16_C(c) c #define INT32_C(c) c #define INT8_C(c) c #define UINT16_C(c) c #define UINT8_C(c) c #define UINT32_C(c) c ## U #define INT8_MIN (-128) #define INT_FAST8_MIN (-128) #define INT_LEAST8_MIN (-128) #define INT32_MIN (-2147483647-1) #define INT_LEAST32_MIN (-2147483647-1) #define SIG_ATOMIC_MIN (-2147483647-1) #define INT16_MIN (-32767-1) #define INT_LEAST16_MIN (-32767-1) #define INT64_MIN (-__INT64_C(9223372036854775807)-1) #define INTMAX_MIN (-__INT64_C(9223372036854775807)-1) #define INT_FAST64_MIN (-__INT64_C(9223372036854775807)-1) #define INT_LEAST64_MIN (-__INT64_C(9223372036854775807)-1) #define WINT_MIN (0u) #define INT8_MAX (127) #define INT_FAST8_MAX (127) #define INT_LEAST8_MAX (127) #define INT32_MAX (2147483647) #define INT_LEAST32_MAX (2147483647) #define SIG_ATOMIC_MAX (2147483647) #define UINT8_MAX (255) #define UINT_FAST8_MAX (255) #define UINT_LEAST8_MAX (255) #define INT16_MAX (32767) #define INT_LEAST16_MAX (32767) #define UINT32_MAX (4294967295U) #define UINT_LEAST32_MAX (4294967295U) #define WINT_MAX (4294967295u) #define UINT16_MAX (65535) #define UINT_LEAST16_MAX (65535) #define INT64_MAX (__INT64_C(9223372036854775807)) #define INTMAX_MAX (__INT64_C(9223372036854775807)) #define INT_FAST64_MAX (__INT64_C(9223372036854775807)) #define INT_LEAST64_MAX (__INT64_C(9223372036854775807)) #define UINT64_MAX (__UINT64_C(18446744073709551615)) #define UINTMAX_MAX (__UINT64_C(18446744073709551615)) #define UINT_FAST64_MAX (__UINT64_C(18446744073709551615)) #define UINT_LEAST64_MAX (__UINT64_C(18446744073709551615)) typedef signed char int8_t; typedef short int16_t; typedef int int32_t; typedef unsigned char uint8_t; typedef unsigned short uint16_t; typedef unsigned int uint32_t; typedef signed char int_least8_t; typedef short int int_least16_t; typedef int int_least32_t; typedef unsigned char uint_least8_t; typedef unsigned short uint_least16_t; typedef unsigned int uint_least32_t; typedef signed char int_fast8_t; typedef unsigned char uint_fast8_t; |
#define EOF (-1) #define P_tmpdir "/tmp" #define FOPEN_MAX 16 #define L_tmpnam 20 #define TMP_MAX 238328 #define FILENAME_MAX 4096 #define BUFSIZ 8192 #define L_ctermid 9 #define L_cuserid 9 typedef struct { off_t __pos; mbstate_t __state; } fpos_t; typedef struct { off64_t __pos; mbstate_t __state; } fpos64_t; typedef struct _IO_FILE FILE; #define _IOFBF 0 #define _IOLBF 1 #define _IONBF 2 extern char *__fgets_chk(char *, size_t, int, FILE *); extern char *__fgets_unlocked_chk(char *, size_t, int, FILE *); extern size_t __fpending(FILE *); extern int __printf_chk(int, const char *, ...); extern int __snprintf_chk(char *, size_t, int, size_t, const char *, ...); extern int __sprintf_chk(char *, int, size_t, const char *, ...); extern int __vprintf_chk(int, const char *, va_list); extern int __vsnprintf_chk(char *, size_t, int, size_t, const char *, va_list); extern int __vsprintf_chk(char *, int, size_t, const char *, va_list); extern char *const _sys_errlist[]; extern int asprintf(char **__ptr, const char *__fmt, ...); extern void clearerr(FILE * __stream); extern void clearerr_unlocked(FILE * __stream); extern int dprintf(int __fd, const char *__fmt, ...); extern int fclose(FILE * __stream); extern FILE *fdopen(int __fd, const char *__modes); extern int feof(FILE * __stream); extern int feof_unlocked(FILE * __stream); extern int ferror(FILE * __stream); extern int ferror_unlocked(FILE * __stream); extern int fflush(FILE * __stream); extern int fflush_unlocked(FILE * __stream); extern int fgetc(FILE * __stream); extern int fgetc_unlocked(FILE * __stream); extern int fgetpos(FILE * __stream, fpos_t * __pos); extern int fgetpos64(FILE * __stream, fpos64_t * __pos); extern char *fgets(char *__s, int __n, FILE * __stream); extern char *fgets_unlocked(char *__s, int __n, FILE * __stream); extern int fileno(FILE * __stream); extern int fileno_unlocked(FILE * __stream); extern void flockfile(FILE * __stream); extern FILE *fmemopen(void *__s, size_t __len, const char *__modes); extern FILE *fopen(const char *__filename, const char *__modes); extern FILE *fopen64(const char *__filename, const char *__modes); extern int fprintf(FILE * __stream, const char *__format, ...); extern int fputc(int __c, FILE * __stream); extern int fputc_unlocked(int __c, FILE * __stream); extern int fputs(const char *__s, FILE * __stream); extern int fputs_unlocked(const char *__s, FILE * __stream); extern size_t fread(void *__ptr, size_t __size, size_t __n, FILE * __stream); extern size_t fread_unlocked(void *__ptr, size_t __size, size_t __n, FILE * __stream); extern FILE *freopen(const char *__filename, const char *__modes, FILE * __stream); extern FILE *freopen64(const char *__filename, const char *__modes, FILE * __stream); extern int fscanf(FILE * __stream, const char *__format, ...); extern int fseek(FILE * __stream, long int __off, int __whence); extern int fseeko(FILE * __stream, off_t __off, int __whence); extern int fseeko64(FILE * __stream, loff_t __off, int __whence); extern int fsetpos(FILE * __stream, const fpos_t * __pos); extern int fsetpos64(FILE * __stream, const fpos64_t * __pos); extern long int ftell(FILE * __stream); extern off_t ftello(FILE * __stream); extern loff_t ftello64(FILE * __stream); extern int ftrylockfile(FILE * __stream); extern void funlockfile(FILE * __stream); extern size_t fwrite(const void *__ptr, size_t __size, size_t __n, FILE * __s); extern size_t fwrite_unlocked(const void *__ptr, size_t __size, size_t __n, FILE * __stream); extern int getc(FILE * __stream); extern int getc_unlocked(FILE * __stream); extern int getchar(void); extern int getchar_unlocked(void); extern ssize_t getdelim(char **__lineptr, size_t * __n, int __delimiter, FILE * __stream); extern ssize_t getline(char **__lineptr, size_t * __n, FILE * __stream); extern int getw(FILE * __stream); extern FILE *open_memstream(char **__bufloc, size_t * __sizeloc); extern int pclose(FILE * __stream); extern void perror(const char *__s); extern FILE *popen(const char *__command, const char *__modes); extern int printf(const char *__format, ...); extern int putc(int __c, FILE * __stream); extern int putc_unlocked(int __c, FILE * __stream); extern int putchar(int __c); extern int putchar_unlocked(int __c); extern int puts(const char *__s); extern int putw(int __w, FILE * __stream); extern int remove(const char *__filename); extern int renameat(int __oldfd, const char *__old, int __newfd, const char *__new); extern void rewind(FILE * __stream); extern int scanf(const char *__format, ...); extern void setbuf(FILE * __stream, char *__buf); extern void setbuffer(FILE * __stream, char *__buf, size_t __size); extern int setvbuf(FILE * __stream, char *__buf, int __modes, size_t __n); extern int snprintf(char *__s, size_t __maxlen, const char *__format, ...); extern int sprintf(char *__s, const char *__format, ...); extern int sscanf(const char *__s, const char *__format, ...); extern FILE *stderr; extern FILE *stdin; extern FILE *stdout; extern char *tempnam(const char *__dir, const char *__pfx); extern FILE *tmpfile(void); extern FILE *tmpfile64(void); extern char *tmpnam(char *__s); extern int ungetc(int __c, FILE * __stream); extern int vasprintf(char **__ptr, const char *__f, va_list __arg); extern int vdprintf(int __fd, const char *__fmt, va_list __arg); extern int vfprintf(FILE * __s, const char *__format, va_list __arg); extern int vfscanf(FILE * __s, const char *__format, va_list __arg); extern int vprintf(const char *__format, va_list __arg); extern int vscanf(const char *__format, va_list __arg); extern int vsnprintf(char *__s, size_t __maxlen, const char *__format, va_list __arg); extern int vsprintf(char *__s, const char *__format, va_list __arg); extern int vsscanf(const char *__s, const char *__format, va_list __arg); |
#define MB_CUR_MAX (__ctype_get_mb_cur_max()) #define EXIT_SUCCESS 0 #define EXIT_FAILURE 1 #define RAND_MAX 2147483647 struct drand48_data { unsigned short __x[3]; unsigned short __old_x[3]; unsigned short __c; unsigned short __init; unsigned long long int __a; }; typedef int (*__compar_fn_t) (const void *, const void *); struct random_data { int32_t *fptr; /* Front pointer. */ int32_t *rptr; /* Rear pointer. */ int32_t *state; /* Array of state values. */ int rand_type; /* Type of random number generator. */ int rand_deg; /* Degree of random number generator. */ int rand_sep; /* Distance between front and rear. */ int32_t *end_ptr; /* Pointer behind state table. */ }; typedef struct { int quot; int rem; } div_t; typedef struct { long int quot; long int rem; } ldiv_t; typedef struct { long long int quot; long long int rem; } lldiv_t; extern void _Exit(int __status); extern size_t __ctype_get_mb_cur_max(void); extern size_t __mbstowcs_chk(wchar_t *, const char *, size_t, size_t); extern char *__realpath_chk(const char *, char *, size_t); extern double __strtod_internal(const char *, char **, int); extern float __strtof_internal(const char *, char **, int); extern long int __strtol_internal(const char *, char **, int, int); extern long double __strtold_internal(const char *, char **, int); extern long long int __strtoll_internal(const char *, char **, int, int); extern unsigned long int __strtoul_internal(const char *, char **, int, int); extern unsigned long long int __strtoull_internal(const char *, char **, int, int); extern size_t __wcstombs_chk(char *, const wchar_t *, size_t, size_t); extern int __wctomb_chk(char *, wchar_t, size_t); extern long int a64l(const char *__s); extern void abort(void); extern int abs(int __x); extern int atexit(void (*__func) (void)); extern double atof(const char *__nptr); extern int atoi(const char *__nptr); extern long int atol(const char *__nptr); extern long long int atoll(const char *__nptr); extern void *bsearch(const void *__key, const void *__base, size_t __nmemb, size_t __size, __compar_fn_t __compar); extern void *calloc(size_t __nmemb, size_t __size); extern div_t div(int __numer, int __denom); extern double drand48(void); extern int drand48_r(struct drand48_data *__buffer, double *__result); extern char *ecvt(double __value, int __ndigit, int *__decpt, int *__sign); extern char **environ; extern double erand48(unsigned short __xsubi[3]); extern int erand48_r(unsigned short __xsubi[3], struct drand48_data *__buffer, double *__result); extern void exit(int __status); extern char *fcvt(double __value, int __ndigit, int *__decpt, int *__sign); extern void free(void *__ptr); extern char *gcvt(double __value, int __ndigit, char *__buf); extern char *getenv(const char *__name); extern int getloadavg(double __loadavg[], int __nelem); extern int getsubopt(char **__optionp, char *const *__tokens, char **__valuep); extern int grantpt(int __fd); extern char *initstate(unsigned int __seed, char *__statebuf, size_t __statelen); extern int initstate_r(unsigned int __seed, char *__statebuf, size_t __statelen, struct random_data *__buf); extern long int jrand48(unsigned short __xsubi[3]); extern int jrand48_r(unsigned short __xsubi[3], struct drand48_data *__buffer, long int *__result); extern char *l64a(long int __n); extern long int labs(long int __x); extern void lcong48(unsigned short __param[7]); extern int lcong48_r(unsigned short __param[7], struct drand48_data *__buffer); extern ldiv_t ldiv(long int __numer, long int __denom); extern long long int llabs(long long int __x); extern lldiv_t lldiv(long long int __numer, long long int __denom); extern long int lrand48(void); extern int lrand48_r(struct drand48_data *__buffer, long int *__result); extern void *malloc(size_t __size); extern int mblen(const char *__s, size_t __n); extern size_t mbstowcs(wchar_t * __pwcs, const char *__s, size_t __n); extern int mbtowc(wchar_t * __pwc, const char *__s, size_t __n); extern char *mkdtemp(char *__template); extern int mkstemp64(char *__template); extern char *mktemp(char *__template); extern long int mrand48(void); extern int mrand48_r(struct drand48_data *__buffer, long int *__result); extern long int nrand48(unsigned short __xsubi[3]); extern int nrand48_r(unsigned short __xsubi[3], struct drand48_data *__buffer, long int *__result); extern int posix_memalign(void **__memptr, size_t __alignment, size_t __size); extern int posix_openpt(int __oflag); extern char *ptsname(int __fd); extern int putenv(char *__string); extern void qsort(void *__base, size_t __nmemb, size_t __size, const __compar_fn_t __compar); extern int rand(void); extern int rand_r(unsigned int *__seed); extern long int random(void); extern int random_r(struct random_data *__buf, int32_t * __result); extern void *realloc(void *__ptr, size_t __size); extern char *realpath(const char *__name, char *__resolved); extern unsigned short *seed48(unsigned short __seed16v[3]); extern int seed48_r(unsigned short __seed16v[3], struct drand48_data *__buffer); extern int setenv(const char *__name, const char *__value, int __replace); extern char *setstate(char *__statebuf); extern int setstate_r(char *__statebuf, struct random_data *__buf); extern void srand(unsigned int __seed); extern void srand48(long int __seedval); extern int srand48_r(long int __seedval, struct drand48_data *__buffer); extern void srandom(unsigned int __seed); extern int srandom_r(unsigned int __seed, struct random_data *__buf); extern double strtod(const char *__nptr, char **__endptr); extern float strtof(const char *__nptr, char **__endptr); extern long int strtol(const char *__nptr, char **__endptr, int __base); extern long double strtold(const char *__nptr, char **__endptr); extern long long int strtoll(const char *__nptr, char **__endptr, int __base); extern long long int strtoq(const char *__nptr, char **__endptr, int __base); extern unsigned long int strtoul(const char *__nptr, char **__endptr, int __base); extern unsigned long long int strtoull(const char *__nptr, char **__endptr, int __base); extern unsigned long long int strtouq(const char *__nptr, char **__endptr, int __base); extern int system(const char *__command); extern int unlockpt(int __fd); extern int unsetenv(const char *__name); extern size_t wcstombs(char *__s, const wchar_t * __pwcs, size_t __n); extern int wctomb(char *__s, wchar_t __wchar); |
#define strerror_r __xpg_strerror_r extern void *__memcpy_chk(void *, const void *, size_t, size_t); extern void *__memmove_chk(void *, const void *, size_t, size_t); extern void *__mempcpy(void *__dest, const void *__src, size_t __n); extern void *__mempcpy_chk(void *, const void *, size_t, size_t); extern void *__memset_chk(void *, int, size_t, size_t); extern char *__stpcpy(char *__dest, const char *__src); extern char *__stpcpy_chk(char *, const char *, size_t); extern char *__strcat_chk(char *, const char *, size_t); extern char *__strcpy_chk(char *, const char *, size_t); extern char *__strncat_chk(char *, const char *, size_t, size_t); extern char *__strncpy_chk(char *, const char *, size_t, size_t); extern char *__strtok_r(char *__s, const char *__delim, char **__save_ptr); extern int __xpg_strerror_r(int, char *, size_t); extern void *memccpy(void *__dest, const void *__src, int __c, size_t __n); extern void *memchr(const void *__s, int __c, size_t __n); extern int memcmp(const void *__s1, const void *__s2, size_t __n); extern void *memcpy(void *__dest, const void *__src, size_t __n); extern void *memmem(const void *__haystack, size_t __haystacklen, const void *__needle, size_t __needlelen); extern void *memmove(void *__dest, const void *__src, size_t __n); extern void *memrchr(const void *__s, int __c, size_t __n); extern void *memset(void *__s, int __c, size_t __n); extern char *stpcpy(char *__dest, const char *__src); extern char *stpncpy(char *__dest, const char *__src, size_t __n); extern char *strcasestr(const char *__haystack, const char *__needle); extern char *strcat(char *__dest, const char *__src); extern char *strchr(const char *__s, int __c); extern int strcmp(const char *__s1, const char *__s2); extern int strcoll(const char *__s1, const char *__s2); extern char *strcpy(char *__dest, const char *__src); extern size_t strcspn(const char *__s, const char *__reject); extern char *strdup(const char *__s); extern char *strerror(int __errnum); extern size_t strlen(const char *__s); extern char *strncat(char *__dest, const char *__src, size_t __n); extern int strncmp(const char *__s1, const char *__s2, size_t __n); extern char *strncpy(char *__dest, const char *__src, size_t __n); extern char *strndup(const char *__string, size_t __n); extern size_t strnlen(const char *__string, size_t __maxlen); extern char *strpbrk(const char *__s, const char *__accept); extern char *strrchr(const char *__s, int __c); extern char *strsep(char **__stringp, const char *__delim); extern char *strsignal(int __sig); extern size_t strspn(const char *__s, const char *__accept); extern char *strstr(const char *__haystack, const char *__needle); extern char *strtok(char *__s, const char *__delim); extern char *strtok_r(char *__s, const char *__delim, char **__save_ptr); extern size_t strxfrm(char *__dest, const char *__src, size_t __n); |
extern int bcmp(const void *__s1, const void *__s2, size_t __n); extern void bcopy(const void *__src, void *__dest, size_t __n); extern void bzero(void *__s, size_t __n); extern int ffs(int __i); extern char *index(const char *__s, int __c); extern char *rindex(const char *__s, int __c); extern int strcasecmp(const char *__s1, const char *__s2); extern int strncasecmp(const char *__s1, const char *__s2, size_t __n); |
#define EPOLL_CTL_ADD 1 /* Add a file decriptor to the interface. */ #define EPOLL_CTL_DEL 2 /* Remove a file decriptor from the interface. */ #define EPOLL_CTL_MOD 3 /* Change file decriptor epoll_event structure. */ #define EPOLLIN 1 #define EPOLLPRI 2 #define EPOLLOUT 4 #define EPOLLERR 8 #define EPOLLHUP 16 #define EPOLLRDHUP 0x2000 #define EPOLLONESHOT (1 << 30) #define EPOLLET (1 << 31) typedef union epoll_data { void *ptr; int fd; uint32_t u32; uint64_t u64; } epoll_data_t; struct epoll_event { uint32_t events; epoll_data_t data; }; extern int epoll_create(int __size); extern int epoll_ctl(int __epfd, int __op, int __fd, struct epoll_event *__event); extern int epoll_wait(int __epfd, struct epoll_event *__events, int __maxevents, int __timeout); |
#define LOCK_SH 1 #define LOCK_EX 2 #define LOCK_NB 4 #define LOCK_UN 8 extern int flock(int __fd, int __operation); |
#define IN_ACCESS 0x00000001 #define IN_MODIFY 0x00000002 #define IN_ATTRIB 0x00000004 #define IN_CLOSE_WRITE 0x00000008 #define IN_CLOSE_NOWRITE 0x00000010 #define IN_OPEN 0x00000020 #define IN_MOVED_FROM 0x00000040 #define IN_MOVED_TO 0x00000080 #define IN_CREATE 0x00000100 #define IN_DELETE 0x00000200 #define IN_DELETE_SELF 0x00000400 #define IN_MOVE_SELF 0x00000800 #define IN_UNMOUNT 0x00002000 #define IN_Q_OVERFLOW 0x00004000 #define IN_IGNORED 0x00008000 #define IN_ISDIR 0x40000000 #define IN_ONESHOT 0x80000000 #define IN_CLOSE (IN_CLOSE_WRITE | IN_CLOSE_NOWRITE) #define IN_MOVE (IN_MOVED_FROM | IN_MOVED_TO) #define IN_ALL_EVENTS \ (IN_ACCESS | IN_MODIFY | IN_ATTRIB | IN_CLOSE_WRITE | \ IN_CLOSE_NOWRITE | IN_OPEN | IN_MOVED_FROM | IN_MOVED_TO | IN_CREATE | \ IN_DELETE | IN_DELETE_SELF | IN_MOVE_SELF) struct inotify_event { int wd; uint32_t mask; uint32_t cookie; uint32_t len; char name[]; }; extern int inotify_add_watch(int __fd, const char *__name, uint32_t __mask); extern int inotify_init(void); extern int inotify_rm_watch(int __fd, int __wd); |
struct winsize { unsigned short ws_row; /* Rows, in characters. */ unsigned short ws_col; /* Columns, in characters. */ unsigned short ws_xpixel; /* Horizontal pixels. */ unsigned short ws_ypixel; /* Vertical pixels. */ }; extern int ioctl(int __fd, unsigned long int __request, ...); |
#define IPC_PRIVATE ((key_t)0) #define IPC_RMID 0 #define IPC_CREAT 00001000 #define IPC_EXCL 00002000 #define IPC_NOWAIT 00004000 #define IPC_SET 1 #define IPC_STAT 2 extern key_t ftok(const char *__pathname, int __proj_id); |
#define MAP_FAILED ((void*)-1) #define POSIX_MADV_NORMAL 0 #define PROT_NONE 0x0 #define MAP_SHARED 0x01 #define MAP_PRIVATE 0x02 #define PROT_READ 0x1 #define MAP_FIXED 0x10 #define PROT_WRITE 0x2 #define MAP_ANONYMOUS 0x20 #define PROT_EXEC 0x4 #define MREMAP_MAYMOVE 1 #define MS_ASYNC 1 #define POSIX_MADV_RANDOM 1 #define MREMAP_FIXED 2 #define MS_INVALIDATE 2 #define POSIX_MADV_SEQUENTIAL 2 #define POSIX_MADV_WILLNEED 3 #define MS_SYNC 4 #define POSIX_MADV_DONTNEED 4 #define MAP_ANON MAP_ANONYMOUS extern int mlock(const void *__addr, size_t __len); extern int mlockall(int __flags); extern void *mmap(void *__addr, size_t __len, int __prot, int __flags, int __fd, off_t __offset); extern void *mmap64(void *__addr, size_t __len, int __prot, int __flags, int __fd, off64_t __offset); extern int mprotect(void *__addr, size_t __len, int __prot); extern void *mremap(void *__addr, size_t __old_len, size_t __new_len, int __flags, ...); extern int msync(void *__addr, size_t __len, int __flags); extern int munlock(const void *__addr, size_t __len); extern int munlockall(void); extern int munmap(void *__addr, size_t __len); extern int posix_madvise(void *__addr, size_t __len, int __advice); extern int shm_open(const char *__name, int __oflag, mode_t __mode); extern int shm_unlink(const char *__name); |
#define MSG_NOERROR 010000 extern int msgctl(int __msqid, int __cmd, struct msqid_ds *__buf); extern int msgget(key_t __key, int __msgflg); extern ssize_t msgrcv(int __msqid, void *__msgp, size_t __msgsz, long int __msgtyp, int __msgflg); extern int msgsnd(int __msqid, const void *__msgp, size_t __msgsz, int __msgflg); |
#define POLLIN 0x0001 /* There is data to read */ #define POLLPRI 0x0002 /* There is urgent data to read */ #define POLLOUT 0x0004 /* Writing now will not block */ #define POLLERR 0x0008 /* Error condition */ #define POLLHUP 0x0010 /* Hung up */ #define POLLNVAL 0x0020 /* Invalid request: fd not open */ #define POLLRDNORM 0x0040 /* Normal data may be read */ #define POLLRDBAND 0x0080 /* Priority data may be read */ #define POLLWRNORM 0x0100 /* Writing now will not block */ #define POLLWRBAND 0x0200 /* Priority data may be written */ struct pollfd { int fd; /* File descriptor to poll. */ short events; /* Types of events poller cares about. */ short revents; /* Types of events that actually occurred. */ }; typedef unsigned long int nfds_t; |
enum __ptrace_setoptions { PTRACE_O_TRACESYSGOOD = 0x00000001, PTRACE_O_TRACEFORK = 0x00000002, PTRACE_O_TRACEVFORK = 0x00000004, PTRACE_O_TRACECLONE = 0x00000008, PTRACE_O_TRACEEXEC = 0x00000010, PTRACE_O_TRACEVFORKDONE = 0x00000020, PTRACE_O_TRACEEXIT = 0x00000040, PTRACE_O_MASK = 0x0000007f }; enum __ptrace_eventcodes { PTRACE_EVENT_FORK = 1, PTRACE_EVENT_VFORK = 2, PTRACE_EVENT_CLONE = 3, PTRACE_EVENT_EXEC = 4, PTRACE_EVENT_VFORK_DONE = 5, PTRACE_EVENT_EXIT = 6 }; extern long int ptrace(enum __ptrace_request, ...); |
#define RUSAGE_CHILDREN (-1) #define RLIM_INFINITY (~0UL) #define RLIM_SAVED_CUR -1 #define RLIM_SAVED_MAX -1 #define RLIMIT_CPU 0 #define RUSAGE_SELF 0 #define RLIMIT_FSIZE 1 #define RLIMIT_LOCKS 10 #define RLIM_NLIMITS 11 #define RLIMIT_DATA 2 #define RLIMIT_STACK 3 #define RLIMIT_CORE 4 #define RLIMIT_RSS 5 #define RLIMIT_NPROC 6 #define RLIMIT_NOFILE 7 #define RLIMIT_MEMLOCK 8 #define RLIMIT_AS 9 typedef unsigned long int rlim_t; typedef unsigned long long int rlim64_t; typedef int __rlimit_resource_t; struct rlimit { rlim_t rlim_cur; /* The current (soft) limit. */ rlim_t rlim_max; /* The hard limit. */ }; struct rlimit64 { rlim64_t rlim_cur; /* The current (soft) limit. */ rlim64_t rlim_max; /* The hard limit. */ }; struct rusage { struct timeval ru_utime; /* Total amount of user time used. */ struct timeval ru_stime; /* Total amount of system time used. */ long int ru_maxrss; /* Maximum resident set size (in kilobytes). */ long int ru_ixrss; /* Amount of sharing of text segment memory with other p */ long int ru_idrss; /* Amount of data segment memory used (kilobyte-seconds). */ long int ru_isrss; /* Amount of stack memory used (kilobyte-seconds). */ long int ru_minflt; /* Number of soft page faults (i.e. those serviced by reclaimin */ long int ru_majflt; /* Number of hard page faults (i.e. those that required I/O). */ long int ru_nswap; /* Number of times a process was swapped out of physical memory */ long int ru_inblock; /* Number of input operations via the file system. Note: This */ long int ru_oublock; /* Number of output operations via the file system. */ long int ru_msgsnd; /* Number of IPC messages sent. */ long int ru_msgrcv; /* Number of IPC messages received. */ long int ru_nsignals; /* Number of signals delivered. */ long int ru_nvcsw; /* Number of voluntary context switches, i.e. because the proce */ long int ru_nivcsw; /* Number of involuntary context switches, i.e. a higher priori */ }; enum __priority_which { PRIO_PROCESS = 0, /* WHO is a process ID. */ PRIO_PGRP = 1, /* WHO is a process group ID. */ PRIO_USER = 2 /* WHO is a user ID. */ }; #define PRIO_PGRP PRIO_PGRP #define PRIO_PROCESS PRIO_PROCESS #define PRIO_USER PRIO_USER typedef enum __priority_which __priority_which_t; extern int getpriority(__priority_which_t __which, id_t __who); extern int getrlimit(__rlimit_resource_t __resource, struct rlimit *__rlimits); extern int getrlimit64(id_t __resource, struct rlimit64 *__rlimits); extern int getrusage(int __who, struct rusage *__usage); extern int setpriority(__priority_which_t __which, id_t __who, int __prio); extern int setrlimit(__rlimit_resource_t __resource, const struct rlimit *__rlimits); extern int setrlimit64(__rlimit_resource_t __resource, const struct rlimit64 *__rlimits); |
#define NFDBITS (8 * sizeof (long)) extern int pselect(int __nfds, fd_set * __readfds, fd_set * __writefds, fd_set * __exceptfds, const struct timespec *__timeout, const sigset_t * __sigmask); |
#define SEM_UNDO 0x1000 #define GETPID 11 #define GETVAL 12 #define GETALL 13 #define GETNCNT 14 #define GETZCNT 15 #define SETVAL 16 #define SETALL 17 struct sembuf { short sem_num; short sem_op; short sem_flg; }; extern int semctl(int __semid, int __semnum, int __cmd, ...); extern int semget(key_t __key, int __nsems, int __semflg); extern int semop(int __semid, struct sembuf *__sops, size_t __nsops); |
extern ssize_t sendfile(int __out_fd, int __in_fd, off_t * __offset, size_t __count); extern ssize_t sendfile64(int __out_fd, int __in_fd, off64_t * __offset, size_t __count); |
#define SHM_RDONLY 010000 #define SHM_W 0200 #define SHM_RND 020000 #define SHM_R 0400 #define SHM_REMAP 040000 #define SHM_LOCK 11 #define SHM_UNLOCK 12 extern int __getpagesize(void); extern void *shmat(int __shmid, const void *__shmaddr, int __shmflg); extern int shmctl(int __shmid, int __cmd, struct shmid_ds *__buf); extern int shmdt(const void *__shmaddr); extern int shmget(key_t __key, size_t __size, int __shmflg); |
#define CMSG_FIRSTHDR(msg) ((size_t) (msg)->msg_controllen >= sizeof(struct cmsghdr) ? (struct cmsghdr *)(msg)->msg_control : (struct cmsghdr *) NULL) #define CMSG_LEN(len) (CMSG_ALIGN(sizeof(struct cmsghdr))+(len)) #define SCM_RIGHTS 0x01 #define SOL_SOCKET 1 #define SOMAXCONN 128 #define SOL_RAW 255 #define CMSG_ALIGN(len) \ (((len)+sizeof(size_t)-1)&(size_t)~(sizeof(size_t)-1)) #define CMSG_DATA(cmsg) \ ((unsigned char *) (cmsg) + CMSG_ALIGN(sizeof(struct cmsghdr))) #define CMSG_SPACE(len) \ (CMSG_ALIGN(sizeof(struct cmsghdr))+CMSG_ALIGN(len)) #define CMSG_NXTHDR(mhdr,cmsg) \ (((cmsg) == NULL) ? CMSG_FIRSTHDR(mhdr) : \ (((u_char *)(cmsg) + CMSG_ALIGN((cmsg)->cmsg_len) \ + CMSG_ALIGN(sizeof(struct cmsghdr)) > \ (u_char *)((mhdr)->msg_control) + (mhdr)->msg_controllen) ? \ (struct cmsghdr *)NULL : \ (struct cmsghdr *)((u_char *)(cmsg) + CMSG_ALIGN((cmsg)->cmsg_len)))) struct linger { int l_onoff; int l_linger; }; struct cmsghdr { size_t cmsg_len; int cmsg_level; int cmsg_type; }; struct iovec { void *iov_base; size_t iov_len; }; typedef unsigned short sa_family_t; typedef unsigned int socklen_t; struct sockaddr { sa_family_t sa_family; char sa_data[14]; }; struct sockaddr_storage { sa_family_t ss_family; __ss_aligntype __ss_align; char __ss_padding[(128 - (2 * sizeof(__ss_aligntype)))]; }; struct msghdr { void *msg_name; int msg_namelen; struct iovec *msg_iov; size_t msg_iovlen; void *msg_control; size_t msg_controllen; unsigned int msg_flags; }; #define AF_UNSPEC 0 #define AF_UNIX 1 #define AF_INET6 10 #define AF_INET 2 #define PF_INET AF_INET #define PF_INET6 AF_INET6 #define PF_UNIX AF_UNIX #define PF_UNSPEC AF_UNSPEC #define SOCK_STREAM 1 #define SOCK_PACKET 10 #define SOCK_DGRAM 2 #define SOCK_RAW 3 #define SOCK_RDM 4 #define SOCK_SEQPACKET 5 #define SO_DEBUG 1 #define SO_OOBINLINE 10 #define SO_NO_CHECK 11 #define SO_PRIORITY 12 #define SO_LINGER 13 #define SO_BSDCOMPAT 14 #define SO_REUSEADDR 2 #define SO_TYPE 3 #define SO_ACCEPTCONN 30 #define SO_ERROR 4 #define SO_DONTROUTE 5 #define SO_BROADCAST 6 #define SO_SNDBUF 7 #define SO_RCVBUF 8 #define SO_KEEPALIVE 9 #define SIOCGIFNAME 0x8910 #define SIOCGIFCONF 0x8912 #define SIOCGIFFLAGS 0x8913 #define SIOCGIFADDR 0x8915 #define SIOCGIFDSTADDR 0x8917 #define SIOCGIFBRDADDR 0x8919 #define SIOCGIFNETMASK 0x891b #define SIOCGIFMTU 0x8921 #define SIOCGIFHWADDR 0x8927 #define SHUT_RD 0 #define SHUT_WR 1 #define SHUT_RDWR 2 #define MSG_WAITALL 0x100 #define MSG_TRUNC 0x20 #define MSG_NOSIGNAL 0x4000 #define MSG_EOR 0x80 #define MSG_OOB 1 #define MSG_PEEK 2 #define MSG_DONTROUTE 4 #define MSG_CTRUNC 8 extern ssize_t __recv_chk(int, void *, size_t, size_t, int); extern ssize_t __recvfrom_chk(int, void *, size_t, size_t, int, struct sockaddr *, socklen_t *); extern int accept(int __fd, struct sockaddr *__addr, socklen_t * __addr_len); extern int bind(int __fd, const struct sockaddr *__addr, socklen_t __len); extern int connect(int __fd, const struct sockaddr *__addr, socklen_t __len); extern int getnameinfo(const struct sockaddr *__sa, socklen_t __salen, char *__host, socklen_t __hostlen, char *__serv, socklen_t __servlen, unsigned int __flags); extern int getpeername(int __fd, struct sockaddr *__addr, socklen_t * __len); extern int getsockname(int __fd, struct sockaddr *__addr, socklen_t * __len); extern int getsockopt(int __fd, int __level, int __optname, void *__optval, socklen_t * __optlen); extern int listen(int __fd, int __n); extern ssize_t recv(int __fd, void *__buf, size_t __n, int __flags); extern ssize_t recvfrom(int __fd, void *__buf, size_t __n, int __flags, struct sockaddr *__addr, socklen_t * __addr_len); extern ssize_t recvmsg(int __fd, struct msghdr *__message, int __flags); extern ssize_t send(int __fd, const void *__buf, size_t __n, int __flags); extern ssize_t sendmsg(int __fd, const struct msghdr *__message, int __flags); extern ssize_t sendto(int __fd, const void *__buf, size_t __n, int __flags, const struct sockaddr *__addr, socklen_t __addr_len); extern int setsockopt(int __fd, int __level, int __optname, const void *__optval, socklen_t __optlen); extern int shutdown(int __fd, int __how); extern int sockatmark(int __fd); extern int socket(int __domain, int __type, int __protocol); extern int socketpair(int __domain, int __type, int __protocol, int __fds[2]); |
#define S_ISBLK(m) (((m)&S_IFMT)==S_IFBLK) #define S_ISCHR(m) (((m)&S_IFMT)==S_IFCHR) #define S_ISDIR(m) (((m)&S_IFMT)==S_IFDIR) #define S_ISFIFO(m) (((m)&S_IFMT)==S_IFIFO) #define S_ISLNK(m) (((m)&S_IFMT)==S_IFLNK) #define S_ISREG(m) (((m)&S_IFMT)==S_IFREG) #define S_ISSOCK(m) (((m)&S_IFMT)==S_IFSOCK) #define S_TYPEISMQ(buf) ((buf)->st_mode - (buf)->st_mode) #define S_TYPEISSEM(buf) ((buf)->st_mode - (buf)->st_mode) #define S_TYPEISSHM(buf) ((buf)->st_mode - (buf)->st_mode) #define S_IRWXU (S_IREAD|S_IWRITE|S_IEXEC) #define S_IROTH (S_IRGRP>>3) #define S_IRGRP (S_IRUSR>>3) #define S_IRWXO (S_IRWXG>>3) #define S_IRWXG (S_IRWXU>>3) #define S_IWOTH (S_IWGRP>>3) #define S_IWGRP (S_IWUSR>>3) #define S_IXOTH (S_IXGRP>>3) #define S_IXGRP (S_IXUSR>>3) #define S_ISVTX 01000 #define S_IXUSR 0x0040 #define S_IWUSR 0x0080 #define S_IRUSR 0x0100 #define S_ISGID 0x0400 #define S_ISUID 0x0800 #define S_IFIFO 0x1000 #define S_IFCHR 0x2000 #define S_IFDIR 0x4000 #define S_IFBLK 0x6000 #define S_IFREG 0x8000 #define S_IFLNK 0xa000 #define S_IFSOCK 0xc000 #define S_IFMT 0xf000 #define st_atime st_atim.tv_sec #define st_ctime st_ctim.tv_sec #define st_mtime st_mtim.tv_sec #define S_IREAD S_IRUSR #define S_IWRITE S_IWUSR #define S_IEXEC S_IXUSR extern int __fxstat(int __ver, int __fildes, struct stat *__stat_buf); extern int __fxstat64(int __ver, int __fildes, struct stat64 *__stat_buf); extern int __fxstatat(int __ver, int __fildes, const char *__filename, struct stat *__stat_buf, int __flag); extern int __fxstatat64(int __ver, int __fildes, const char *__filename, struct stat64 *__stat_buf, int __flag); extern int __lxstat(int __ver, const char *__filename, struct stat *__stat_buf); extern int __lxstat64(int __ver, const char *__filename, struct stat64 *__stat_buf); extern int __xmknod(int __ver, const char *__path, mode_t __mode, dev_t * __dev); extern int __xmknodat(int __ver, int __fd, const char *__path, mode_t __mode, dev_t * __dev); extern int __xstat(int __ver, const char *__filename, struct stat *__stat_buf); extern int __xstat64(int __ver, const char *__filename, struct stat64 *__stat_buf); extern int chmod(const char *__file, mode_t __mode); extern int fchmod(int __fd, mode_t __mode); extern int fchmodat(int __fd, const char *__file, mode_t mode, int __flag); extern int fstat(int __fd, struct stat *__buf); extern int fstat64(int __fd, struct stat64 *__buf); extern int fstatat(int __fd, const char *__file, struct stat *__buf, int __flag); extern int fstatat64(int __fd, const char *__file, struct stat64 *__buf, int __flag); extern int lstat(const char *__file, struct stat *__buf); extern int lstat64(const char *__file, struct stat64 *__buf); extern int mkdir(const char *__path, mode_t __mode); extern int mkdirat(int __fd, const char *__path, mode_t __mode); extern int mkfifo(const char *__path, mode_t __mode); extern int mkfifoat(int __fd, const char *__path, mode_t __mode); extern int mknod(const char *__path, mode_t __mode, dev_t __dev); extern int mknodat(int __fd, const char *__path, mode_t __mode, dev_t __dev); extern int stat(const char *__file, struct stat *__buf); extern int stat64(const char *__file, struct stat64 *__buf); extern mode_t umask(mode_t __mask); |
#define NFS_SUPER_MAGIC 0x6969 extern int fstatfs(int __fildes, struct statfs *__buf); extern int fstatfs64(int __fildes, struct statfs64 *__buf); extern int statfs(const char *__file, struct statfs *__buf); extern int statfs64(const char *__file, struct statfs64 *__buf); |
extern int fstatvfs(int __fildes, struct statvfs *__buf); extern int fstatvfs64(int __fildes, struct statvfs64 *__buf); extern int statvfs(const char *__file, struct statvfs *__buf); extern int statvfs64(const char *__file, struct statvfs64 *__buf); |
struct sysinfo { long int uptime; /* Seconds since boot */ unsigned long int loads[3]; /* 1, 5, and 15 minute load averages */ unsigned long int totalram; /* Total usable main memory size */ unsigned long int freeram; /* Available memory size */ unsigned long int sharedram; /* Amount of shared memory */ unsigned long int bufferram; /* Memory used by buffers */ unsigned long int totalswap; /* Total swap space size */ unsigned long int freeswap; /* Swap space still available */ unsigned short procs; /* Number of current processes */ unsigned short pad; /* Padding for m68k */ unsigned long int totalhigh; /* Total high memory size */ unsigned long int freehigh; /* Available high memory size */ unsigned int mem_unit; /* Memory unit size in bytes */ char _f[20 - 2 * sizeof(long) - sizeof(int)]; /* Padding for libc5 */ }; extern int sysinfo(struct sysinfo *info); |
#define ITIMER_REAL 0 #define ITIMER_VIRTUAL 1 #define ITIMER_PROF 2 struct timezone { int tz_minuteswest; int tz_dsttime; }; typedef int __itimer_which_t; struct timespec { time_t tv_sec; long int tv_nsec; }; struct timeval { time_t tv_sec; suseconds_t tv_usec; }; struct itimerval { struct timeval it_interval; struct timeval it_value; }; extern int adjtime(const struct timeval *__delta, struct timeval *__olddelta); extern int getitimer(__itimer_which_t __which, struct itimerval *__value); extern int gettimeofday(struct timeval *__tv, struct timezone *__tz); extern int setitimer(__itimer_which_t __which, const struct itimerval *__new, struct itimerval *__old); extern int utimes(const char *__file, const struct timeval *__tvp); |
struct timeb { time_t time; /* Seconds since epoch, as from time. */ unsigned short millitm; /* Additional milliseconds. */ short timezone; /* Minutes west of GMT. */ short dstflag; /* Nonzero if Daylight Savings Time used. */ }; extern int ftime(struct timeb *__timebuf); |
struct tms { clock_t tms_utime; clock_t tms_stime; clock_t tms_cutime; clock_t tms_cstime; }; extern clock_t times(struct tms *__buffer); |
#ifndef FALSE #define FALSE 0 #endif #ifndef TRUE #define TRUE 1 #endif #define FD_SETSIZE 1024 #define FD_ZERO(fdsetp) bzero(fdsetp, sizeof(*(fdsetp))) #define FD_ISSET(d,set) \ (((set)->fds_bits[((d)/(8*sizeof(long)))]&(1L<<((d)%(8*sizeof(long)))))!=0) #define FD_CLR(d,set) \ ((set)->fds_bits[((d)/(8*sizeof(long)))]&=~(1L<<((d)%(8*sizeof(long))))) #define FD_SET(d,set) \ ((set)->fds_bits[((d)/(8*sizeof(long)))]|=(1L<<((d)%(8*sizeof(long))))) typedef unsigned char u_int8_t; typedef unsigned short u_int16_t; typedef unsigned int u_int32_t; typedef unsigned long long int u_int64_t; typedef unsigned int uid_t; typedef int pid_t; typedef long int off_t; typedef int key_t; typedef long int suseconds_t; typedef unsigned int u_int; typedef struct { int __val[2]; } fsid_t; typedef unsigned int useconds_t; typedef long int blksize_t; typedef long int fd_mask; typedef void *timer_t; typedef int clockid_t; typedef unsigned int id_t; typedef unsigned long long int ino64_t; typedef long long int loff_t; typedef long int blkcnt_t; typedef unsigned long int fsblkcnt_t; typedef unsigned long int fsfilcnt_t; typedef long long int blkcnt64_t; typedef unsigned long long int fsblkcnt64_t; typedef unsigned long long int fsfilcnt64_t; typedef unsigned char u_char; typedef unsigned short u_short; typedef unsigned long int u_long; typedef unsigned long int ino_t; typedef unsigned int gid_t; typedef unsigned long long int dev_t; typedef unsigned int mode_t; typedef unsigned long int nlink_t; typedef char *caddr_t; typedef struct { unsigned long int fds_bits[__FDSET_LONGS]; } fd_set; typedef long int clock_t; typedef long int time_t; |
extern ssize_t readv(int __fd, const struct iovec *__iovec, int __count); extern ssize_t writev(int __fd, const struct iovec *__iovec, int __count); |
#define UNIX_PATH_MAX 108 struct sockaddr_un { sa_family_t sun_family; /* AF_UNIX */ char sun_path[UNIX_PATH_MAX]; }; |
#define SYS_NMLN 65 struct utsname { char sysname[65]; char nodename[65]; char release[65]; char version[65]; char machine[65]; char domainname[65]; }; extern int uname(struct utsname *__name); |
#define WIFSIGNALED(status) (!WIFSTOPPED(status) && !WIFEXITED(status)) #define WIFSTOPPED(status) (((status) & 0xff) == 0x7f) #define WEXITSTATUS(status) (((status) & 0xff00) >> 8) #define WTERMSIG(status) ((status) & 0x7f) #define WCOREDUMP(status) ((status) & 0x80) #define WIFEXITED(status) (WTERMSIG(status) == 0) #define WNOHANG 0x00000001 #define WUNTRACED 0x00000002 #define WCOREFLAG 0x80 #define WSTOPSIG(status) WEXITSTATUS(status) typedef enum { P_ALL, P_PID, P_PGID } idtype_t; extern pid_t wait(int *__stat_loc); extern pid_t wait4(pid_t __pid, int *__stat_loc, int __options, struct rusage *__usage); extern int waitid(idtype_t __idtype, id_t __id, siginfo_t * __infop, int __options); extern pid_t waitpid(pid_t __pid, int *__stat_loc, int __options); |
#define LOG_MAKEPRI(fac, pri) (((fac) << 3) | (pri)) #define LOG_PRI(p) ((p) & LOG_PRIMASK) /* extract priority */ #define LOG_EMERG 0 /* system is unusable */ #define LOG_PRIMASK 0x07 /* mask to extract priority part */ #define LOG_ALERT 1 /* action must be taken immediately */ #define LOG_CRIT 2 /* critical conditions */ #define LOG_ERR 3 /* error conditions */ #define LOG_WARNING 4 /* warning conditions */ #define LOG_NOTICE 5 /* normal but significant condition */ #define LOG_INFO 6 /* informational */ #define LOG_DEBUG 7 /* debug-level messages */ #define LOG_FAC(p) (((p) & LOG_FACMASK) >> 3) /* facility of pri */ #define LOG_KERN (0<<3) /* kernel messages */ #define LOG_AUTHPRIV (10<<3) /* security/authorization messages (private) */ #define LOG_FTP (11<<3) /* ftp daemon */ #define LOG_USER (1<<3) /* random user-level messages */ #define LOG_MAIL (2<<3) /* mail system */ #define LOG_DAEMON (3<<3) /* system daemons */ #define LOG_AUTH (4<<3) /* security/authorization messages */ #define LOG_SYSLOG (5<<3) /* messages generated internally by syslogd */ #define LOG_LPR (6<<3) /* line printer subsystem */ #define LOG_NEWS (7<<3) /* network news subsystem */ #define LOG_UUCP (8<<3) /* UUCP subsystem */ #define LOG_CRON (9<<3) /* clock daemon */ #define LOG_FACMASK 0x03f8 /* mask to extract facility part */ #define LOG_LOCAL0 (16<<3) /* reserved for local use */ #define LOG_LOCAL1 (17<<3) /* reserved for local use */ #define LOG_LOCAL2 (18<<3) /* reserved for local use */ #define LOG_LOCAL3 (19<<3) /* reserved for local use */ #define LOG_LOCAL4 (20<<3) /* reserved for local use */ #define LOG_LOCAL5 (21<<3) /* reserved for local use */ #define LOG_LOCAL6 (22<<3) /* reserved for local use */ #define LOG_LOCAL7 (23<<3) /* reserved for local use */ #define LOG_UPTO(pri) ((1 << ((pri)+1)) - 1) /* all priorities through pri */ #define LOG_MASK(pri) (1 << (pri)) /* mask for one priority */ #define LOG_PID 0x01 /* log the pid with each message */ #define LOG_CONS 0x02 /* log on the console if errors in sending */ #define LOG_ODELAY 0x04 /* delay open until first syslog() (default) */ #define LOG_NDELAY 0x08 /* don't delay open */ #define LOG_NOWAIT 0x10 /* don't wait for console forks: DEPRECATED */ #define LOG_PERROR 0x20 /* log to stderr as well */ extern void __syslog_chk(int, int, const char *, ...); extern void __vsyslog_chk(int, int, const char *, va_list); extern void closelog(void); extern void openlog(const char *__ident, int __option, int __facility); extern int setlogmask(int __mask); extern void syslog(int __pri, const char *__fmt, ...); extern void vsyslog(int __pri, const char *__fmt, va_list __ap); |
#define REGTYPE '0' #define LNKTYPE '1' #define SYMTYPE '2' #define CHRTYPE '3' #define BLKTYPE '4' #define DIRTYPE '5' #define FIFOTYPE '6' #define CONTTYPE '7' #define AREGTYPE '\0' #define TVERSION "00" #define TOEXEC 00001 #define TOWRITE 00002 #define TOREAD 00004 #define TGEXEC 00010 #define TGWRITE 00020 #define TGREAD 00040 #define TUEXEC 00100 #define TUWRITE 00200 #define TUREAD 00400 #define TSVTX 01000 #define TSGID 02000 #define TSUID 04000 #define TVERSLEN 2 #define TMAGLEN 6 #define TMAGIC "ustar" |
#define TCIFLUSH 0 #define TCOOFF 0 #define TCSANOW 0 #define BS0 0000000 #define CR0 0000000 #define FF0 0000000 #define NL0 0000000 #define TAB0 0000000 #define VT0 0000000 #define OPOST 0000001 #define OCRNL 0000010 #define ONOCR 0000020 #define ONLRET 0000040 #define OFILL 0000100 #define OFDEL 0000200 #define NL1 0000400 #define TCOFLUSH 1 #define TCOON 1 #define TCSADRAIN 1 #define TCIOFF 2 #define TCIOFLUSH 2 #define TCSAFLUSH 2 #define TCION 3 typedef unsigned int speed_t; typedef unsigned char cc_t; typedef unsigned int tcflag_t; #define NCCS 32 struct termios { tcflag_t c_iflag; /* input mode flags */ tcflag_t c_oflag; /* output mode flags */ tcflag_t c_cflag; /* control mode flags */ tcflag_t c_lflag; /* local mode flags */ cc_t c_line; /* line discipline */ cc_t c_cc[NCCS]; /* control characters */ speed_t c_ispeed; /* input speed */ speed_t c_ospeed; /* output speed */ }; #define VINTR 0 #define VQUIT 1 #define VLNEXT 15 #define VERASE 2 #define VKILL 3 #define VEOF 4 #define IGNBRK 0000001 #define BRKINT 0000002 #define IGNPAR 0000004 #define PARMRK 0000010 #define INPCK 0000020 #define ISTRIP 0000040 #define INLCR 0000100 #define IGNCR 0000200 #define ICRNL 0000400 #define IXANY 0004000 #define IMAXBEL 0020000 #define CS5 0000000 #define ECHO 0000010 #define B0 0000000 #define B50 0000001 #define B75 0000002 #define B110 0000003 #define B134 0000004 #define B150 0000005 #define B200 0000006 #define B300 0000007 #define B600 0000010 #define B1200 0000011 #define B1800 0000012 #define B2400 0000013 #define B4800 0000014 #define B9600 0000015 #define B19200 0000016 #define B38400 0000017 extern speed_t cfgetispeed(const struct termios *__termios_p); extern speed_t cfgetospeed(const struct termios *__termios_p); extern void cfmakeraw(struct termios *__termios_p); extern int cfsetispeed(struct termios *__termios_p, speed_t __speed); extern int cfsetospeed(struct termios *__termios_p, speed_t __speed); extern int cfsetspeed(struct termios *__termios_p, speed_t __speed); extern int tcdrain(int __fd); extern int tcflow(int __fd, int __action); extern int tcflush(int __fd, int __queue_selector); extern int tcgetattr(int __fd, struct termios *__termios_p); extern pid_t tcgetsid(int __fd); extern int tcsendbreak(int __fd, int __duration); extern int tcsetattr(int __fd, int __optional_actions, const struct termios *__termios_p); |
#define CLK_TCK ((clock_t)sysconf(2)) #define timerclear(tvp) ((tvp)->tv_sec = (tvp)->tv_usec = 0) #define timerisset(tvp) ((tvp)->tv_sec || (tvp)->tv_usec) #define CLOCK_REALTIME 0 #define CLOCK_MONOTONIC 1 #define TIMER_ABSTIME 1 #define CLOCKS_PER_SEC 1000000l #define CLOCK_PROCESS_CPUTIME_ID 2 #define CLOCK_THREAD_CPUTIME_ID 3 #define timeradd(a,b,result) \ do { \ (result)->tv_sec = (a)->tv_sec + (b)->tv_sec; \ (result)->tv_usec = (a)->tv_usec + (b)->tv_usec; \ if ((result)->tv_usec >= 1000000) \ { \ ++(result)->tv_sec; \ (result)->tv_usec -= 1000000; \ } \ } while (0) #define timersub(a,b,result) \ do { \ (result)->tv_sec = (a)->tv_sec - (b)->tv_sec; \ (result)->tv_usec = (a)->tv_usec - (b)->tv_usec; \ if ((result)->tv_usec < 0) { \ --(result)->tv_sec; \ (result)->tv_usec += 1000000; \ } \ } while (0) #define timercmp(a,b,CMP) \ (((a)->tv_sec == (b)->tv_sec) ? \ ((a)->tv_usec CMP (b)->tv_usec) : \ ((a)->tv_sec CMP (b)->tv_sec)) struct tm { int tm_sec; int tm_min; int tm_hour; int tm_mday; int tm_mon; int tm_year; int tm_wday; int tm_yday; int tm_isdst; long int tm_gmtoff; char *tm_zone; }; struct itimerspec { struct timespec it_interval; struct timespec it_value; }; extern int __daylight; extern long int __timezone; extern char *__tzname[]; extern char *asctime(const struct tm *__tp); extern char *asctime_r(const struct tm *__tp, char *__buf); extern clock_t clock(void); extern int clock_getcpuclockid(pid_t __pid, clockid_t * __clock_id); extern int clock_getres(clockid_t __clock_id, struct timespec *__res); extern int clock_gettime(clockid_t __clock_id, struct timespec *__tp); extern int clock_nanosleep(clockid_t __clock_id, int __flags, const struct timespec *__req, struct timespec *__rem); extern int clock_settime(clockid_t __clock_id, const struct timespec *__tp); extern char *ctime(const time_t * __timer); extern char *ctime_r(const time_t * __timer, char *__buf); extern int daylight; extern double difftime(time_t __time1, time_t __time0); extern struct tm *getdate(const char *__string); extern int getdate_err; extern struct tm *gmtime(const time_t * __timer); extern struct tm *gmtime_r(const time_t * __timer, struct tm *__tp); extern struct tm *localtime(const time_t * __timer); extern struct tm *localtime_r(const time_t * __timer, struct tm *__tp); extern time_t mktime(struct tm *__tp); extern int nanosleep(const struct timespec *__requested_time, struct timespec *__remaining); extern int stime(const time_t * __when); extern size_t strftime(char *__s, size_t __maxsize, const char *__format, const struct tm *__tp); extern char *strptime(const char *__s, const char *__fmt, struct tm *__tp); extern time_t time(time_t * __timer); extern int timer_create(clockid_t __clock_id, struct sigevent *__evp, timer_t * __timerid); extern int timer_delete(timer_t __timerid); extern int timer_getoverrun(timer_t __timerid); extern int timer_gettime(timer_t __timerid, struct itimerspec *__value); extern int timer_settime(timer_t __timerid, int __flags, const struct itimerspec *__value, struct itimerspec *__ovalue); extern long int timezone; extern char *tzname[]; extern void tzset(void); |
extern int getcontext(ucontext_t * __ucp); extern void makecontext(ucontext_t * __ucp, void (*__func) (void), int __argc, ...); extern int setcontext(const struct ucontext *__ucp); extern int swapcontext(ucontext_t * __oucp, const struct ucontext *__ucp); |
#define UL_GETFSIZE 1 #define UL_SETFSIZE 2 extern long int ulimit(int __cmd, ...); |
#define SEEK_SET 0 #define STDIN_FILENO 0 #define SEEK_CUR 1 #define STDOUT_FILENO 1 #define SEEK_END 2 #define STDERR_FILENO 2 typedef long long int off64_t; #define F_OK 0 #define X_OK 1 #define W_OK 2 #define R_OK 4 #define _POSIX_VDISABLE '\0' #define _POSIX_CHOWN_RESTRICTED 1 #define _POSIX_JOB_CONTROL 1 #define _POSIX_NO_TRUNC 1 #define _POSIX_SHELL 1 #define _POSIX2_C_BIND 200112L #define _POSIX2_VERSION 200112L #define _POSIX_FSYNC 200112L #define _POSIX_MAPPED_FILES 200112L #define _POSIX_MEMLOCK 200112L #define _POSIX_MEMLOCK_RANGE 200112L #define _POSIX_MEMORY_PROTECTION 200112L #define _POSIX_SEMAPHORES 200112L #define _POSIX_SHARED_MEMORY_OBJECTS 200112L #define _POSIX_THREADS 200112L #define _POSIX_THREAD_PROCESS_SHARED 200112L #define _POSIX_TIMERS 200112L #define _POSIX_VERSION 200112L #define _PC_LINK_MAX 0 #define _PC_MAX_CANON 1 #define _PC_ASYNC_IO 10 #define _PC_PRIO_IO 11 #define _PC_FILESIZEBITS 13 #define _PC_REC_INCR_XFER_SIZE 14 #define _PC_REC_MIN_XFER_SIZE 16 #define _PC_REC_XFER_ALIGN 17 #define _PC_ALLOC_SIZE_MIN 18 #define _PC_MAX_INPUT 2 #define _PC_2_SYMLINKS 20 #define _PC_NAME_MAX 3 #define _PC_PATH_MAX 4 #define _PC_PIPE_BUF 5 #define _PC_CHOWN_RESTRICTED 6 #define _PC_NO_TRUNC 7 #define _PC_VDISABLE 8 #define _PC_SYNC_IO 9 #define _SC_ARG_MAX 0 #define _SC_CHILD_MAX 1 #define _SC_PRIORITY_SCHEDULING 10 #define _SC_XOPEN_XPG4 100 #define _SC_CHAR_BIT 101 #define _SC_CHAR_MAX 102 #define _SC_CHAR_MIN 103 #define _SC_INT_MAX 104 #define _SC_INT_MIN 105 #define _SC_LONG_BIT 106 #define _SC_WORD_BIT 107 #define _SC_MB_LEN_MAX 108 #define _SC_NZERO 109 #define _SC_TIMERS 11 #define _SC_SSIZE_MAX 110 #define _SC_SCHAR_MAX 111 #define _SC_SCHAR_MIN 112 #define _SC_SHRT_MAX 113 #define _SC_SHRT_MIN 114 #define _SC_UCHAR_MAX 115 #define _SC_UINT_MAX 116 #define _SC_ULONG_MAX 117 #define _SC_USHRT_MAX 118 #define _SC_NL_ARGMAX 119 #define _SC_ASYNCHRONOUS_IO 12 #define _SC_NL_LANGMAX 120 #define _SC_NL_MSGMAX 121 #define _SC_NL_NMAX 122 #define _SC_NL_SETMAX 123 #define _SC_NL_TEXTMAX 124 #define _SC_XBS5_ILP32_OFF32 125 #define _SC_XBS5_ILP32_OFFBIG 126 #define _SC_XBS5_LP64_OFF64 127 #define _SC_XBS5_LPBIG_OFFBIG 128 #define _SC_XOPEN_LEGACY 129 #define _SC_PRIORITIZED_IO 13 #define _SC_XOPEN_REALTIME 130 #define _SC_XOPEN_REALTIME_THREADS 131 #define _SC_ADVISORY_INFO 132 #define _SC_BARRIERS 133 #define _SC_BASE 134 #define _SC_C_LANG_SUPPORT 135 #define _SC_C_LANG_SUPPORT_R 136 #define _SC_CLOCK_SELECTION 137 #define _SC_CPUTIME 138 #define _SC_THREAD_CPUTIME 139 #define _SC_SYNCHRONIZED_IO 14 #define _SC_DEVICE_IO 140 #define _SC_DEVICE_SPECIFIC 141 #define _SC_DEVICE_SPECIFIC_R 142 #define _SC_FD_MGMT 143 #define _SC_FIFO 144 #define _SC_PIPE 145 #define _SC_FILE_ATTRIBUTES 146 #define _SC_FILE_LOCKING 147 #define _SC_FILE_SYSTEM 148 #define _SC_MONOTONIC_CLOCK 149 #define _SC_FSYNC 15 #define _SC_MULTI_PROCESS 150 #define _SC_SINGLE_PROCESS 151 #define _SC_NETWORKING 152 #define _SC_READER_WRITER_LOCKS 153 #define _SC_SPIN_LOCKS 154 #define _SC_REGEXP 155 #define _SC_REGEX_VERSION 156 #define _SC_SHELL 157 #define _SC_SIGNALS 158 #define _SC_SPAWN 159 #define _SC_MAPPED_FILES 16 #define _SC_SPORADIC_SERVER 160 #define _SC_THREAD_SPORADIC_SERVER 161 #define _SC_SYSTEM_DATABASE 162 #define _SC_SYSTEM_DATABASE_R 163 #define _SC_TIMEOUTS 164 #define _SC_TYPED_MEMORY_OBJECTS 165 #define _SC_USER_GROUPS 166 #define _SC_USER_GROUPS_R 167 #define _SC_2_PBS 168 #define _SC_2_PBS_ACCOUNTING 169 #define _SC_MEMLOCK 17 #define _SC_2_PBS_LOCATE 170 #define _SC_2_PBS_MESSAGE 171 #define _SC_2_PBS_TRACK 172 #define _SC_SYMLOOP_MAX 173 #define _SC_STREAMS 174 #define _SC_2_PBS_CHECKPOINT 175 #define _SC_V6_ILP32_OFF32 176 #define _SC_V6_ILP32_OFFBIG 177 #define _SC_V6_LP64_OFF64 178 #define _SC_V6_LPBIG_OFFBIG 179 #define _SC_MEMLOCK_RANGE 18 #define _SC_HOST_NAME_MAX 180 #define _SC_TRACE 181 #define _SC_TRACE_EVENT_FILTER 182 #define _SC_TRACE_INHERIT 183 #define _SC_TRACE_LOG 184 #define _SC_LEVEL1_ICACHE_SIZE 185 #define _SC_LEVEL1_ICACHE_ASSOC 186 #define _SC_LEVEL1_ICACHE_LINESIZE 187 #define _SC_LEVEL1_DCACHE_SIZE 188 #define _SC_LEVEL1_DCACHE_ASSOC 189 #define _SC_MEMORY_PROTECTION 19 #define _SC_LEVEL1_DCACHE_LINESIZE 190 #define _SC_LEVEL2_CACHE_SIZE 191 #define _SC_LEVEL2_CACHE_ASSOC 192 #define _SC_LEVEL2_CACHE_LINESIZE 193 #define _SC_LEVEL3_CACHE_SIZE 194 #define _SC_LEVEL3_CACHE_ASSOC 195 #define _SC_LEVEL3_CACHE_LINESIZE 196 #define _SC_LEVEL4_CACHE_SIZE 197 #define _SC_LEVEL4_CACHE_ASSOC 198 #define _SC_LEVEL4_CACHE_LINESIZE 199 #define _SC_CLK_TCK 2 #define _SC_MESSAGE_PASSING 20 #define _SC_SEMAPHORES 21 #define _SC_SHARED_MEMORY_OBJECTS 22 #define _SC_AIO_LISTIO_MAX 23 #define _SC_IPV6 235 #define _SC_RAW_SOCKETS 236 #define _SC_AIO_MAX 24 #define _SC_AIO_PRIO_DELTA_MAX 25 #define _SC_DELAYTIMER_MAX 26 #define _SC_MQ_OPEN_MAX 27 #define _SC_MQ_PRIO_MAX 28 #define _SC_VERSION 29 #define _SC_NGROUPS_MAX 3 #define _SC_PAGESIZE 30 #define _SC_PAGE_SIZE 30 #define _SC_RTSIG_MAX 31 #define _SC_SEM_NSEMS_MAX 32 #define _SC_SEM_VALUE_MAX 33 #define _SC_SIGQUEUE_MAX 34 #define _SC_TIMER_MAX 35 #define _SC_BC_BASE_MAX 36 #define _SC_BC_DIM_MAX 37 #define _SC_BC_SCALE_MAX 38 #define _SC_BC_STRING_MAX 39 #define _SC_OPEN_MAX 4 #define _SC_COLL_WEIGHTS_MAX 40 #define _SC_EQUIV_CLASS_MAX 41 #define _SC_EXPR_NEST_MAX 42 #define _SC_LINE_MAX 43 #define _SC_RE_DUP_MAX 44 #define _SC_CHARCLASS_NAME_MAX 45 #define _SC_2_VERSION 46 #define _SC_2_C_BIND 47 #define _SC_2_C_DEV 48 #define _SC_2_FORT_DEV 49 #define _SC_STREAM_MAX 5 #define _SC_2_FORT_RUN 50 #define _SC_2_SW_DEV 51 #define _SC_2_LOCALEDEF 52 #define _SC_PII 53 #define _SC_PII_XTI 54 #define _SC_PII_SOCKET 55 #define _SC_PII_INTERNET 56 #define _SC_PII_OSI 57 #define _SC_POLL 58 #define _SC_SELECT 59 #define _SC_TZNAME_MAX 6 #define _SC_IOV_MAX 60 #define _SC_UIO_MAXIOV 60 #define _SC_PII_INTERNET_STREAM 61 #define _SC_PII_INTERNET_DGRAM 62 #define _SC_PII_OSI_COTS 63 #define _SC_PII_OSI_CLTS 64 #define _SC_PII_OSI_M 65 #define _SC_T_IOV_MAX 66 #define _SC_THREADS 67 #define _SC_THREAD_SAFE_FUNCTIONS 68 #define _SC_GETGR_R_SIZE_MAX 69 #define _SC_JOB_CONTROL 7 #define _SC_GETPW_R_SIZE_MAX 70 #define _SC_LOGIN_NAME_MAX 71 #define _SC_TTY_NAME_MAX 72 #define _SC_THREAD_DESTRUCTOR_ITERATIONS 73 #define _SC_THREAD_KEYS_MAX 74 #define _SC_THREAD_STACK_MIN 75 #define _SC_THREAD_THREADS_MAX 76 #define _SC_THREAD_ATTR_STACKADDR 77 #define _SC_THREAD_ATTR_STACKSIZE 78 #define _SC_THREAD_PRIORITY_SCHEDULING 79 #define _SC_SAVED_IDS 8 #define _SC_THREAD_PRIO_INHERIT 80 #define _SC_THREAD_PRIO_PROTECT 81 #define _SC_THREAD_PROCESS_SHARED 82 #define _SC_NPROCESSORS_CONF 83 #define _SC_NPROCESSORS_ONLN 84 #define _SC_PHYS_PAGES 85 #define _SC_AVPHYS_PAGES 86 #define _SC_ATEXIT_MAX 87 #define _SC_PASS_MAX 88 #define _SC_XOPEN_VERSION 89 #define _SC_REALTIME_SIGNALS 9 #define _SC_XOPEN_XCU_VERSION 90 #define _SC_XOPEN_UNIX 91 #define _SC_XOPEN_CRYPT 92 #define _SC_XOPEN_ENH_I18N 93 #define _SC_XOPEN_SHM 94 #define _SC_2_CHAR_TERM 95 #define _SC_2_C_VERSION 96 #define _SC_2_UPE 97 #define _SC_XOPEN_XPG2 98 #define _SC_XOPEN_XPG3 99 #define _CS_PATH 0 #define _POSIX_REGEXP 1 #define _CS_XBS5_ILP32_OFF32_CFLAGS 1100 #define _CS_XBS5_ILP32_OFF32_LDFLAGS 1101 #define _CS_XBS5_ILP32_OFF32_LIBS 1102 #define _CS_XBS5_ILP32_OFF32_LINTFLAGS 1103 #define _CS_XBS5_ILP32_OFFBIG_CFLAGS 1104 #define _CS_XBS5_ILP32_OFFBIG_LDFLAGS 1105 #define _CS_XBS5_ILP32_OFFBIG_LIBS 1106 #define _CS_XBS5_ILP32_OFFBIG_LINTFLAGS 1107 #define _CS_XBS5_LP64_OFF64_CFLAGS 1108 #define _CS_XBS5_LP64_OFF64_LDFLAGS 1109 #define _CS_XBS5_LP64_OFF64_LIBS 1110 #define _CS_XBS5_LP64_OFF64_LINTFLAGS 1111 #define _CS_XBS5_LPBIG_OFFBIG_CFLAGS 1112 #define _CS_XBS5_LPBIG_OFFBIG_LDFLAGS 1113 #define _CS_XBS5_LPBIG_OFFBIG_LIBS 1114 #define _CS_XBS5_LPBIG_OFFBIG_LINTFLAGS 1115 #define _XOPEN_XPG4 1 #define _XOPEN_VERSION 500 #define F_ULOCK 0 #define F_LOCK 1 #define F_TLOCK 2 #define F_TEST 3 extern size_t __confstr_chk(int, char *, size_t, size_t); extern char **__environ; extern char *__getcwd_chk(char *, size_t, size_t); extern int __getgroups_chk(int, gid_t *, size_t); extern int __gethostname_chk(char *, size_t, size_t); extern int __getlogin_r_chk(char *, size_t, size_t); extern pid_t __getpgid(pid_t __pid); extern ssize_t __pread64_chk(int, void *, size_t, off64_t, size_t); extern ssize_t __pread_chk(int, void *, size_t, off_t, size_t); extern ssize_t __read_chk(int, void *, size_t, size_t); extern ssize_t __readlink_chk(const char *, char *, size_t, size_t); extern int __ttyname_r_chk(int, char *, size_t, size_t); extern char **_environ; extern void _exit(int __status); extern int access(const char *__name, int __type); extern int acct(const char *__name); extern unsigned int alarm(unsigned int __seconds); extern int brk(void *__addr); extern int chdir(const char *__path); extern int chown(const char *__file, uid_t __owner, gid_t __group); extern int chroot(const char *__path); extern int close(int __fd); extern size_t confstr(int __name, char *__buf, size_t __len); extern char *crypt(const char *__key, const char *__salt); extern char *ctermid(char *__s); extern char *cuserid(char *__s); extern int daemon(int __nochdir, int __noclose); extern int dup(int __fd); extern int dup2(int __fd, int __fd2); extern void encrypt(char *__block, int __edflag); extern int execl(const char *__path, const char *__arg, ...); extern int execle(const char *__path, const char *__arg, ...); extern int execlp(const char *__file, const char *__arg, ...); extern int execv(const char *__path, char *const __argv[]); extern int execve(const char *__path, char *const __argv[], char *const __envp[]); extern int execvp(const char *__file, char *const __argv[]); extern int faccessat(int __fd, const char *__file, int __type, int __flag); extern int fchdir(int __fd); extern int fchown(int __fd, uid_t __owner, gid_t __group); extern int fchownat(int __fd, const char *__file, uid_t __owner, gid_t __group, int __flag); extern int fdatasync(int __fildes); extern int fexecve(int __fd, char *const __argv[], char *const __envp[]); extern pid_t fork(void); extern long int fpathconf(int __fd, int __name); extern int fsync(int __fd); extern int ftruncate(int __fd, off_t __length); extern int ftruncate64(int __fd, off64_t __length); extern char *getcwd(char *__buf, size_t __size); extern int getdomainname(char *__name, size_t __len); extern int getdtablesize(void); extern gid_t getegid(void); extern uid_t geteuid(void); extern gid_t getgid(void); extern int getgroups(int __size, gid_t __list[]); extern long int gethostid(void); extern int gethostname(char *__name, size_t __len); extern char *getlogin(void); extern int getlogin_r(char *__name, size_t __name_len); extern int getopt(int ___argc, char *const ___argv[], const char *__shortopts); extern int getpagesize(void); extern pid_t getpgid(pid_t __pid); extern pid_t getpgrp(void); extern pid_t getpid(void); extern pid_t getppid(void); extern pid_t getsid(pid_t __pid); extern uid_t getuid(void); extern char *getwd(char *__buf); extern int isatty(int __fd); extern int lchown(const char *__file, uid_t __owner, gid_t __group); extern int link(const char *__from, const char *__to); extern int linkat(int __fromfd, const char *__from, int __tofd, const char *__to, int __flags); extern int lockf(int __fd, int __cmd, off_t __len); extern int lockf64(int __fd, int __cmd, off64_t __len); extern off_t lseek(int __fd, off_t __offset, int __whence); extern loff_t lseek64(int __fd, loff_t __offset, int __whence); extern int mkstemp(char *__template); extern int nice(int __inc); extern char *optarg; extern int opterr; extern int optind; extern int optopt; extern long int pathconf(const char *__path, int __name); extern int pause(void); extern int pipe(int __pipedes[2]); extern ssize_t pread(int __fd, void *__buf, size_t __nbytes, off_t __offset); extern ssize_t pread64(int __fd, void *__buf, size_t __nbytes, off64_t __offset); extern ssize_t pwrite(int __fd, const void *__buf, size_t __n, off_t __offset); extern ssize_t pwrite64(int __fd, const void *__buf, size_t __n, off64_t __offset); extern ssize_t read(int __fd, void *__buf, size_t __nbytes); extern ssize_t readlink(const char *__path, char *__buf, size_t __len); extern ssize_t readlinkat(int __fd, const char *__path, char *__buf, size_t __len); extern int rename(const char *__old, const char *__new); extern int rmdir(const char *__path); extern void *sbrk(intptr_t __delta); extern int select(int __nfds, fd_set * __readfds, fd_set * __writefds, fd_set * __exceptfds, struct timeval *__timeout); extern int setegid(gid_t __gid); extern int seteuid(uid_t __uid); extern int setgid(gid_t __gid); extern int sethostname(const char *__name, size_t __len); extern void setkey(const char *__key); extern int setpgid(pid_t __pid, pid_t __pgid); extern int setpgrp(void); extern int setregid(gid_t __rgid, gid_t __egid); extern int setreuid(uid_t __ruid, uid_t __euid); extern pid_t setsid(void); extern int setuid(uid_t __uid); extern unsigned int sleep(unsigned int __seconds); extern void swab(const void *__from, void *__to, ssize_t __n); extern int symlink(const char *__from, const char *__to); extern int symlinkat(const char *__from, int __tofd, const char *__to); extern void sync(void); extern long int sysconf(int __name); extern pid_t tcgetpgrp(int __fd); extern int tcsetpgrp(int __fd, pid_t __pgrp_id); extern int truncate(const char *__file, off_t __length); extern int truncate64(const char *__file, off64_t __length); extern char *ttyname(int __fd); extern int ttyname_r(int __fd, char *__buf, size_t __buflen); extern unsigned int ualarm(useconds_t __value, useconds_t __interval); extern int unlink(const char *__name); extern int unlinkat(int __fd, const char *__name, int __flag); extern int usleep(useconds_t __useconds); extern pid_t vfork(void); extern ssize_t write(int __fd, const void *__buf, size_t __n); |
struct utimbuf { time_t actime; time_t modtime; }; extern int utime(const char *__file, const struct utimbuf *__file_times); |
#define UT_HOSTSIZE 256 #define UT_LINESIZE 32 #define UT_NAMESIZE 32 #define ut_addr ut_addr_v6[0] #define ut_time ut_tv.tv_sec #define ut_name ut_user /* Backwards compatability */ struct exit_status { short e_termination; /* Process termination status. */ short e_exit; /* Process exit status. */ }; #define EMPTY 0 /* No valid user accounting information. */ #define RUN_LVL 1 /* The system's runlevel. */ #define BOOT_TIME 2 /* Time of system boot. */ #define NEW_TIME 3 /* Time after system clock changed. */ #define OLD_TIME 4 /* Time when system clock changed. */ #define INIT_PROCESS 5 /* Process spawned by the init process. */ #define LOGIN_PROCESS 6 /* Session leader of a logged in user. */ #define USER_PROCESS 7 /* Normal process. */ #define DEAD_PROCESS 8 /* Terminated process. */ #define ACCOUNTING 9 extern void endutent(void); extern struct utmp *getutent(void); extern int getutent_r(struct utmp *__buffer, struct utmp **__result); extern void login(const struct utmp *__entry); extern int login_tty(int __fd); extern int logout(const char *__ut_line); extern void logwtmp(const char *__ut_line, const char *__ut_name, const char *__ut_host); extern void setutent(void); extern int utmpname(const char *__file); |
extern void endutxent(void); extern struct utmpx *getutxent(void); extern struct utmpx *getutxid(const struct utmpx *__id); extern struct utmpx *getutxline(const struct utmpx *__line); extern struct utmpx *pututxline(const struct utmpx *__utmpx); extern void setutxent(void); |
#define WEOF (0xffffffffu) #define WCHAR_MAX 0x7FFFFFFF #define WCHAR_MIN 0x80000000 extern wchar_t *__fgetws_chk(wchar_t *, size_t, int, FILE *); extern wchar_t *__fgetws_unlocked_chk(wchar_t *, size_t, int, FILE *); extern int __fwprintf_chk(FILE *, int, const wchar_t *, ...); extern size_t __mbsnrtowcs_chk(wchar_t *, const char **, size_t, size_t, mbstate_t *, size_t); extern size_t __mbsrtowcs_chk(wchar_t *, const char **, size_t, mbstate_t *, size_t); extern int __swprintf_chk(wchar_t *, size_t, int, size_t, const wchar_t *, ...); extern int __vfwprintf_chk(FILE *, int, const wchar_t *, va_list); extern int __vswprintf_chk(wchar_t *, size_t, int, size_t, const wchar_t *, va_list); extern int __vwprintf_chk(int, const wchar_t *, va_list); extern wchar_t *__wcpcpy_chk(wchar_t *, const wchar_t *, size_t); extern wchar_t *__wcpncpy_chk(wchar_t *, const wchar_t *, size_t, size_t); extern size_t __wcrtomb_chk(char *, wchar_t, mbstate_t *, size_t); extern wchar_t *__wcscat_chk(wchar_t *, const wchar_t *, size_t); extern wchar_t *__wcscpy_chk(wchar_t *, const wchar_t *, size_t); extern wchar_t *__wcsncat_chk(wchar_t *, const wchar_t *, size_t, size_t); extern wchar_t *__wcsncpy_chk(wchar_t *, const wchar_t *, size_t, size_t); extern size_t __wcsnrtombs_chk(char *, const wchar_t * *, size_t, size_t, mbstate_t *, size_t); extern size_t __wcsrtombs_chk(char *, const wchar_t * *, size_t, mbstate_t *, size_t); extern double __wcstod_internal(const wchar_t *, wchar_t * *, int); extern float __wcstof_internal(const wchar_t *, wchar_t * *, int); extern long int __wcstol_internal(const wchar_t *, wchar_t * *, int, int); extern long double __wcstold_internal(const wchar_t *, wchar_t * *, int); extern unsigned long int __wcstoul_internal(const wchar_t *, wchar_t * *, int, int); extern wchar_t *__wmemcpy_chk(wchar_t *, const wchar_t *, size_t, size_t); extern wchar_t *__wmemmove_chk(wchar_t *, const wchar_t *, size_t, size_t); extern wchar_t *__wmempcpy_chk(wchar_t *, const wchar_t *, size_t, size_t); extern wchar_t *__wmemset_chk(wchar_t *, wchar_t, size_t, size_t); extern int __wprintf_chk(int, const wchar_t *, ...); extern wint_t btowc(int __c); extern wint_t fgetwc(FILE * __stream); extern wint_t fgetwc_unlocked(FILE * __stream); extern wchar_t *fgetws(wchar_t * __ws, int __n, FILE * __stream); extern wchar_t *fgetws_unlocked(wchar_t * __ws, int __n, FILE * __stream); extern wint_t fputwc(wchar_t __wc, FILE * __stream); extern wint_t fputwc_unlocked(wchar_t __wc, FILE * __stream); extern int fputws(const wchar_t * __ws, FILE * __stream); extern int fputws_unlocked(const wchar_t * __ws, FILE * __stream); extern int fwide(FILE * __fp, int __mode); extern int fwprintf(FILE * __stream, const wchar_t * __format, ...); extern int fwscanf(FILE * __stream, const wchar_t * __format, ...); extern wint_t getwc(FILE * __stream); extern wint_t getwc_unlocked(FILE * __stream); extern wint_t getwchar(void); extern wint_t getwchar_unlocked(void); extern size_t mbrlen(const char *__s, size_t __n, mbstate_t * __ps); extern size_t mbrtowc(wchar_t * __pwc, const char *__s, size_t __n, mbstate_t * __p); extern int mbsinit(const mbstate_t * __ps); extern size_t mbsnrtowcs(wchar_t * __dst, const char **__src, size_t __nmc, size_t __len, mbstate_t * __ps); extern size_t mbsrtowcs(wchar_t * __dst, const char **__src, size_t __len, mbstate_t * __ps); extern FILE *open_wmemstream(wchar_t * *__bufloc, size_t * __sizeloc); extern wint_t putwc(wchar_t __wc, FILE * __stream); extern wint_t putwc_unlocked(wchar_t __wc, FILE * __stream); extern wint_t putwchar(wchar_t __wc); extern wint_t putwchar_unlocked(wchar_t __wc); extern int swprintf(wchar_t * __s, size_t __n, const wchar_t * __format, ...); extern int swscanf(const wchar_t * __s, const wchar_t * __format, ...); extern wint_t ungetwc(wint_t __wc, FILE * __stream); extern int vfwprintf(FILE * __s, const wchar_t * __format, va_list __arg); extern int vfwscanf(FILE * __s, const wchar_t * __format, va_list __arg); extern int vswprintf(wchar_t * __s, size_t __n, const wchar_t * __format, va_list __arg); extern int vswscanf(const wchar_t * __s, const wchar_t * __format, va_list __arg); extern int vwprintf(const wchar_t * __format, va_list __arg); extern int vwscanf(const wchar_t * __format, va_list __arg); extern wchar_t *wcpcpy(wchar_t * __dest, const wchar_t * __src); extern wchar_t *wcpncpy(wchar_t * __dest, const wchar_t * __src, size_t __n); extern size_t wcrtomb(char *__s, wchar_t __wc, mbstate_t * __ps); extern int wcscasecmp(const wchar_t * __s1, const wchar_t * __s2); extern wchar_t *wcscat(wchar_t * __dest, const wchar_t * __src); extern wchar_t *wcschr(const wchar_t * __wcs, wchar_t __wc); extern int wcscmp(const wchar_t * __s1, const wchar_t * __s2); extern int wcscoll(const wchar_t * __s1, const wchar_t * __s2); extern wchar_t *wcscpy(wchar_t * __dest, const wchar_t * __src); extern size_t wcscspn(const wchar_t * __wcs, const wchar_t * __reject); extern wchar_t *wcsdup(const wchar_t * __s); extern size_t wcsftime(wchar_t * __s, size_t __maxsize, const wchar_t * __format, const struct tm *__tp); extern size_t wcslen(const wchar_t * __s); extern int wcsncasecmp(const wchar_t * __s1, const wchar_t * __s2, size_t __n); extern wchar_t *wcsncat(wchar_t * __dest, const wchar_t * __src, size_t __n); extern int wcsncmp(const wchar_t * __s1, const wchar_t * __s2, size_t __n); extern wchar_t *wcsncpy(wchar_t * __dest, const wchar_t * __src, size_t __n); extern size_t wcsnlen(const wchar_t * __s, size_t __maxlen); extern size_t wcsnrtombs(char *__dst, const wchar_t * *__src, size_t __nwc, size_t __len, mbstate_t * __ps); extern wchar_t *wcspbrk(const wchar_t * __wcs, const wchar_t * __accept); extern wchar_t *wcsrchr(const wchar_t * __wcs, wchar_t __wc); extern size_t wcsrtombs(char *__dst, const wchar_t * *__src, size_t __len, mbstate_t * __ps); extern size_t wcsspn(const wchar_t * __wcs, const wchar_t * __accept); extern wchar_t *wcsstr(const wchar_t * __haystack, const wchar_t * __needle); extern double wcstod(const wchar_t * __nptr, wchar_t * *__endptr); extern float wcstof(const wchar_t * __nptr, wchar_t * *__endptr); extern wchar_t *wcstok(wchar_t * __s, const wchar_t * __delim, wchar_t * *__ptr); extern long int wcstol(const wchar_t * __nptr, wchar_t * *__endptr, int __base); extern long double wcstold(const wchar_t * __nptr, wchar_t * *__endptr); extern long long int wcstoll(const wchar_t * __nptr, wchar_t * *__endptr, int __base); extern long long int wcstoq(const wchar_t * __nptr, wchar_t * *__endptr, int __base); extern unsigned long int wcstoul(const wchar_t * __nptr, wchar_t * *__endptr, int __base); extern unsigned long long int wcstoull(const wchar_t * __nptr, wchar_t * *__endptr, int __base); extern unsigned long long int wcstouq(const wchar_t * __nptr, wchar_t * *__endptr, int __base); extern wchar_t *wcswcs(const wchar_t * __haystack, const wchar_t * __needle); extern int wcswidth(const wchar_t * __s, size_t __n); extern size_t wcsxfrm(wchar_t * __s1, const wchar_t * __s2, size_t __n); extern int wctob(wint_t __c); extern int wcwidth(wchar_t __c); extern wchar_t *wmemchr(const wchar_t * __s, wchar_t __c, size_t __n); extern int wmemcmp(const wchar_t * __s1, const wchar_t * __s2, size_t __n); extern wchar_t *wmemcpy(wchar_t * __s1, const wchar_t * __s2, size_t __n); extern wchar_t *wmemmove(wchar_t * __s1, const wchar_t * __s2, size_t __n); extern wchar_t *wmemset(wchar_t * __s, wchar_t __c, size_t __n); extern int wprintf(const wchar_t * __format, ...); extern int wscanf(const wchar_t * __format, ...); |
typedef unsigned long int wctype_t; typedef unsigned int wint_t; typedef const int32_t *wctrans_t; typedef struct { int count; wint_t value; } __mbstate_t; typedef __mbstate_t mbstate_t; extern int iswalnum(wint_t __wc); extern int iswalpha(wint_t __wc); extern int iswblank(wint_t __wc); extern int iswcntrl(wint_t __wc); extern int iswctype(wint_t __wc, wctype_t __desc); extern int iswdigit(wint_t __wc); extern int iswgraph(wint_t __wc); extern int iswlower(wint_t __wc); extern int iswprint(wint_t __wc); extern int iswpunct(wint_t __wc); extern int iswspace(wint_t __wc); extern int iswupper(wint_t __wc); extern int iswxdigit(wint_t __wc); extern wint_t towctrans(wint_t __wc, wctrans_t __desc); extern wint_t towlower(wint_t __wc); extern wint_t towupper(wint_t __wc); extern wctrans_t wctrans(const char *__property); extern wctype_t wctype(const char *__property); |
enum { WRDE_DOOFFS = 1, WRDE_APPEND = 2, WRDE_NOCMD = 4, WRDE_REUSE = 8, WRDE_SHOWERR = 16, WRDE_UNDEF = 32 }; typedef struct { size_t we_wordc; char **we_wordv; size_t we_offs; } wordexp_t; enum { WRDE_NOSYS = -1, WRDE_NOSPACE = 1, WRDE_BADCHAR = 2, WRDE_BADVAL = 3, WRDE_CMDSUB = 4, WRDE_SYNTAX = 5 }; extern int wordexp(const char *__words, wordexp_t * __pwordexp, int __flags); extern void wordfree(wordexp_t * __wordexp); |
The interfaces defined on the following pages are included in libc and are defined by this specification. Unless otherwise noted, these interfaces shall be included in the source standard.
Other interfaces listed in Section 12.3 shall behave as described in the referenced base document.
_IO_feof() tests the end-of-file indicator for the stream pointed to by __fp, returning a non-zero value if it is set.
_IO_feof() is not in the source standard; it is only in the binary standard.
_IO_getc() reads the next character from
__fp and returns it as an unsigned char cast
to an int, or EOF
on end-of-file or error.
_IO_getc() is not in the source standard; it is only in the binary standard.
_IO_putc() writes the character __c, cast to an unsigned char, to __fp.
_IO_putc() is not in the source standard; it is only in the binary standard.
_IO_puts() writes the string __s
and a trailing newline to stdout
.
_IO_puts() is not in the source standard; it is only in the binary standard.
The __assert_fail() function is used to implement the assert() interface of POSIX 1003.1-2001 (ISO/IEC 9945-2003). The __assert_fail() function shall print the given file filename, line line number, function function name and a message on the standard error stream in an unspecified format, and abort program execution via the abort() function. For example:
a.c:10: foobar: Assertion a == b failed.
If function is NULL, __assert_fail() shall omit information about the function.
assertion, file, and line shall be non-NULL.
The __assert_fail() function is not in the source standard; it is only in the binary standard. The assert() interface is not in the binary standard; it is only in the source standard. The assert() may be implemented as a macro.
The interface __chk_fail() shall abort the function that called it with a message that a buffer overflow has been detected. The program that called the function shall then exit.
The interface __chk_fail() does not check for a buffer overflow itself. It merely reports one when invoked.
The interface __confstr_chk() shall function in the same way as the interface confstr(), except that __confstr_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter buflen specifies the size of the buffer buf. If len exceeds buflen, the function shall abort, and the program calling it shall exit.
The __confstr_chk() function is not in the source standard; it is only in the binary standard.
The __ctype_b_loc()
function shall return a pointer into an array of
characters in the current locale that contains characteristics for each
character in the current character set. The array shall contain a total of
384
characters, and can be indexed with any signed or unsigned char (i.e. with an
index value between -128
and
255
). If the application is multithreaded, the
array shall be local to the current thread.
This interface is not in the source standard; it is only in the binary standard.
The __ctype_b_loc() function shall return a pointer to the array of characters to be used for the ctype() family of functions (see <ctype.h>).
__ctype_get_mb_cur_max() returns the maximum length of a multibyte character in the current locale.
__ctype_get_mb_cur_max() is not in the source standard; it is only in the binary standard.
The __ctype_tolower_loc()
function shall return a pointer into an array of
characters in the current locale that contains lower case equivalents for each
character in the current character set. The array shall contain a total of
384
characters, and can be indexed with any signed or unsigned char (i.e. with an
index value between -128
and
255
). If the application is multithreaded, the
array shall be local to the current thread.
This interface is not in the source standard; it is only in the binary standard.
The __ctype_tolower_loc() function shall return a pointer to the array of characters to be used for the ctype() family of functions (see <ctype.h>).
The __ctype_toupper_loc()
function shall return a pointer into an array of
characters in the current locale that contains upper case equivalents for each
character in the current character set. The array shall contain a total of
384
characters, and can be indexed with any signed or unsigned char (i.e. with an
index value between -128
and
255
). If the application is multithreaded, the
array shall be local to the current thread.
This interface is not in the source standard; it is only in the binary standard.
The __ctype_toupper_loc() function shall return a pointer to the array of characters to be used for the ctype() family of functions (see <ctype.h>).
As described in the Itanium™ C++ ABI, __cxa_atexit() registers a destructor function to be called by exit() or when a shared library is unloaded. When a shared library is unloaded, any destructor function associated with that shared library, identified by dso_handle, shall be called with the single argument arg, and then that function shall be removed, or marked as complete, from the list of functions to run at exit(). On a call to exit(), any remaining functions registered shall be called with the single argument arg. Destructor functions shall always be called in the reverse order to their registration (i.e. the most recently registered function shall be called first),
The __cxa_atexit() function is used to implement atexit(), as described in POSIX 1003.1-2001 (ISO/IEC 9945-2003). Calling atexit(func) from the statically linked part of an application shall be equivalent to __cxa_atexit(func, NULL, NULL).
__cxa_atexit() is not in the source standard; it is only in the binary standard.
Note: atexit() is not in the binary standard; it is only in the source standard.
As described in the Itanium® C++ ABI, the C runtime library shall maintain a list of termination function entries containing the following information:
A pointer to a termination function.
An operand to be passed to the function.
A handle identifying the home shared library of the entry.
The list is populated by entries of two kinds:
Destructors of global (or local static) C++ objects that require destruction on exit.
Functions registered by the user with atexit().
In the former case an entry consists of a pointer to the destructor, a pointer to the corresponding object and a handle for the home shared library of the object. In the latter case the pointer to the function is the pointer passed to atexit(), while the other pointers are NULL.
When __cxa_finalize(d) is called, it shall walk the termination function list, calling each in turn if d matches the handle of the termination function entry. If d is NULL, it shall call all the termination funtions. Multiple calls to __cxa_finalize shall not result in calling termination function entries multiple times; the implementation may either remove entries or mark them finished. The termination functions shall always be called in the reverse order of their registration (i.e. the most recently registered function shall be called first).
An application shall not call __cxa_finalize() directly. The implementation shall arrange for__cxa_finalize() to be called during early shared library unload (e.g. dlclose()) with a handle to the shared library. When the main program calls exit, the implementation shall cause any remaining __cxa_atexit-registered functions to be called, either by calling __cxa_finalize(NULL), or by walking the registration list itself.
__cxa_finalize() is not in the source standard; it is only in the binary standard.
The external variable __daylight
shall implement the daylight savings time flag daylight
as specified in POSIX 1003.1-2001 (ISO/IEC 9945-2003).
__daylight
has the same specification as
daylight
.
The external variable __environ
shall implement the environment variable environ
as specified in POSIX 1003.1-2001 (ISO/IEC 9945-2003).
__environ
has the same specification as
environ
.
The __errno_location() function shall return
the address of the errno
variable for the current
thread.
__errno_location() is not in the source standard; it is only in the binary standard.
The interface __fgets_chk() shall function in the same way as the interface fgets(), except that __fgets_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter strsize specifies the size of the object pointed to by stream.
The __fgets_chk() function is not in the source standard; it is only in the binary standard.
The interface __fgets_unlocked_chk() shall function in the same way as the interface fgets_unlocked(), except that __fgets_unlocked_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter strsize specifies the size of the object pointed to by stream.
The __fgets_unlocked_chk() function is not in the source standard; it is only in the binary standard.
The interface __fgetws_chk() shall function in the same way as the interface fgetws(), except that __fgetws_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter strsize specifies the size of the object pointed to by stream.
The __fgetws_chk() function is not in the source standard; it is only in the binary standard.
The interface __fgetws_unlocked_chk() shall function in the same way as the interface fgetws_unlocked(), except that __fgetws_unlocked_chk() shall check for stack overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter strsize specifies the size of the object pointed to by stream.
The __fgetws_unlocked_chk() function is not in the source standard; it is only in the binary standard.
__fpending() returns the amount of output in bytes pending on a stream.
__fpending() is not in the source standard; it is only in the binary standard.
The interface __fprintf_chk() shall function in the same way as the interface fprintf(), except that __fprintf_chk() shall check for stack overflow before computing a result, depending on the value of the flag parameter. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
In general, the higher the value of flag, the more security measures this interface shall take in the form of checking the stack, parameter values, and so on.
The __fprintf_chk() function is not in the source standard; it is only in the binary standard.
The interface __fwprintf_chk() shall function in the same way as the interface fwprintf(), except that __fwprintf_chk() shall check for stack overflow before computing a result, depending on the value of the flag parameter. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
In general, the higher the value of flag, the more security measures this interface shall take in the form of checking the stack, parameter values, and so on.
The __fwprintf_chk() function is not in the source standard; it is only in the binary standard.
The __fxstatat() function shall implement the fstatat() function. The behavior of __fxstatat() for values of ver other than _STAT_VER is undefined. See Data Definitions in the architecture specific part of this specification for the correct value of _STAT_VER.
__fxstatat(_STAT_VER, dirfd, stat_buf, flags) shall behave as fstatat(dirfd, stat_buf, flags) as specified by POSIX 1003.1-2008 (ISO/IEC 9945-2009).
__fxstatat() is not in the source standard; it is only in the binary standard.
Note: The fstatat() function is not in the binary standard; it is only in the source standard.
fstatat64() is a large-file version of the fstatat() function as defined in POSIX 1003.1-2008 (ISO/IEC 9945-2009). It differs from fstatat() only in that the buf parameter refers to a large-file version of the stat structure.
The __fxstatat64() function shall implement the fstatat64() function. The behavior of __fxstatat64() for values of ver other than _STAT_VER is undefined. See Data Definitions in the architecture specific part of this specification for the correct value of _STAT_VER.
__fxstatat64(_STAT_VER, dirfd, stat_buf, flags) shall behave as fstatat64(dirfd, stat_buf, flags)
__fxstatat64() is not in the source standard; it is only in the binary standard.
Note: The fstatat64() function is not in the binary standard; it is only in the source standard.
The interface __getcwd_chk() shall function in the same way as the interface getcwd(), except that __getcwd_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter buflen specifies the size of the buffer buf. If len exceeds buflen, the function shall abort, and the program calling it shall exit.
The __getcwd_chk() function is not in the source standard; it is only in the binary standard.
The interface __getgroups_chk() shall function in the same way as the interface getgroups(), except that __getgroups_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter listlen specifies the size in bytes of the object list.
The __getgroups_chk() function is not in the source standard; it is only in the binary standard.
The interface __gethostname_chk() shall function in the same way as the interface gethostname(), except that __gethostname_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter buflen specifies the size of the buffer buf. If buflen exceeds maxlen, the function shall abort, and the program calling it shall exit.
The __gethostname_chk() function is not in the source standard; it is only in the binary standard.
The interface __getlogin_r_chk() shall function in the same way as the interface getlogin_r(), except that __getlogin_r_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter buflen specifies the size of the buffer buf. If buflen exceeds maxlen, the function shall abort, and the program calling it shall exit.
The __getlogin_r_chk() function is not in the source standard; it is only in the binary standard.
__getpagesize() is an alias for getpagesize() - get current page size.
__getpagesize() has the same specification as getpagesize().
__getpagesize() is not in the source standard; it is only in the binary standard.
__getpgid() has the same specification as getpgid().
__getpgid() is not in the source standard; it is only in the binary standard.
__h_errno_location() returns the address of the
h_errno
variable, where h_errno
is as specified in POSIX 1003.1-2001 (ISO/IEC 9945-2003).
__h_errno_location() is not in the source standard;
it is only in the binary standard. Note that h_errno
itself is only in the source standard; it is not in the binary standard.
__isinf() has the same specification as isinf() in POSIX 1003.1-2001 (ISO/IEC 9945-2003), except that the argument type for __isinf() is known to be double.
__isinf() is not in the source standard; it is only in the binary standard.
__isinff() has the same specification as isinf() in POSIX 1003.1-2001 (ISO/IEC 9945-2003) except that the argument type for __isinff() is known to be float.
__isinff() is not in the source standard; it is only in the binary standard.
__isinfl() has the same specification as isinf() in the POSIX 1003.1-2001 (ISO/IEC 9945-2003), except that the argument type for __isinfl() is known to be long double.
__isinfl() is not in the source standard; it is only in the binary standard.
__isnan() has the same specification as isnan() in POSIX 1003.1-2001 (ISO/IEC 9945-2003), except that the argument type for __isnan() is known to be double.
__isnan() is not in the source standard; it is only in the binary standard.
__isnanf() has the same specification as isnan() in POSIX 1003.1-2001 (ISO/IEC 9945-2003), except that the argument type for __isnanf() is known to be float.
__isnanf() is not in the source standard; it is only in the binary standard.
__isnanl() has the same specification as isnan() in POSIX 1003.1-2001 (ISO/IEC 9945-2003), except that the argument type for __isnanl() is known to be long double.
__isnanl() is not in the source standard; it is only in the binary standard.
__libc_current_sigrtmax() returns the number of an available real-time signal with the lowest priority.
__libc_current_sigrtmax() is not in the source standard; it is only in the binary standard.
__libc_current_sigrtmin() returns the number of an available real-time signal with the highest priority.
__libc_current_sigrtmin() is not in the source standard; it is only in the binary standard.
The __libc_start_main() function shall perform any necessary initialization of the execution environment, call the main function with appropriate arguments, and handle the return from main(). If the main() function returns, the return value shall be passed to the exit() function.
Note: While this specification is intended to be implementation independent, process and library initialization may include:
This list is an example only.
performing any necessary security checks if the effective user ID is not the same as the real user ID.
initialize the threading subsystem.
registering the rtld_fini to release resources when this dynamic shared object exits (or is unloaded).
registering the fini handler to run at program exit.
calling the initializer function (*init)().
calling main() with appropriate arguments.
calling exit() with the return value from main().
__libc_start_main() is not in the source standard; it is only in the binary standard.
The section on Process Initialization in each of the architecture specific parts of ISO/IEC 23360.
The interface __mbsnrtowcs_chk() shall function in the same way as the interface mbsnrtowcs(), except that __mbsnrtowcs_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter destlen specifies the size of the object dest. If len exceeds destlen, the function shall abort, and the program calling it shall exit.
The __mbsnrtowcs_chk() function is not in the source standard; it is only in the binary standard.
The interface __mbsrtowcs_chk() shall function in the same way as the interface mbsrtowcs(), except that __mbsrtowcs_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter destlen specifies the size of the object dest. If len exceeds destlen, the function shall abort, and the program calling it shall exit.
The __mbsrtowcs_chk() function is not in the source standard; it is only in the binary standard.
The interface __mbstowcs_chk() shall function in the same way as the interface mbstowcs(), except that __mbstowcs_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter destlen specifies the size of the object dest. If len exceeds destlen, the function shall abort, and the program calling it shall exit.
The __mbstowcs_chk() function is not in the source standard; it is only in the binary standard.
The interface __memcpy_chk() shall function in the same way as the interface memcpy(), except that __memcpy_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter destlen specifies the size of the object dest. If len exceeds destlen, the function shall abort, and the program calling it shall exit.
The __memcpy_chk() function is not in the source standard; it is only in the binary standard.
The interface __memmove_chk() shall function in the same way as the interface memmove(), except that __memmove_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter destlen specifies the size of the object dest. If len exceeds destlen, the function shall abort, and the program calling it shall exit.
The __memmove_chk() function is not in the source standard; it is only in the binary standard.
__mempcpy() copies n bytes of src to dest, returning a pointer to the byte after the last written byte.
If copying takes place between objects that overlap, the behavior is undefined.
If either dest or src is a null pointer, the behavior is undefined.
If n is 0 and the other parameters are valid, the return value is dest.
__mempcpy() is not in the source standard; it is only in the binary standard.
The interface __mempcpy_chk() shall function in the same way as the interface mempcpy(), except that __mempcpy_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter destlen specifies the size of the object dest. If len exceeds destlen, the function shall abort, and the program calling it shall exit.
The __mempcpy_chk() function is not in the source standard; it is only in the binary standard.
The interface __memset_chk() shall function in the same way as the interface memset(), except that __memset_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter destlen specifies the size of the object dest. If len exceeds destlen, the function shall abort, and the program calling it shall exit.
The __memset_chk() function is not in the source standard; it is only in the binary standard.
The interface __pread64_chk() shall function in the same way as the interface pread64(), except that __pread64_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter buflen specifies the size of the buffer buf. If nbytes exceeds buflen, the function shall abort, and the program calling it shall exit.
The __pread64_chk() function is not in the source standard; it is only in the binary standard.
The interface __pread_chk() shall function in the same way as the interface pread(), except that __pread_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter buflen specifies the size of the buffer buf. If nbytes exceeds buflen, the function shall abort, and the program calling it shall exit.
The __pread_chk() function is not in the source standard; it is only in the binary standard.
The interface __printf_chk() shall function in the same way as the interface printf(), except that __printf_chk() shall check for stack overflow before computing a result, depending on the value of the flag parameter. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
In general, the higher the value of flag, the more security measures this interface shall take in the form of checking the stack, parameter values, and so on.
The __printf_chk() function is not in the source standard; it is only in the binary standard.
The __rawmemchr() function shall locate the first occurrence of c (converted to an unsigned char) in the object pointed to by s. If the byte does not occur in the object, then the behavior is undefined.
__rawmemchr() is a weak alias for rawmemchr(). It is similar to memchr(), but it has no length limit.
__rawmemchr() is not in the source standard; it is only in the binary standard.
The interface __read_chk() shall function in the same way as the interface read(), except that __read_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter buflen specifies the size of the buffer buf. If nbytes exceeds buflen, the function shall abort, and the program calling it shall exit.
The __read_chk() function is not in the source standard; it is only in the binary standard.
The interface __readlink_chk() shall function in the same way as the interface readlink(), except that __readlink_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter buflen specifies the size of the buffer buf. If len exceeds buflen, the function shall abort, and the program calling it shall exit.
The __readlink_chk() function is not in the source standard; it is only in the binary standard.
The interface __realpath_chk() shall function in the same way as the interface realpath(), except that __realpath_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter resolved_len specifies the size of the string
resolved_path. If resolved_len is less than
PATH_MAX
, then the function shall abort, and the program calling it shall exit.
The __realpath_chk() function is not in the source standard; it is only in the binary standard.
The interface __recv_chk() shall function in the same way as the interface recv(), except that __recv_chk() shall check for buffer overflow before computing a result, depending on the value of the flag parameter. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
In general, the higher the value of flag, the more security measures this interface shall take in the form of checking the buffer, parameter values, and so on.
The parameter buflen specifies the size of the buffer buf. If len exceeds buflen, the function shall abort, and the program calling it shall exit.
The __recv_chk() function is not in the source standard; it is only in the binary standard.
The interface __recvfrom_chk() shall function in the same way as the interface recvfrom(), except that __recvfrom_chk() shall check for buffer overflow before computing a result, depending on the value of the flag parameter. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
In general, the higher the value of flag, the more security measures this interface shall take in the form of checking the buffer, parameter values, and so on.
The parameter buflen specifies the size of the buffer buf. If len exceeds buflen, the function shall abort, and the program calling it shall exit.
The __recvfrom_chk() function is not in the source standard; it is only in the binary standard.
__register_atfork() implements pthread_atfork() as specified in POSIX 1003.1-2001 (ISO/IEC 9945-2003). The additional parameter __dso_handle allows a shared object to pass in it's handle so that functions registered by __register_atfork() can be unregistered by the runtime when the shared object is unloaded.
__sigsetjmp() has the same behavior as sigsetjmp() as specified by POSIX 1003.1-2001 (ISO/IEC 9945-2003).
__sigsetjmp() is not in the source standard; it is only in the binary standard.
The interface __snprintf_chk() shall function in the same way as the interface snprintf(), except that __snprintf_chk() shall check for buffer overflow before computing a result, depending on the value of the flag parameter. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
In general, the higher the value of flag, the more security measures this interface shall take in the form of checking the buffer, parameter values, and so on.
The parameter strlen specifies the size of the buffer str. If strlen is less than maxlen, the function shall abort, and the program calling it shall exit.
The __snprintf_chk() function is not in the source standard; it is only in the binary standard.
The interface __sprintf_chk() shall function in the same way as the interface sprintf(), except that __sprintf_chk() shall check for stack overflow before computing a result, depending on the value of the flag parameter. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
In general, the higher the value of flag, the more security measures this interface shall take in the form of checking the stack, parameter values, and so on.
The parameter strlen specifies the size of the string str. If strlen is zero, the function shall abort, and the program calling it shall exit.
The __sprintf_chk() function is not in the source standard; it is only in the binary standard.
The interface __stack_chk_fail() shall abort the function that called it with a message that a stack overflow has been detected. The program that called the function shall then exit.
The interface __stack_chk_fail() does not check for a stack overflow itself. It merely reports one when invoked.
The __stpcpy() function has the same specification as the stpcpy().
__stpcpy() is not in the source standard; it is only in the binary standard.
The interface __stpcpy_chk() shall function in the same way as the interface stpcpy(), except that __stpcpy_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter destlen specifies the size of the object pointed to by dest.
The __stpcpy_chk() function is not in the source standard; it is only in the binary standard.
The interface __stpncpy_chk() shall function in the same way as the interface stpncpy(), except that __stpncpy_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter destlen specifies the size of the object pointed to by dest. If n exceeds destlen, the function shall abort, and the program calling it shall exit.
The __stpncpy_chk() function is not in the source standard; it is only in the binary standard.
The interface __strcat_chk() shall function in the same way as the interface strcat(), except that __strcat_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter destlen specifies the size of the object pointed to by dest.
The __strcat_chk() function is not in the source standard; it is only in the binary standard.
The interface __strcpy_chk() shall function in the same way as the interface strcpy(), except that __strcpy_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter destlen specifies the size of the object pointed to by dest.
The __strcpy_chk() function is not in the source standard; it is only in the binary standard.
__strdup() has the same specification as strdup().
__strdup() is not in the source standard; it is only in the binary standard.
The interface __strncat_chk() shall function in the same way as the interface strncat(), except that __strncat_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter s1len specifies the size of the object pointed to by s1.
The __strncat_chk() function is not in the source standard; it is only in the binary standard.
The interface __strncpy_chk() shall function in the same way as the interface strncpy(), except that __strncpy_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter s1len specifies the size of the object pointed to by s1.
The __strncpy_chk() function is not in the source standard; it is only in the binary standard.
__group shall be 0 or the behavior of __strtod_internal() is undefined.
__strtod_internal(__nptr, __endptr, 0)() has the same specification as strtod(__nptr, __endptr)().
__strtod_internal() is not in the source standard; it is only in the binary standard.
__group shall be 0 or the behavior of __strtof_internal() is undefined.
__strtof_internal(__nptr, __endptr, 0)() has the same specification as strtof(__nptr, __endptr)().
__strtof_internal() is not in the source standard; it is only in the binary standard.
__strtok_r() has the same specification as strtok_r().
__strtok_r() is not in the source standard; it is only in the binary standard.
__group shall be 0 or the behavior of __strtol_internal() is undefined.
__strtol_internal(__nptr, __endptr, __base, 0) has the same specification as strtol(__nptr, __endptr, __base).
__strtol_internal() is not in the source standard; it is only in the binary standard.
__group shall be 0 or the behavior of __strtold_internal() is undefined.
__strtold_internal(__nptr, __endptr, 0) has the same specification as strtold(__nptr, __endptr).
__strtold_internal() is not in the source standard; it is only in the binary standard.
__group shall be 0 or the behavior of __strtoll_internal() is undefined.
__strtoll_internal(__nptr, __endptr, __base, 0) has the same specification as strtoll(__nptr, __endptr, __base).
__strtoll_internal() is not in the source standard; it is only in the binary standard.
__group shall be 0 or the behavior of __strtoul_internal() is undefined.
__strtoul_internal(__nptr, __endptr, __base, 0) has the same specification as strtoul(__nptr, __endptr, __base).
__strtoul_internal() is not in the source standard; it is only in the binary standard.
__group shall be 0 or the behavior of __strtoull_internal() is undefined.
__strtoull_internal(__nptr, __endptr, __base, 0) has the same specification as strtoull(__nptr, __endptr, __base).
__strtoull_internal() is not in the source standard; it is only in the binary standard.
The interface __swprintf_chk() shall function in the same way as the interface swprintf(), except that __swprintf_chk() shall check for stack overflow before computing a result, depending on the value of the flag parameter. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
In general, the higher the value of flag, the more security measures this interface shall take in the form of checking the stack, parameter values, and so on.
The parameter slen specifies the size of the object pointed to by s. If slen is less than maxlen, the function shall abort and the program calling it shall exit.
In general, the higher the value of flag, the more security measures this interface shall take in the form of checking the stack, parameter values, and so on.
The __swprintf_chk() function is not in the source standard; it is only in the binary standard.
__sysconf() gets configuration information at runtime.
__sysconf() is weak alias to sysconf().
__sysconf() has the same specification as sysconf().
__sysconf() is not in the source standard; it is only in the binary standard.
The interface __syslog_chk() shall function in the same way as the interface syslog(), except that __syslog_chk() shall check for stack overflow before computing a result, depending on the value of the flag parameter. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
In general, the higher the value of flag, the more security measures this interface shall take in the form of checking the stack, parameter values, and so on.
The __syslog_chk() function is not in the source standard; it is only in the binary standard.
__sysv_signal() has the same behavior as signal() as specified by POSIX 1003.1-2001 (ISO/IEC 9945-2003).
__sysv_signal() is not in the source standard; it is only in the binary standard.
The external variable __timezone
shall implement the timezone variable timezone
as specified in POSIX 1003.1-2001 (ISO/IEC 9945-2003).
__timezone
has the same specification as
timezone
.
The interface __ttyname_r_chk() shall function in the same way as the interface ttyname_r(), except that __ttyname_r_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter buflen specifies the size of the object pointed to by buf. If buflen exceeds nreal, the function shall abort and the program calling it shall exit.
The __ttyname_r_chk() function is not in the source standard; it is only in the binary standard.
The external variable __tzname
shall implement the timezone name variable tzname
as specified in POSIX 1003.1-2001 (ISO/IEC 9945-2003) function tzset().
__tzname
has the same specification as
tzname
.
The interface __vfprintf_chk() shall function in the same way as the interface vfprintf(), except that __vfprintf_chk() shall check for stack overflow before computing a result, depending on the value of the flag parameter. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
In general, the higher the value of flag, the more security measures this interface shall take in the form of checking the stack, parameter values, and so on.
The __vfprintf_chk() function is not in the source standard; it is only in the binary standard.
The interface __vfwprintf_chk() shall function in the same way as the interface vfwprintf(), except that __vfwprintf_chk() shall check for stack overflow before computing a result, depending on the value of the flag parameter. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
In general, the higher the value of flag, the more security measures this interface shall take in the form of checking the stack, parameter values, and so on.
The __vfwprintf_chk() function is not in the source standard; it is only in the binary standard.
The interface __vprintf_chk() shall function in the same way as the interface vprintf(), except that __vprintf_chk() shall check for stack overflow before computing a result, depending on the value of the flag parameter. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
In general, the higher the value of flag, the more security measures this interface shall take in the form of checking the stack, parameter values, and so on.
The __vprintf_chk() function is not in the source standard; it is only in the binary standard.
The interface __vsnprintf_chk() shall function in the same way as the interface vsnprintf(), except that __vsnprintf_chk() shall check for stack overflow before computing a result, depending on the value of the flag parameter. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
In general, the higher the value of flag, the more security measures this interface shall take in the form of checking the stack, parameter values, and so on.
The parameter slen specifies the size of the object pointed to by s. If slen is less than maxlen, the function shall abort and the program calling it shall exit.
In general, the higher the value of flag, the more security measures this interface shall take in the form of checking the stack, parameter values, and so on.
The __vsnprintf_chk() function is not in the source standard; it is only in the binary standard.
The interface __vsprintf_chk() shall function in the same way as the interface vsprintf(), except that __vsprintf_chk() shall check for stack overflow before computing a result, depending on the value of the flag parameter. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
In general, the higher the value of flag, the more security measures this interface shall take in the form of checking the stack, parameter values, and so on.
The parameter slen specifies the size of the object pointed to by s. If its value is zero, the function shall abort and the program calling it shall exit.
The __vsprintf_chk() function is not in the source standard; it is only in the binary standard.
The interface __vswprintf_chk() shall function in the same way as the interface vswprintf(), except that __vswprintf_chk() shall check for stack overflow before computing a result, depending on the value of the flag parameter. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
In general, the higher the value of flag, the more security measures this interface shall take in the form of checking the stack, parameter values, and so on.
The parameter slen specifies the size of the object pointed to by s. If slen is less than maxlen, the function shall abort and the program calling it shall exit.
The __vswprintf_chk() function is not in the source standard; it is only in the binary standard.
The interface __vsyslog_chk() shall function in the same way as the interface vsyslog(), except that __vsyslog_chk() shall check for stack overflow before computing a result, depending on the value of the flag parameter. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
In general, the higher the value of flag, the more security measures this interface shall take in the form of checking the stack, parameter values, and so on.
The __vsyslog_chk() function is not in the source standard; it is only in the binary standard.
The interface __vwprintf_chk() shall function in the same way as the interface vwprintf(), except that __vwprintf_chk() shall check for stack overflow before computing a result, depending on the value of the flag parameter. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
In general, the higher the value of flag, the more security measures this interface shall take in the form of checking the stack, parameter values, and so on.
The __vwprintf_chk() function is not in the source standard; it is only in the binary standard.
The interface __wcpcpy_chk() shall function in the same way as the interface wcpcpy(), except that __wcpcpy_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter destlen specifies the size of the object pointed to by dest.
The __wcpcpy_chk() function is not in the source standard; it is only in the binary standard.
The interface __wcpncpy_chk() shall function in the same way as the interface wcpncpy(), except that __wcpncpy_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter destlen specifies the size of the object pointed to by dest. If n exceeds destlen, the function shall abort and the program calling it shall exit.
The __wcpncpy_chk() function is not in the source standard; it is only in the binary standard.
The interface __wcrtomb_chk() shall function in the same way as the interface wcrtomb(), except that __wcrtomb_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter buflen specifies the size of the object
pointed to by s. If it is less than MB_CUR_MAX
,
then the function shall abort
and the program calling it shall exit.
The __wcrtomb_chk() function is not in the source standard; it is only in the binary standard.
The interface __wcscat_chk() shall function in the same way as the interface wcscat(), except that __wcscat_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter destlen specifies the size of the object pointed to by dest.
The __wcscat_chk() function is not in the source standard; it is only in the binary standard.
The interface __wcscpy_chk() shall function in the same way as the interface wcscpy(), except that __wcscpy_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The __wcscpy_chk() function is not in the source standard; it is only in the binary standard.
The interface __wcsncat_chk() shall function in the same way as the interface wcsncat(), except that __wcsncat_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter destlen specifies the size of the object pointed to by dest.
The __wcsncat_chk() function is not in the source standard; it is only in the binary standard.
The interface __wcsncpy_chk() shall function in the same way as the interface wcsncpy(), except that __wcsncpy_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter destlen specifies the size of the object pointed to by dest. If len exceeds destlen, the function shall abort and the program calling it shall exit.
The __wcsncpy_chk() function is not in the source standard; it is only in the binary standard.
The interface __wcsnrtombs_chk() shall function in the same way as the interface wcsnrtombs(), except that __wcsnrtombs_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter destlen specifies the size of the object pointed to by dest. If len exceeds destlen, the function shall abort and the program calling it shall exit.
The __wcsnrtombs_chk() function is not in the source standard; it is only in the binary standard.
The interface __wcsrtombs_chk() shall function in the same way as the interface wcsrtombs(), except that __wcsrtombs_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter destlen specifies the size of the object pointed to by dest. If len exceeds destlen, the function shall abort and the program calling it shall exit.
The __wcsrtombs_chk() function is not in the source standard; it is only in the binary standard.
group shall be 0 or the behavior of __wcstod_internal() is undefined.
__wcstod_internal(nptr, endptr, 0) shall behave as wcstod(nptr, endptr) as specified by POSIX 1003.1-2001 (ISO/IEC 9945-2003).
__wcstod_internal() is not in the source standard; it is only in the binary standard.
group shall be 0 or the behavior of __wcstof_internal() is undefined.
__wcstof_internal(nptr, endptr, 0) shall behave as wcstof(nptr, endptr) as specified in POSIX 1003.1-2001 (ISO/IEC 9945-2003).
__wcstof_internal() is not in the source standard; it is only in the binary standard.
group shall be 0 or the behavior of __wcstol_internal() is undefined.
__wcstol_internal(nptr, endptr, base, 0) shall behave as wcstol(nptr, endptr, base) as specified by POSIX 1003.1-2001 (ISO/IEC 9945-2003).
__wcstol_internal() is not in the source standard; it is only in the binary standard.
group shall be 0 or the behavior of __wcstold_internal() is undefined.
__wcstold_internal(nptr, endptr, 0) shall behave as wcstold(nptr, endptr) as specified by POSIX 1003.1-2001 (ISO/IEC 9945-2003).
__wcstold_internal() is not in the source standard; it is only in the binary standard.
The interface __wcstombs_chk() shall function in the same way as the interface wcstombs(), except that __wcstombs_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter destlen specifies the size of the object pointed to by dest. If len exceeds destlen, the function shall abort and the program calling it shall exit.
The __wcstombs_chk() function is not in the source standard; it is only in the binary standard.
group shall be 0 or the behavior of __wcstoul_internal() is undefined.
__wcstoul_internal(nptr, endptr, base, 0)() shall behave as wcstoul(nptr, endptr, base)() as specified by POSIX 1003.1-2001 (ISO/IEC 9945-2003).
__wcstoul_internal() is not in the source standard; it is only in the binary standard.
The interface __wctomb_chk() shall function in the same way as the interface wctomb(), except that __wctomb_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter buflen specifies the size of the object
pointed to by s. If it is less than MB_CUR_MAX
,
then the function shall abort
and the program calling it shall exit.
The __wctomb_chk() function is not in the source standard; it is only in the binary standard.
The interface __wmemcpy_chk() shall function in the same way as the interface wmemcpy(), except that __wmemcpy_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter ns1 specifies the size of the object pointed to by s1. If n exceeds ns1, the function shall abort and the program calling it shall exit.
The __wmemcpy_chk() function is not in the source standard; it is only in the binary standard.
The interface __wmemmove_chk() shall function in the same way as the interface wmemmove(), except that __wmemmove_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter ns1 specifies the size of the object pointed to by s1. If n exceeds ns1, the function shall abort and the program calling it shall exit.
The __wmemmove_chk() function is not in the source standard; it is only in the binary standard.
The interface __wmempcpy_chk() shall function in the same way as the interface wmempcpy(), except that __wmempcpy_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter ns1 specifies the size of the object pointed to by s1. If n exceeds ns1, the function shall abort and the program calling it shall exit.
The __wmempcpy_chk() function is not in the source standard; it is only in the binary standard.
The interface __wmemset_chk() shall function in the same way as the interface wmemset(), except that __wmemset_chk() shall check for buffer overflow before computing a result. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
The parameter destlen specifies the size of the object pointed to by s. If n exceeds destlen, the function shall abort and the program calling it shall exit.
The __wmemset_chk() function is not in the source standard; it is only in the binary standard.
The interface __wprintf_chk() shall function in the same way as the interface wprintf(), except that __wprintf_chk() shall check for stack overflow before computing a result, depending on the value of the flag parameter. If an overflow is anticipated, the function shall abort and the program calling it shall exit.
In general, the higher the value of flag, the more security measures this interface shall take in the form of checking the stack, parameter values, and so on.
The __wprintf_chk() function is not in the source standard; it is only in the binary standard.
The __xmknod() function shall implement the mknod() interface. The behavior of __xmknod() for values of ver other than _MKNOD_VER is undefined. See Data Definitions in the architecture specific part of this specification for the correct value of _MKNOD_VER.
__xmknod(_MKNOD_VER, path, mode, dev) shall behave as mknod(path, mode, dev) as specified by POSIX 1003.1-2001 (ISO/IEC 9945-2003).
The __xmknod() function is not in the source standard; it is only in the binary standard.
Note: The mknod() function is not in the binary standard; it is only in the source standard.
The __xmknodat() function shall implement the mknodat() function. The behavior of __xmknodat() for values of ver other than _MKNOD_VER is undefined. See Data Definitions in the architecture specific part of this specification for the correct value of _MKNOD_VER.
__xmknodat(_MKNOD_VER, dirfd, path, mode, dev) shall behave as mknodat(dirfd, path, mode, dev) as specified by POSIX 1003.1-2008 (ISO/IEC 9945-2009).
The __xmknodat() function is not in the source standard; it is only in the binary standard.
Note: The mknodat() function is not in the binary standard; it is only in the source standard.
The __xpg_basename() function shall return a pointer to the final component of the pathname named by path, as described in POSIX 1003.1-2001 (ISO/IEC 9945-2003) basename().
This function is not in the source standard, it is only in the binary standard.
The __xpg_sigpause() function shall implement the sigpause() described in POSIX 1003.1-2001 (ISO/IEC 9945-2003).
This function is not in the source standard, it is only in the binary standard.
The __xpg_strerror_r() function shall map the error number in errnum to a locale-dependent error message string and shall return the string in the buffer pointed to by strerrbuf, with length buflen, as described in POSIX 1003.1-2001 (ISO/IEC 9945-2003) strerror_r().
This function is not in the source standard, it is only in the binary standard.
The functions __xstat(), __lxstat(), and __fxstat() shall implement the functions stat(), lstat(), and fstat() respectively.
The behavior of these functions for values of ver other than _STAT_VER is undefined. See Data Definitions in the architecture specific part of this specification for the correct value of _STAT_VER.
__xstat(_STAT_VER, path, stat_buf) shall implement stat(path, stat_buf) as specified by POSIX 1003.1-2001 (ISO/IEC 9945-2003).
__lxstat(_STAT_VER, path, stat_buf) shall implement lstat(path, stat_buf) as specified by POSIX 1003.1-2001 (ISO/IEC 9945-2003).
__fxstat(_STAT_VER, fildes, stat_buf) shall implement fstat(fildes, stat_buf) as specified by POSIX 1003.1-2001 (ISO/IEC 9945-2003).
__xstat(), __lxstat(), and __fxstat() are not in the source standard; they are only in the binary standard.
stat(), lstat(), and fstat() are not in the binary standard; they are only in the source standard.
The functions __xstat64(), __lxstat64(), and __fxstat64() shall implement the functions stat64(), lstat64(), and fstat64() respectively.
The behavior of these functions for values of ver other than _STAT_VER is undefined. See Data Definitions in the architecture specific part of this specification for the correct value of _STAT_VER.
__xstat64(_STAT_VER, path, stat_buf) shall behave as stat64(path, stat_buf) as specified by Large File Support.
__lxstat64(_STAT_VER, path, stat_buf) shall behave as lstat64(path, stat_buf) as specified by Large File Support.
__fxstat64(_STAT_VER, fildes, stat_buf) shall behave as fstat64(fildes, stat_buf) as specified by Large File Support.
__xstat64(), __lxstat64(), and __fxstat64() are not in the source standard; they are only in the binary standard.
stat64(), lstat64(), and fstat64() are not in the binary standard; they are only in the source standard.
The global variable
_nl_msg_cat_cntr
is incremented each time a new
catalog is loaded.
This variable is only in the binary standard; it is not in the source standard.
_sys_errlist
is an array containing the "C" locale
strings used by strerror(). This normally should not
be used directly. strerror() provides all of the
needed functionality.
_sys_siglist
is an array containing
signal description strings ordered by signal number.
The _sys_siglist
array
is only in the binary standard; it is not in the source standard.
Applications wishing to access signal descriptions should use
the strsignal() function.
When filename is the name of an existing file, acct() turns accounting on and appends a record to filename for each terminating process. When filename is NULL, acct() turns accounting off.
On success, 0 is returned.
On error, -1 is returned and
the global variable errno
is set appropriately.
adjtime() makes small adjustments to the system time as returned by gettimeofday()(2), advancing or retarding it by the time specified by the timeval delta. If delta is negative, the clock is slowed down by incrementing it more slowly than normal until the correction is complete. If delta is positive, a larger increment than normal is used. The skew used to perform the correction is generally a fraction of one percent. Thus, the time is always a monotonically increasing function. A time correction from an earlier call to adjtime() may not be finished when adjtime() is called again. If olddelta is non-NULL, the structure pointed to will contain, upon return, the number of microseconds still to be corrected from the earlier call.
adjtime() may be used by time servers that synchronize the clocks of computers in a local area network. Such time servers would slow down the clocks of some machines and speed up the clocks of others to bring them to the average network time.
Appropriate privilege is required to adjust the system time.
On success, 0 is returned.
On error, -1 is returned and
the global variable errno
is set appropriately.
EFAULT | An argument points outside the process's allocated address space. | |
EPERM | The process does not have appropriate privilege. |
alpahsort64() is a large-file version of the alphasort() function as defined in POSIX 1003.1-2008 (ISO/IEC 9945-2009). If differs only in that the d1 and d2 parameters are of type dirent64 instead of type dirent.
The asprintf() function shall behave as sprintf(), except that the output string shall be dynamically allocated space of sufficient length to hold the resulting string. The address of this dynamically allocated string shall be stored in the location referenced by ptr.
backtrace() obtains a backtrace for the current thread as a list of pointers filled in to array. The size parameter describes the number of elements that will fit into array, backtrace() will truncate the list if necessary. A backtrace is a list of currently active function calls in a thread; each function call allocates a new stack frame and backtrace() obtains the return address from each stack frame.
backtrace_symbols() translates the information obtained from backtrace() into an array of strings. array is a pointer to an array of addresses as obtained from backtrace(). size is the number of entries in array, and should be the return value of the call to backtrace(). The strings contain the function name if it can be determined, a hedxadecimal offset into the function, and the actual return address in hexadecimal. Note that the pointer returned by backtrace_symbols() is obtained by an internal call to malloc() and should be freed when no longer needed.
backtrace_symbols_fd() performs the same transformation as backtrace_symbols() given the same argument pair array, size, but writes the strings to the file descriptor contained in fd. This avoids the allocation of string space.
backtrace() returns the number of entries placed into array, no more than size. If the value is less than size, the full backtrace was returned; else it may have been truncated.
On success, backtrace_symbols() returns a pointer to an array of strings, which will have size entries. On error, NULL is returned.
No errors are defined for these functions. If
backtrace_symbols_fd() fails,
it will be due to a failure in the call to malloc(),
and errno
will be set accordingly.
The ability to obtain useful backtrace information, in particular function names, is dependent on a number of factors at the time of program construction, such as compiler optimization options. Even if the program itself is constructed so as to make symbols visible, the call trace may descend into system libraries which have not been so constructed.
Inlined functions do not have stack frames, and functions declared as static are not exposed and so will not be available in the backtrace.
In the source standard, basename() is implemented as a macro causing it to behave as described in POSIX 1003.1-2001 (ISO/IEC 9945-2003), and is equivalent to the function __xpg_basename(). If the macro is undefined, basename() from the binary standard is used, with differences as described here:
The string identified by path shall not be modified.
If path is "/", or ends with a trailing '/' character, the basename() function shall return a pointer to an empty string.
On success, the basename() function shall return a pointer to the final component of path. Otherwise, it shall return a null pointer.
The bind_textdomain_codeset() function can be used to specify the output codeset for message catalogs for domain domainname. The codeset argument shall be a valid codeset name which can be used tor the iconv_open function, or a null pointer. If the codeset argument is the null pointer, then function returns the currently selected codeset for the domain with the name domainname. It shall return a null pointer if no codeset has yet been selected.
Each successive call to bind_textdomain_codeset() function overrrides the settings made by the preceding call with the same domainname.
The bind_textdomain_codeset() function shall return a pointer to a string containing the name of the selected codeset. The string shall be allocated internally in the function and shall not be changed or freed by the user.
Returns the currently selected codeset name. It returns a null pointer if no codeset has yet been selected.
If the process has appropriate privilege, the bindresvport() function shall bind a socket to an anonymous privileged IP port, that is, arbitrarily selected from the range 512 through 1023.
If the bind is successful and sin
is not NULL
, and the port number
bound to is returned in the sin_port
member of sin.
Any caller-supplied value of sin_port
is ignored.
If sin is NULL
,
the address family is taken to be
AF_INET
and an available
privileged port is bound to.
Since there is no sockaddr_in
structure, the port number chosen cannot be returned.
The getsockname() may be used to
query for this information.
On success, 0 is returned.
On error, -1 is returned and
errno
is set to indicate the error.
bindresvport() may fail in the same way as bind() in POSIX 1003.1-2001 (ISO/IEC 9945-2003). The following additional or differing failures may occur:
Note: At this time, only
AF_INET
is supported. Applications should be prepared for either theEAFNOSUPPORT
orEPFNOSUPPORT
error to be indicated.
The bindtextdomain() shall set the the base directory of the hierarchy containing message catalogs for a given message domain.
The bindtextdomain() function specifies that the domainname message catalog can be found in the dirname directory hierarchy, rather than in the system default locale data base.
If dirname is not
NULL
, the base directory for message catalogs
belonging to domain
domainname shall be set to
dirname.
If dirname is NULL
,
the base directory for message catalogs shall not be altered.
The function shall make copies of the argument strings as needed.
dirname can be an absolute or relative pathname.
Note: Applications that wish to use chdir() should always use absolute pathnames to avoid misadvertently selecting the wrong or non-existant directory.
If domainname is the null pointer, or is an empty
string, bindtextdomain() shall fail, but need not
set errno
.
The bindtextdomain() function shall return a pointer to a string containing the name of the selected directory. The string shall be allocated internally in the function and shall not be changed or freed by the user.
On success, bindtextdomain() shall return a
pointer to a string containing the
directory pathname currently bound to the domain. On failure, a
NULL pointer is returned, and the global variable
errno
may be set to indicate the error.
gettext, dgettext, ngettext, dngettext, dcgettext, dcngettext, textdomain, bind_textdomain_codeset
The cfmakeraw() function shall set the attributes of the termios structure referenced by termios_p as follows:
termios_p->c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP |INLCR|IGNCR|ICRNL|IXON); termios_p->c_oflag &= ~OPOST; termios_p->c_lflag &= ~(ECHO|ECHONL|ICANON|ISIG|IEXTEN); termios_p->c_cflag &= ~(CSIZE|PARENB); termios_p->c_cflag |= CS8; |
termios_p shall point to a termios structure that contains the following members:
tcflag_t c_iflag; /* input modes */ tcflag_t c_oflag; /* output modes */ tcflag_t c_cflag; /* control modes */ tcflag_t c_lflag; /* local modes */ cc_t c_cc[NCCS]; /* control chars */ |
The cfsetspeed() function shall set the input and output speeds in t to the value specified by speed. The effects of the function on the terminal as described below do not become effective, nor are all errors detected, until the tcsetattr() function is called. Certain values for baud rates set in termios and passed to tcsetattr() have special meanings.
On success, 0 is returned.
On error, -1 is returned and
the global variable errno
is set appropriately.
clearerr_unlocked() is the same as clearerr(), except that it need not be thread-safe. That is, it may only be invoked in the ways which are legal for getc_unlocked().
The daemon() function shall create a new process, detached from the controlling terminal. If successful, the calling process shall exit and the new process shall continue to execute the application in the background. If nochdir evaluates to true, the current directory shall not be changed. Otherwise, daemon() shall change the current working directory to the root (`/'). If noclose evaluates to true the standard input, standard output, and standard error file descriptors shall not be altered. Otherwise, daemon() shall close the standard input, standard output and standard error file descriptors and reopen them attached to /dev/null.
On error, -1 is returned, and the global
variable errno
is set to any of the errors
specified for the library functions fork() and
setsid().
The dcgettext() function is a domain specified version of gettext().
The dcgettext() function shall lookup the translation in the current locale of the message identified by msgid in the domain specified by domainname and in the locale category specified by category. If domainname is NULL, the current default domain shall be used. The msgid argument shall be a NULL-terminated string to be matched in the catalogue. category shall specify the locale category to be used for retrieving message strings. The category parameter shall be one of LC_CTYPE, LC_COLLATE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC, or LC_TIME. The default domain shall not be changed by a call to dcgettext().
If a translation was found in one of the specified catalogs, it shall be converted to the current locale's codeset and returned. The resulting NULL-terminated string shall be allocated by the dcgettext function, and must not be modified or freed. If no translation was found, or category was invalid, msgid shall be returned.
gettext, dgettext, ngettext, dngettext, dcngettext, textdomain, bindtextdomain, bind_textdomain_codeset
The dcngettext() function is a domain specific version of gettext, capable of returning either a singular or plural form of the message. The dcngettext() function shall lookup the translation in the current locale of the message identified by msgid1 in the domain specified by domainname and in the locale category specified by category. If domainname is NULL, the current default domain shall be used. The msgid1 argument shall be a NULL-terminated string to be matched in the catalogue. category shall specify the locale category to be used for retrieving message strings. The category parameter shall be one of LC_CTYPE, LC_COLLATE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC, or LC_TIME. The default domain shall not be changed by a call to dcngettext(). If n is 1 then the singular version of the message is returned, otherwise one of the plural forms is returned, depending on the value of n and the current locale settings.
If a translation corresponding to the value of n was found in one of the specified catalogs for msgid1, it shall be converted to the current locale's codeset and returned. The resulting NULL-terminated string shall be allocated by the dcngettext() function, and must not be modified or freed. If no translation was found, or category was invalid, msgid1 shall be returned if n has the value 1, otherwise msgid2 shall be returned.
gettext, dgettext, ngettext, dngettext, dcgettext, textdomain, bindtextdomain, bind_textdomain_codeset
dgettext() is a domain specified version of gettext().
The dgettext() function shall search the currently selected message catalogs in the domain domainname for a string identified by the string msgid. If a string is located, that string shall be returned. The domain specified by domainname applies to the currently active LC_MESSAGE locale. The default domain shall not be changed by a call to dgettext().
Note: The usage of domainanme is equivalent in syntax and meaning to the textdomain() function's application of domainname, except that the selection of the domain in dgettext() is valid only for the duration of the call.
The dgettext() function is equivalent to dcgettext(domainname, msgid, LC_MESSAGES).
On success of a msgid query, the translated NULL-terminated string is returned. On error, the original msgid is returned. The length of the string returned is undetermined until dgettext() is called.
gettext, dgettext, ngettext, dngettext, dcgettext, dcngettext, textdomain, bindtextdomain, bind_textdomain_codeset
dl_iterate_phdr() allows a program to iterate over the shared objects it has loaded. The function described by the callback parameter is called once for each loaded shared object, allowing an action to be taken for each one. callback is called with three arguments which are filled in by the implementation: a pointer to a structure of type dl_phdr_info containing information about the shared object; an integer size of the structure; and a copy of the data argument to dl_iterate_phdr(). If callback returns a non-zero value, dl_iterate_phdr() will stop processing, even if there are unprocessed shared objects. The order of processing is unspecified.
The dl_phdr_info structure has the following members (note that on 64-bit architectures the types here shown as Elf32_type will instead be Elf64_type):
Elf32_Addr dlpi_addr; const char *dlpi_name; const Elf32_Phdr *dlpi_phdr; Elf32_Half dlpi_phnum; unsigned long long int dlpi_adds; unsigned long long int dlpi_subs; size_t dlpi_tls_modid; void *dlpi_tls_data; |
dlpi_addr
contains the base address
of the shared object.
dlpi_name
is a null-terminated string
giving the pathname from which the shared object was loaded.
dlpi_phdr
is a pointer to an array
of program headers for this shared object, while
dlpi_phnum
is the number of
entries in this array.
dlpi_adds
and
dlpi_subs
are
incremented when shared objects are added or removed, respectively.
dlpi_tls_modid
contains the module ID used in TLS relocations,
if there is a PT_TLS
segment.
Otherwise the value shall be zero.
dlpi_tls_data
contains the address of the calling thread's instance
of this module's PT_TLS
segment,
if there is one and it has been allocated in the calling thread.
Otherwise the value shall be a null pointer.
Some implementations may not provide all fields in dl_phdr_info, although the first four are always mandatory. Applications are advised to have the callback function check the size parameter before examining the later members.
The dl_iterate_phdr() function returns whatever value was returned by the last call to callback. This will be zero if processing completed normally, since processing does not continue unless the callback function returns zero.
No errors are defined by dl_iterate_phdr(); as noted the callback function must use a zero return to indicate success but may assign any meaning it wishes to non-zero returns.
dngettext() shall be equivalent to a call to
dcngettext(domainname, msgid1, msgid2, n, LC_MESSAGES) |
gettext, dgettext, ngettext, dcgettext, dcngettext, textdomain, bindtextdomain, bind_textdomain_codeset
The interface drand48_r() shall function in the same way as the interface drand48(), except that drand48_r() shall use the data in buffer instead of the global random number generator state.
Before it is used, buffer must be initialized, for example, by calling lcong48_r(), seed48_r(), or srand48_r(), or by filling it with zeroes.
The duplocale() function shall provide a new locale object based on the locale object provided in locale, suitable for use in the newlocale() or uselocale() functions. The new object may be released by calling freelocale().
On success, the duplocale() function shall return
a locale object. Otherwise, it shall return
NULL
, and set errno
to indicate the error.
endutent() closes the utmp file. It should be called when the user code is done accessing the file with the other functions.
The epoll API, which consists of the interfaces epoll_create(), epoll_ctl(), and epoll_wait(), shall support all file descriptors compatible with poll(). These interfaces shall be usable in either level-triggered or edge-triggered mode. In level-triggered mode, epoll has similar semantics to poll(), and can be used as a faster replacement for it. In edge-triggered mode, epoll shall only report events for a file descriptor when changes occur on it.
The epoll_create() interface shall open an epoll file descriptor by allocating an event backing store of approximately size size. The size parameter is a hint to the kernel about how large the event storage should be, not a rigidly-defined maximum size.
On success, epoll_create() shall return the file descriptor, a non-negative integer that shall be used for subsequent epoll calls. It should be closed with the close() function.
On failure, epoll_create() shall return
-1 and set errno
as follows.
EINVAL | The size parameter is not positive. | |
ENFILE | The maximum number of open files has been reached by the system. | |
ENOMEM | Not enough memory to create the kernel object. |
The interface epoll_ctl() shall control an epoll file descriptor.
The parameter epfd shall specify the epoll file descriptor to control.
The parameter op shall specify the operation to perform on the specified target file descriptor.
The parameter fd shall specify the target file descriptor on which to perform the specified operation.
The parameter event shall specify
the object associated with the target file descriptor.
The events
member of the
event parameter is a bit set
composed of the event types listed below.
On success, epoll_ctl() shall return 0.
On failure, epoll_ctl() shall return
-1 and set errno
as follows.
The interface epoll_wait() shall wait for events on the epoll file descriptor specified by the parameter epfd.
Upon success, the output
parameter events shall
refer to an area of memory containing epoll_event structures
available to the caller.
The data
members of these structures
shall contain the data set by the
user with the interface epoll_ctl().
The events
members
shall contain the event bit field that was returned.
The parameter maxevents shall specify the maximum number of events that epoll_wait() may return in the output parameter events. The value of this parameter should be greater than 0.
The parameter timeout shall specify the maximum number of milliseconds that epoll_wait() shall wait for events. If the value of this parameter is 0, then epoll_wait() shall return immediately, even if no events are available, in which case the return code shall be 0. If the value of timeout is -1, then epoll_wait() shall block until either a requested event occurs or the call is interrupted.
On success, epoll_wait() shall return the number of file descriptors that are ready for the I/O that was requested, or else 0 if no descriptors became ready during timeout.
On failure, epoll_wait() shall return
-1 and set errno
as follows.
The interface erand48_r() shall function in the same way as the interface erand48(), except that erand48_r() shall use the data in buffer instead of the global random number generator state.
Before it is used, buffer must be initialized, for example, by calling lcong48_r(), seed48_r(), or srand48_r(), or by filling it with zeroes.
The err() function
shall display a formatted error message on the standard
error stream.
First, err() shall write
the last component of the program name, a colon
character, and a space character. If fmt is non-NULL, it shall be used as a
format string for the printf()
family of functions, and err() shall
write the formatted message, a
colon character, and a space.
Finally, the error message
string affiliated with the current value of the global variable
errno
shall be
written, followed by a newline character.
The err() function shall not return, the program shall terminate with the exit value of eval.
error() shall print a message to standard error.
error() shall build the message from the following elements in their specified order:
the program name. If the application has provided a function named
error_print_progname(), error()
shall call this to supply the program name;
otherwise, error()
uses the content of the global variable program_name
.
the colon and space characters, then the result of using the printf-style format and the optional arguments.
if errnum is nonzero,
error() shall add the colon and
space characters, then the result of
strerror(errnum
).
a newline.
If exitstatus is nonzero,
error() shall call
exit(exitstatus
).
The errx() function shall display a formatted error message on the standard error stream. The last component of the program name, a colon character, and a space shall be output. If fmt is non-NULL, it shall be used as the format string for the printf() family of functions, and the formatted error message, a colon character, and a space shall be output. The output shall be followed by a newline character.
errx() does not return, but shall exit with the value of eval.
fcntl() is as specified in POSIX 1003.1-2001 (ISO/IEC 9945-2003), but with differences as listed below.
O_LARGEFILE
According to POSIX 1003.1-2001 (ISO/IEC 9945-2003),
only an application sets
fcntl() flags, for example
O_LARGEFILE
. However, this specification
also allows an implementation to set the O_LARGEFILE
flag in the case where the programming environment is one of
_POSIX_V6_ILP32_OFFBIG
, _POSIX_V6_LP64_OFF64
, _POSIX_V6_LPBIG_OFFBIG
. See getconf and c99
in POSIX 1003.1-2001 (ISO/IEC 9945-2003)
for a description of these environments.
Thus, calling fcntl() with the
F_GETFL command may return
O_LARGEFILE
as well as flags explicitly
set by the application in the case that both the implementation and
the application support an off_t of at least 64 bits.
In addition to the available values for cmd, as documented in POSIX 1003.1-2001 (ISO/IEC 9945-2003), this specification permits the following constants.
F_GETSIG
shall get the number of the signal to be sent when input or output can occur. If the value is 0, then SIGIO
shall be sent. Otherwise, the value retrieved shall be the signal sent, and the signal handler can discover more information when installed with the SA_SIGINFO
flag.
F_SETSIG
shall set the number of the signal to be sent when input or output can occur. If the value is 0, then SIGIO
shall be sent. Otherwise, the value set shall be the signal to be sent, and the signal handler can discover more information when installed with the SA_SIGINFO
flag.
F_GETLK64
is analogous to the F_GETLK
constant in POSIX 1003.1-2001 (ISO/IEC 9945-2003), but shall provide a 64-bit interface on non-64-bit architectures. It is identical to F_GETLK
on a 64-bit machine, but is provided in 64-bit environments for source code consistency among architectures.
F_SETLK64
is analogous to the F_SETLK
constant in POSIX 1003.1-2001 (ISO/IEC 9945-2003), but shall provide a 64-bit interface on non-64-bit architectures. It is identical to F_SETLK
on a 64-bit machine, but is provided in 64-bit environments for source code consistency among architectures.
F_SETLKW64
is analogous to the F_SETLKW
constant in POSIX 1003.1-2001 (ISO/IEC 9945-2003), but provides a 64-bit interface on non-64-bit architectures. It is identical to F_SETLKW
on a 64-bit machine, but is provided in 64-bit environments for source code consistency among architectures.
feof_unlocked() is the same as feof(), except that it need not be thread-safe. That is, it may only be invoked in the ways which are legal for getc_unlocked().
ferror_unlocked() is the same as ferror(), except that it need not be thread-safe. That is, it may only be invoked in the ways which are legal for getc_unlocked().
fflush_unlocked() is the same as fflush() except that it need not be thread safe. That is, it may only be invoked in the ways which are legal for getc_unlocked().
fgetc_unlocked() is the same as fgetc(), except that it need not be thread-safe. That is, it may only be invoked in the ways which are legal for getc_unlocked().
fgets_unlocked() is the same as fgets(), except that it need not be thread-safe. That is, it may only be invoked in the ways which are legal for getc_unlocked().
fgetwc_unlocked() is the same as fgetwc() except that it need not be thread safe. That is, it may only be invoked in the ways which are legal for getc_unlocked().
fgetws_unlocked() is the same as fgetws(), except that it need not be thread-safe. That is, it may only be invoked in the ways which are legal for getc_unlocked().
fileno_unlocked() is the same as fileno(), except that it need not be thread-safe. That is, it may only be invoked in the ways which are legal for getc_unlocked().
flock() applies or removes an advisory lock on the open file fd. Valid operation types are:
A single file may not simultaneously have both shared and exclusive locks.
On success, 0 is returned.
On error, -1 is returned and
the global variable errno
is set appropriately.
fputc_unlocked() is the same as fputc(), except that it need not be thread-safe. That is, it may only be invoked in the ways which are legal for getc_unlocked().
fputs_unlocked() is the same as fputs(), except that it need not be thread-safe. That is, it may only be invoked in the ways which are legal for getc_unlocked().
fputwc_unlocked() is the same as fputwc(), except that it need not be thread-safe. That is, it may only be invoked in the ways which are legal for getc_unlocked().
fputws_unlocked() is the same as fputws(), except that it need not be thread-safe. That is, it may only be invoked in the ways which are legal for getc_unlocked().
fread_unlocked() is the same as fread(), except that it need not be thread-safe. That is, it may only be invoked in the ways which are legal for getc_unlocked().
The freelocale() function shall free the locale object locale, and release any resources associated with it.
The scanf() family of functions shall behave as described in POSIX 1003.1-2001 (ISO/IEC 9945-2003), except as noted below.
The
%s,
%S and
%[ conversion specifiers shall accept an
option length modifier
a,
which shall cause a memory buffer to be allocated to hold the string converted.
In such a case, the argument corresponding to the conversion specifier should be
a reference to a pointer value that will receive a pointer to the allocated
buffer. If there is insufficient memory to allocate a buffer, the
function may set
errno
to ENOMEM and a
conversion error results.
Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion specifier for hexadecimal float values. While this conversion specifier should be supported, a format specifier such as "%aseconds" will have a different meaning on an LSB conforming system.
The fstatfs() function returns information about a mounted file system. The file system is identified by fd, a file descriptor of an open file within the mounted filesystem. The results are placed in the structure pointed to by buf.
Fields that are undefined for a particular file system shall be set to 0.
Note: Application developers should use the fstatvfs() function to obtain general file system information. Applications should only use the fstatfs() function if they must determine the file system type, which need not be provided by fstatvfs().
On success, the fstatfs() function shall
return 0 and set the fields of the
structure idenfitied by buf accordingly.
On error, the fstatfs() function shall
return -1 and set
errno
accordingly.
The fstatfs64() function returns information about a mounted file system. The file system is identified by fd, a file descriptor of an open file within the mounted filesystem. The results are placed in the structure pointed to by buf.
Fields that are undefined for a particular file system shall be set to 0.
fstatfs64() is a large-file version of the fstatfs() function.
Note: Application developers should use the fstatvfs64() function to obtain general file system information. Applications should only use the fstatfs64() function if they must determine the file system type, which need not be provided by fstatvfs64().
On success, the fstatfs64() function shall
return 0 and set the fields of the
structure idenfitied by buf accordingly.
On error, the fstatfs64() function shall
return -1 and set
errno
accordingly.
fwrite_unlocked() is the same as fwrite(), except that it need not be thread-safe. That is, it may only be invoked in the ways which are legal for getc_unlocked().
The scanf() family of functions shall behave as described in POSIX 1003.1-2001 (ISO/IEC 9945-2003), except as noted below.
The
%s,
%S and
%[ conversion specifiers shall accept an
option length modifier
a,
which shall cause a memory buffer to be allocated to hold the string converted.
In such a case, the argument corresponding to the conversion specifier should be
a reference to a pointer value that will receive a pointer to the allocated
buffer. If there is insufficient memory to allocate a buffer, the
function may set
errno
to ENOMEM and a
conversion error results.
Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion specifier for hexadecimal float values. While this conversion specifier should be supported, a format specifier such as "%aseconds" will have a different meaning on an LSB conforming system.
If the Network Information System (NIS) is in use, getdomainname() shall copy the NIS domain name to the supplied buffer identified by name, with maximum length namelen. If the NIS domain name is not currently set, getdomainname() shall copy the string "(none)" to the name. If namelen is less than the length of the string to be copied, getdomainname() shall either truncate the string to namelen characters and place it in name (without a terminating null character), or shall fail with EINVAL.
Note: The NIS domain name is not the same as the domain portion of a fully qualified domain name (for example, in DNS).
The LSB does not include other NIS functions, nor does it specify how NIS may affect other database functions. No conforming application can make use of this information beyond noting whether or not the domain name has been set. If the name is set to a value other than the string "(none)", the application should not imply that NIS is in use. Similarly, if it is set to "(none)", the application should not assume that NIS is not in use, although NIS functionality may be restricted in this case.
On success,
getdomainname() shall return
0. Otherwise, it shall return
-1 and set errno
to indicate the error.
EINVAL | name is a null pointer. | |
EINVAL | The buffer identified by name and namelen is of insufficient size to store the NIS domain name string, and the implementation considers this an error. |
The LSB does not include other NIS interfaces, and a future version of this specification may remove this interface. Application developers should avoid using this interface where possible.
The function getdtablesize() returns the number of files a process can have open.
Note: The getdtablesize() function is deprecated. Portable applications should call sysconf() with the
_SC_OPEN_MAX
option instead.
The getdtablesize()
function returns the current soft limit as if obtained by
a call to sysconf()
with the _SC_OPEN_MAX
option.
The reentrant interface getgrent_r() shall function in the same way as the interface getgrent(), except that getgrent_r() shall return the group name, group password, and group members in buffers provided by the caller, rather than as a pointer to static storage.
The parameter gbuf contains the struct group that was read from the stream, if any.
The parameter buf contains additional strings, if any.
The parameter buflen specifies the size of buf.
The parameter *gbufp returns a pointer to the struct group in *gbuf.
On success, getgrent_r() shall return 0, and *gbufp shall contain a pointer to the result.
On failure, *gbufp shall contain NULL, and getgrent_r() shall return an error as follows.
ENOENT | No more group entries. | |
ERANGE | Not enough buffer space. Specify a larger buffer and try again. |
The getgrouplist() function shall fill in the array groups with the supplementary groups for the user specified by user. On entry, ngroups shall refer to an integer containing the maximum number of elements in the groups array. The group group shall also be included in the values returned in groups. It is expected that group would be specified as the user's primary group from the password file (obtainable via getpwnam() or a similar function).
If on entry the value referenced by ngroups was greater than or equal to the number of supplementary group identifiers to be copied to the array identified by groups, getgrouplist() shall return the number of group identifiers actually copied, and shall set the value referenced by ngroups to this value.
If on entry the value referenced by ngroups
was less than the number of supplementary
group identifiers, getgrouplist() shall return
-1
. The initial ngroups
entries in groups shall be overwritten.
If the number of groups exceeds the input
ngroups value, then as well as returning
-1
, ngroups shall be set
to the number of groups that would have been placed in
groups if it had been large enough.
Note: In such a case, the caller can use the information returned to make a further getgrouplist() call with a correctly sized groups array.
If user does not refer to a valid user on the system, then the behavior of this function is undefined.
Note: The gethostbyaddr_r() function is deprecated; applications should use getaddrinfo() instead.
gethostbyaddr_r() is a reentrant version of gethostbyaddr() that searches the network host database for a host address match.
The gethostbyaddr_r() function shall search the network host database for an entry of address family type with the host with address addr. The len argument contains the length of the address referenced by addr.
If type is AF_INET
, the addr argument shall be an
in_addr structure.
If type is AF_INET6
, the addr argument shall be an
in6_addr structure.
If type is any other value, the behavior is unspecified.
The application must provide a buffer for the gethostbyaddr_r() to use during the lookup process. The buffer is referenced by buf, and is of size buflen. If the buffer is not of sufficient size, gethostbyaddr_r() may fail and return ERANGE. If a matching entry is found in the database, gethostbyaddr_r() shall copy the relevant information to the application supplied hostent structure referenced by result_buf, and return a pointer to this structure in *result. If no matching entry is found, *result shall be set to a null pointer. Additional error information shall be set in the variable referenced by h_errnop.
On success, the gethostbyaddr_r() function shall return zero. If the return value was ERANGE, the size of the buffer buf, indicated by buflen, was too small. If the gethostbyaddr_r() function returns returns any other value, then the variable referenced by h_errnop shall be set to indicate the cause as for gethostbyaddr().
Note: The gethostbyname2() function is deprecated; applications should use getaddrinfo() instead.
The gethostbyname2() function shall search the network host database for an entry with name name. This function is similar to the gethostbyname() function but additionally allows the search to be restricted to a particular address family specified by af.
On success, the gethostbyname2() function shall return a pointer to a hostent structure if the requested entry was found, and a null pointer otherwise.
On unsuccessful completion, gethostbyname2() shall
set h_errno
as
for gethostbyname() in POSIX 1003.1-2001 (ISO/IEC 9945-2003).
The gethostbyname2() shall set h_errno
as for gethostbyname() in POSIX 1003.1-2001 (ISO/IEC 9945-2003).
Note: The gethostbyname2_r() function is deprecated; applications should use getaddrinfo() instead.
The gethostbyname2_r() function shall search the network host database for an entry with name name. gethostbyname2_r() is a reentrant version of gethostbyname2(). These functions are similar to the gethostbyname() and gethostbyname_r() functions but additionally allow the search to be restricted to a particular address family specified by af.
The application must provide a buffer for the gethostbyname2_r() function to use during the lookup process. The buffer is referenced by buf, and is of size buflen. If the buffer is not of sufficient size, gethostbyname_r() may fail and return ERANGE. If a matching entry is found in the database, gethostbyname_r() shall copy the relevant information to the application-supplied hostent structure referenced by result_buf, and return a pointer to this structure in *result. If no matching entry is found, *result shall be set to a null pointer. Additional error information shall be set in the variable referenced by h_errnop.
On success, the gethostbyname2_r() function shall return zero. If the return value was ERANGE, the size of the buffer buf, indicated by buflen, was too small. If the gethostbyname2_r() function returns returns any other value, then the variable referenced by h_errnop shall be set to indicate the cause as for gethostbyname_r().
Note: The gethostbyname_r() function is deprecated; applications should use getaddrinfo() instead.
gethostbyname_r() is a reentrant version of gethostbyname() that searches the network host database for a host name match.
The gethostbyname_r() function shall search the network host database for an entry with name name.
The application must provide a buffer for the gethostbyname_r() to use during the lookup process. The buffer is referenced by buf, and is of size buflen. If the buffer is not of sufficient size, gethostbyname_r() may fail and return ERANGE. If a matching entry is found in the database, gethostbyname_r() shall copy the relevant information to the application supplied hostent structure referenced by result_buf, and return a pointer to this structure in *result. If no matching entry is found, *result shall be set to a null pointer. Additional error information shall be set in the variable referenced by h_errnop.
On success, the gethostbyname_r() function shall return zero. If the return value was ERANGE, the size of the buffer buf, indicated by buflen, was too small. If the gethostbyname_r() function returns returns any other value, then the variable referenced by h_errnop shall be set to indicate the cause as for gethostbyname().
getloadavg() returns the number of processes in the system run queue averaged over various periods of time. Up to nelem samples are retrieved and assigned to successive elements of loadavg[]. The system imposes a maximum of 3 samples, representing averages over the last 1, 5, and 15 minutes, respectively.
If the load average could not be obtained, -1 is returned. Otherwise, the number of samples actually retrieved is returned.
The getopt() function shall parse command line arguments as described in POSIX 1003.1-2001 (ISO/IEC 9945-2003), with the following exceptions, where LSB and POSIX specifications vary. LSB systems shall implement the modified behaviors described below.
The getopt() function can process command line arguments referenced by argv in one of three ways:
PERMUTE | the order of arguments in argv is altered so that all options (and their arguments) are moved in front of all of the operands. This is the default behavior.
| |
REQUIRE_ORDER | The arguments in
argv are processed in exactly the order
given, and option processing stops when the first non-option argument
is reached, or when the element of argv is "--". This ordering
can be enforced either by setting the environment variable
| |
RETURN_IN_ORDER | The order of arguments is not altered, and all arguments are processed. Non-option arguments (operands) are handled as if they were the argument to an option with the value 1 ('\001'). This ordering is selected by setting the first character of optstring to '-'; |
LSB specifies that:
an element of argv that starts with "-" (and is not exactly "-" or "--") is an option element.
characters of an option element, aside from the initial "-", are option characters.
POSIX specifies that:
applications using getopt() shall obey the following syntax guidelines:
option name is a single alphanumeric character from the portable character set
option is preceded by the '-' delimiter character
options without option-arguments should be accepted when grouped behind one '-' delimiter
each option and option-argument is a separate argument
option-arguments are not optional
all options should precede operands on the command line
the argument "--" is accepted as a delimiter indicating the end of options and the consideration of subsequent arguments, if any, as operands
historical implementations of getopt() support other characters as options as an allowed extension, but applications that use extensions are not maximally portable.
support for multi-byte option characters is only possible when such characters can be represented as type int.
applications that call any utility with a first operand starting with '-' should usually specify "--" to mark the end of the options. Standard utilities that do not support this guideline indicate that fact in the OPTIONS section of the utility description.
LSB specifies that:
if a character is followed by two colons, the option takes an optional argument; if there is text in the current argv element, it is returned in optarg, otherwise optarg is set to 0.
if optstring contains W followed by a semi-colon (;), then -W foo is treated as the long option --foo.
Note: See getopt_long() for a description of long options.
The first character of optstring shall modify the behavior of getopt() as follows:
if the first character is '+', then
REQUIRE_ORDER
processing shall be in
effect (see above)
if the first character is '-', then
RETURN_IN_ORDER
processing shall be in
effect (see above)
if the first character is ':', then
getopt() shall return ':' instead of '?'
to indicate a missing option argument, and shall not print any
diagnostic message to stderr
.
POSIX specifies that:
the -W
option is reserved for implementation extensions.
LSB specifies the following additional getopt() return values:
'\001' is returned
if RETURN_IN_ORDER
argument ordering is in effect,
and the next argument is an operand, not an option. The argument is
available in optarg
.
POSIX specifies the following getopt() return values:
the next option character is returned, if found successfully.
':' is returned if a parameter is missing for
one of the options and the first character of optstring
is
':'.
'?' is returned if an unknown option
character not in optstring
is encountered, or if
getopt() detects a missing argument and the first
character of optstring
is not ':'.
-1 is returned for the end of the option list.
LSB specifies that:
if the variable POSIXLY_CORRECT
is set, option
processing stops as soon as a non-option argument is encountered.
the variable _[PID]_GNU_nonoption_argv_flags_
(where [PID] is the process ID for the
current process), contains a space separated list of arguments that should
not be treated as arguments even though they appear to be so.
Rationale: This was used by bash 2.0 to communicate to GNU libc which arguments resulted from wildcard expansion and so should not be considered as options. This behavior was removed in bash version 2.01, but the support remains in GNU libc.
getopt_long() works like getopt() except that it also accepts long options, started out by two dashes. Long option names may be abbreviated if the abbreviation is unique or is an exact match for some defined option. A long option may take a parameter, of the form --arg=param or --arg param.
longopts is a pointer to the first element of an array of struct option declared in getopt.h as:
struct option { const char *name; int has_arg; int *flag; int val; }; |
The fields in this structure have the following meaning:
If longindex is not NULL
,
it points to a variable which is set to the index of the long option
relative to longopts.
getopt_long() returns the option character if a short option was found successfully, or ":" if there was a missing parameter for one of the options, or "?" for an unknown option character, or -1 for the end of the option list.
For a long option,
getopt_long() returns val
if flag
is NULL, and 0
otherwise. Error and -1 returns are the
same as for getopt(), plus
"?" for an ambiguous match or an
extraneous parameter.
getopt_long_only() is like getopt_long(), but "-" as well as "--" can indicate a long option. If an option that starts with "-" (not "--") doesn't match a long option, but does match a short option, it is parsed as a short option instead.
Note: The getopt_long_only() function is intended only for supporting certain programs whose command line syntax was designed before the Utility Syntax Guidelines of POSIX 1003.1-2001 (ISO/IEC 9945-2003) were developed. New programs should generally call getopt_long() instead, which provides the --option syntax for long options, which is preferred by GNU and consistent with POSIX 1003.1-2001 (ISO/IEC 9945-2003).
getopt_long_only() returns the option character if the option was found successfully, or ":" if there was a missing parameter for one of the options, or "?" for an unknown option character, or -1 for the end of the option list.
getopt_long_only() also returns the option character when a short option is recognized. For a long option, they return val if flag is NULL, and 0 otherwise. Error and -1 returns are the same as for getopt(), plus "?" for an ambiguous match or an extraneous parameter.
The function getpagesize() returns the number of bytes in a meory page.
Note: The getpagesize() function is deprecated. Portable applications should use sysconf(
_SC_PAGE_SIZE
) instead.
The getprotobyname_r() function is a reentrant version of the getprotobyname() function.
The getprotobyname_r() function shall search the network protocol database for an entry with the name name.
If a matching entry is found in the database, this function shall copy the relevant information to the application-supplied protoent structure referenced by result_buf, and return a pointer to this structure in *result. If no matching entry is found, *result shall be set to a null pointer.
The array buf shall contain the string fields referenced by the protoent structure that was returned. The parameter buflen shall specify the array's size. 1024 bytes should be enough for most uses.
On success, the getprotobyname_r() function shall return 0. If the return value was ERANGE, the size of the buffer buf, indicated by buflen, was too small.
The getprotobynumber_r() function is a reentrant version of the getprotobynumber() function.
The getprotobynumber_r() function shall search the network protocol database for an entry with protocol number proto.
If a matching entry is found in the database, this function shall copy the relevant information to the application-supplied protoent structure referenced by result_buf, and return a pointer to this structure in *result. If no matching entry is found, *result shall be set to a null pointer.
The array buf shall contain the string fields referenced by the protoent structure that was returned. The parameter buflen shall specify the array's size. 1024 bytes should be enough for most uses.
On success, the getprotobynumber_r() function shall return 0. If the return value was ERANGE, the size of the buffer buf, indicated by buflen, was too small.
The getprotoent_r() function is a reentrant version of the getprotoent() function.
The getprotoent_r() function shall search the network protocol database for the next entry.
If the next entry is found in the database, this function shall copy the relevant information to the application-supplied protoent structure referenced by result_buf, and return a pointer to this structure in *result. If no next entry is found, *result shall be set to a null pointer.
The array buf shall contain the string fields referenced by the protoent structure that was returned. The parameter buflen shall specify the array's size. 1024 bytes should be enough for most uses.
On success, the getprotoent_r() function shall return zero.
If the return value was ENOENT, there were no more entries in the database.
If the return value was ERANGE, the size of the buffer buf, indicated by buflen, was too small.
The reentrant interface getpwent_r() shall function in the same way as the interface getpwent(), except that getpwent_r() shall return the user name, user password, GECOS field, home directory, and shell program in buffers provided by the caller, rather than as a pointer to static storage.
The parameter pwbuf contains the struct passwd that was read from the stream, if any.
The parameter buf contains additional strings, if any.
The parameter buflen specifies the size of buf.
The parameter *pwbufp returns a pointer to the struct passwd in *pwbuf.
On success, getpwent_r() shall return 0, and *pwbufp shall contain a pointer to the result.
On failure, *pwbufp shall contain NULL, and getpwent_r() shall return an error as follows.
ENOENT | No more password entries. | |
ERANGE | Not enough buffer space. Specify a larger buffer and try again. |
The getservbyname_r() function is a reentrant version of the getservbyname() function.
The getservbyname_r() function shall search the network services database for an entry with the name name. The proto parameter shall restrict the search to entries with the specified protocol. If proto is NULL, getservbyname_r() may return entries with any protocol.
If a matching entry is found in the database, this function shall copy the relevant information to the application-supplied servent structure referenced by result_buf, and return a pointer to this structure in *result. If no matching entry is found, *result shall be set to a null pointer.
The array buf shall contain the string fields referenced by the servent structure that was returned. The parameter buflen shall specify the array's size. 1024 bytes should be enough for most uses.
On success, the getservbyname_r() function shall return zero. If the return value was ERANGE, the size of the buffer buf, indicated by buflen, was too small.
The getservbyport_r() function is a reentrant version of the getservbyport() function.
The getservbyport_r() function shall search the network services database for an entry with the port port. The proto parameter shall restrict the search to entries with the specified protocol. If proto is NULL, getservbyport_r() may return entries with any protocol.
If a matching entry is found in the database, this function shall copy the relevant information to the application-supplied servent structure referenced by result_buf, and return a pointer to this structure in *result. If no matching entry is found, *result shall be set to a null pointer.
The array buf shall contain the string fields referenced by the servent structure that was returned. The parameter buflen shall specify the array's size. 1024 bytes should be enough for most uses.
On success, the getservbyport_r() function shall return zero. If the return value was ERANGE, the size of the buffer buf, indicated by buflen, was too small.
The getservent_r() function is a reentrant version of the getservent() function.
The getservent_r() function shall search the network services database for the next entry.
If the next entry is found in the database, this function shall copy the relevant information to the application-supplied servent structure referenced by result_buf, and return a pointer to this structure in *result. If no next entry is found, *result shall be set to a null pointer.
The array buf shall contain the string fields referenced by the servent structure that was returned. The parameter buflen shall specify the array's size. 1024 bytes should be enough for most uses.
On success, the getservent_r() function shall return 0.
If the return value was ENOENT, there were no more entries in the database.
If the return value was ERANGE, the size of the buffer buf, indicated by buflen, was too small.
The getsockopt() function shall behave as specified in POSIX 1003.1-2001 (ISO/IEC 9945-2003), with the following extensions.
If the level parameter is
IPPROTO_IP
, the following values shall be supported for
option_name (see RFC 791:Internet Protocol for
further details):
IP_OPTIONS | Get the Internet Protocol options sent with every packet from this socket. The option_value shall point to a memory buffer in which the options shall be placed; on entry option_len shall point to an integer value indicating the maximum size of the memory buffer, in bytes. On successful return, the value referenced by option_len shall be updated to the size of data copied to the buffer. For IPv4, the maximum length of options is 40 bytes. | |
IP_TTL | Get the current unicast Internet Protocol Time To Live value used when sending packets with this socket. The option_value shall point to a buffer large enough to hold the time to live value (at least 1 byte), and option_len shall point to an integer value holding the maximum size of that buffer. On successful return, the value referenced by option_len shall be updated to contain the number of bytes copied into the buffer, which shall be no larger than the initial value, and option_value shall point to an integer containing the time to live value. | |
IP_TOS | Get the Internet Protocol type of service indicator used when sending packets with this socket. The option_value shall point to a buffer large enough to hold the type of service indicator (at least 1 byte), and option_len shall point to an integer value holding the maximum size of that buffer. On successful return, the value referenced by option_len shall be updated to contain the number of bytes copied into the buffer, which shall be no larger than the initial value, and option_value shall point to an integer containing the time to live value. |
The gettext() function shall search the currently selected message catalogs for a string identified by the string msgid. If a string is located, that string shall be returned.
The gettext() function is equivalent to dcgettext(NULL, msgid, LC_MESSAGES).
If a string is found in the currently selected message catalogs for msgid, then a pointer to that string shall be returned. Otherwise, a pointer to msgid shall be returned.
Applications shall not modify the string returned by gettext().
dgettext, ngettext, dngettext, dcgettext, dcngettext, textdomain, bindtextdomain, bind_textdomain_codeset
Upon successful completion, getutent() shall return a pointer to a utmp structure containing a copy of the requested entry in the user accounting database. Otherwise, a null pointer shall be returned. The return value may point to a static area which is overwritten by a subsequent call to getutent().
The getutent_r() function is a reentrant version of the getutent() function. On entry, buffer should point to a user supplied buffer to which the next entry in the database will be copied, and result should point to a location where the result will be stored.
On success, getutent_r() shall return 0 and set
the location referenced by result to a pointer
to buffer. Otherwise, getutent_r()
shall return -1
and set the location referenced
by result to NULL
.
getwc_unlocked() is the same as getwc(), except that it need not be thread-safe. That is, it may only be invoked in the ways which are legal for getc_unlocked().
getwchar_unlocked() is the same as getwchar(), except that it need not be thread-safe. That is, it may only be invoked in the ways which are legal for getc_unlocked().
glob64() is a large-file version of the glob() function defined in POSIX 1003.1-2001 (ISO/IEC 9945-2003). It shall search for pathnames matching pattern according to the rules used by the shell, /bin/sh. No tilde expansion or parameter substitution is done; see wordexp().
The results of a glob64()
call are stored in the structure pointed to by pglob,
which is a glob64_t
declared in
glob.h with the following members:
typedef struct { size_t |
Structure members with the same name as corresponding members of a
glob_t
as
defined in POSIX 1003.1-2001 (ISO/IEC 9945-2003) shall have the same purpose.
Other members are defined as follows:
gl_flags | reserved for internal use | |
gl_closedir | pointer to a function capable of closing a directory opened by
| |
gl_readdir64 | pointer to a function capable of reading entries in a large directory | |
gl_opendir | pointer to a function capable of opening a large directory | |
gl_stat | pointer to a function capable of returning file status for a large file | |
gl_lstat | pointer to a function capable of returning file status information for a large file or symbolic link |
A large file or large directory is one with a size which cannot be represented by a variable of type off_t.
On success, 0 is returned. Other possible returns are:
GLOB_NOSPACE | out of memory | |
GLOB_ABORTED | read error | |
GLOB_NOMATCH | no match found |
globfree64() frees the dynamically allocated storage from an earlier call to glob64().
globfree64() is a large-file version of the globfree() function defined in POSIX 1003.1-2001 (ISO/IEC 9945-2003).
gnu_get_libc_version() returns a string that identifies the version of the C library running the program making the call.
gnu_get_libc_release() returns a string indicates the release status of the C library running the program making the call. This will be a string such as "stable".
These functions are specific to GNU libc (glibc). This specification does not require the implementation of libc to be glibc, although it requires these functions.
The string returned by gnu_get_libc_version() will be a dotted version string, which may have meaning to developers otherwise familiar with glibc. These functions have been requested to aid in portability of software which also runs in non-LSB contexts, but decisions based on the return value should be tempered by an understanding of what the behavioral requirements of this specification are. That is, it may or may not be useful to discover that a running system, for example, has version "2.10.1" if that implies different behavior than described by this specification.
The hcreate_r() function is a reentrant version of the hcreate() function.
hcreate_r() shall initialize the object referenced by htab with a hash table containing at least nel elements. Unlike its non-reentrant equivalent, hcreate(), the hcreate_r() function may work with more than one hash table.
The memory for the htab object may be dynamically allocated. It must be initialized with 0 before hcreate_r() is called.
On success, hcreate_r() shall return a non-zero value.
On failure, hcreate_r() shall return 0. This usually happens because not enough memory was available.
The hdestroy_r() function is a reentrant version of the hdestroy() function.
hdestroy_r() frees the resources allocated by hcreate_r() for the object htab.
The hsearch_r() is a reentrant version of the hsearch() function, but instead of operating on a single global hash table, hsearch_r() operates on the table described by the object that htab references. This object can be initialized with the function hcreate_r().
Unlike the hsearch() function, hsearch_r() returns a pointer to the found entry in the variable referred to by retval, rather than directly.
On success, hsearch_r() shall return a non-zero value.
On failure, hsearch_r() shall return 0
and set errno
to an appropriate value.
ENOMEM | action was set to | |
ESRCH | action was set to |
inet_aton() converts the Internet host address cp from the standard IPv4 numbers-and-dots notation into binary data and stores it in the structure that inp points to.
inet_aton() returns a nonzero value if the address is valid, 0 if not.
Note: Note that on some LSB architectures, the host byte order is Least Significant Byte first, whereas the network byte order, as used on the Internet, is Most Significant Byte first.
If the process has appropriate privilege, the initgroups() function shall initialize the Supplementary Group IDs for the current process by reading the group database and using all groups of which user is a member. The additional group group is also added to the list.
On success, 0 is returned.
On error, -1 is returned and
the global variable errno
is set appropriately.
EPERM | The calling process does not have sufficient privileges. | |
ENOMEM | Insufficient memory to allocate group information structure. |
The interface initstate_r() shall function in the same way as the interface initstate(), except that initstate_r() shall use the data in buffer instead of the global random number generator state.
inotify_add_watch() shall add a watch to, or modify an existing watch on, the watch list of the inotify instance specified by the file descriptor fd, for the file specified by path, to monitor the events specified by the bitmask mask. The caller must have read access to the file.
On success, inotify_add_watch() shall return the unique, non-negative watch descriptor associated with the file path and the inotify instance specified by the file descriptor fd.
If path was already on the watch list, then inotify_add_watch() shall return the existing watch descriptor.
If path was not already on the watch list, then inotify_add_watch() shall allocate a new watch descriptor.
inotify_add_watch() shall not work recursively. Monitoring subdirectories of path shall require adding watches to them.
On failure, inotify_add_watch() shall return -1
and set errno
to an appropriate value.
EACCESS | The caller does not have read access to path. | |
EBADF | The file descriptor fd is invalid. | |
EFAULT | path is outside of the address space accessible by the process. | |
EINVAL | mask contains no legal events, or fd is not a valid inotify file descriptor. | |
ENOMEM | There is not enough kernel memory available. | |
ENOSPC | The maximum number of watches has been created for this user, or the kernel cannot allocate a resource. |
The function read() can be used to determine which inotify events have occurred. A blocking file descriptor will make read() block until at least one event has occurred.
If successful, read() will return at least one
of the following inotify_event
structures in a buffer:
wd
is a watch descriptor that
specifies the watch associated with the event.
It is obtained from a previous invocation of
inotify_add_watch().
mask
is a bit mask describing inotify events.
See the section on masks below.
cookie
is an integer associating related inotify events.
The integer value is unique, and currently
only enables the application to associate
IN_MOVE_FROM
and
IN_MOVE_TO
rename events.
len
is a count of the bytes in path
,
including null bytes.
This means that the total length of an inotify_event
structure is
path
is only returned when an event occurs for a file within
a watched directory. This string is null-terminated, and it may contain
more null bytes so that future reads will be aligned properly on an
address boundary.
In kernels before 2.6.21, read()
returns 0 when the buffer given to it is too small
to return data about the next event. In subsequent kernels, it fails with the
error EINVAL
.
For a given file descriptor, the inotify events are returned in an ordered queue.
Events on a file descriptor will always be returned in the correct order of occurrence.
If two or more inotify events for a given file descriptor have identical values for all
fields, then only one inotify_event
will be returned to represent all of them.
The number of bytes that can be read from an inotify file descriptor
can be determined by making a
FIONREAD
ioctl() call.
The mask argument of
inotify_add_watch() and the mask
field of the
inotify_event
structure are bit masks that specify inotify events.
The bits in the list below can be set in the mask argument of
inotify_add_watch() and returned in the
mask
field of inotify_event
.
IN_ACCESS | File was read. | |
IN_ALL_EVENTS | Bit mask of all events in this list. | |
IN_ATTRIB | File's metadata changed (including timestamps and permissions). | |
IN_CLOSE | Same as | |
IN_CLOSE_WRITE | File that was opened for writing was closed. | |
IN_CLOSE_NOWRITE | File that was not opened for writing was closed. | |
IN_CREATE | File or directory was created in a watched directory. | |
IN_DELETE | File or directory was deleted in a watched directory. | |
IN_DELETE_SELF | Watched file or directory was deleted. | |
IN_MODIFY | File was changed. | |
IN_MOVE | Same as | |
IN_MOVE_SELF | Watched file or directory was moved | |
IN_MOVED_FROM | File was moved out of watched directory. | |
IN_MOVED_TO | File was moved into watched directory. | |
IN_OPEN | File was opened. |
All of the events above, except for
IN_DELETE_SELF
and IN_MOVE_SELF
,
cause the name field of the inotify_event
structure to contain
the name of the file or directory being monitored.
The following bit is valid for inotify_add_watch() only.
IN_ONESHOT | Monitor path for an event, and then remove it from the watch list. |
The following bits are valid for the inotify_event
structure only.
IN_IGNORED | Watch was removed, either explicitly (via inotify_rm_watch()) or implicitly (file deletion or file system unmounting). | |
IN_ISDIR | Object being watched is a directory. | |
IN_Q_OVERFLOW | The event queue overflowed (wd is set to -1). | |
IN_UNMOUNT | File system of object being watched was unmounted. |
On success, inotify_init() shall return a file descriptor pointing to the new inotify instance.
On failure, inotify_init() shall return -1 and set errno
to an appropriate value.
EMFILE | The maximum number of inotify instances has been created for this user. | |
ENFILE | The maximum number of file descriptors has been created on the system. | |
ENOMEM | There is not enough kernel memory available. |
inotify_rm_watch() shall remove the watch associated with the watch descriptor wd from the watch list of the inotify instance associated with the file descriptor fd.
If a watch is removed, its watch descriptor shall generate the IN_IGNORED
event.
On success, inotify_rm_watch() shall return 0.
On failure, inotify_rm_watch() shall return -1
and set errno
to an appropriate value.
EBADF | The file descriptor fd is invalid. | |
EINVAL | wd is invalid, or fd is not a valid inotify file descriptor. |
The ioctl() function shall manipulate the underlying device parameters of special files. fildes shall be an open file descriptor referring to a special file. The ioctl() function shall take three parameters; the type and value of the third parameter is dependent on the device and request.
Conforming LSB applications shall not call ioctl() except in situations explicitly stated in this specification.
On success, 0 is returned.
An ioctl() may use the return value as an
output parameter and return a non-negative value on success.
On error, -1 is returned and
the global variable errno
is set appropriately.
EBADF | fildes is not a valid descriptor. | |
EFAULT | The third parameter references an inaccessible memory area. | |
ENOTTY | fildes is not associated with a character special device. | |
ENOTTY | The specified request does not apply to the kind of object that fildes references. | |
EINVAL | request or the third parameter is not valid. |
It should be noted that POSIX 1003.1-2001 (ISO/IEC 9945-2003) contains an interface named ioctl(). The LSB only defines behavior when fildes refers to a socket (see sockio) or terminal device (see ttyio), while POSIX 1003.1-2001 (ISO/IEC 9945-2003) only defines behavior when fildes refers to a STREAMS device. An implementation may support both behaviors; the LSB does not require any STREAMS support.
Socket ioctl() commands are a subset of the ioctl() calls, which can perform a variety of functions on sockets. sockfd shall be an open file descriptor referring to a socket (see the socket() or accept() functions).
Socket ioctl() commands apply to the underlying network interfaces, and affect the entire system, not just the file descriptor used to issue the ioctl().
The following values for request are accepted:
Get the interface configuration list for the system.
Note: The SIOCGIFCONF interface is superceded by the if_nameindex() family of functions (see POSIX 1003.1-2001 (ISO/IEC 9945-2003)). A future version of this specification may withdraw this value for request.
ifc_ifcu.ifcu_req
field
to point to an array of ifreq structures, and
set ifc_len
to the size in bytes of this allocated
array. Upon return, ifc_len
will contain the size in bytes of the array which was actually used.
If it is the same as the length upon calling, the caller
should assume that the array was too small and try again with a
larger array.On success, SIOCGIFCONF shall return a nonnegative value.
Rationale: Historical UNIX systems disagree on the meaning of the return value.
Get the interface flags for the indicated interface.
argp shall point to a
ifreq structure. Before calling, the
caller should fill in the ifr_name
field with the interface name, and upon return, the
ifr_ifru.ifru_flags
field is set
with the interface flags.
Get the interface address for the given interface.
argp shall point to a
ifreq structure. Before calling, the
caller should fill in the ifr_name
field with the interface name, and upon return, the
ifr_ifru.ifru_addr
field is set
with the interface address.
Get the interface broadcast address for the given interface.
argp shall point to a
ifreq structure. Before calling, the
caller should fill in the ifr_name
field with the interface name, and upon return, the
ifr_ifru.ifru_broadcast
field is set
with the interface broadcast address.
Get the point-to-point address for the given interface.
argp shall point to a
ifreq structure. Before calling, the
caller should fill in the ifr_name
field with the interface name, and upon return, the
ifr_dstaddr
field is set
with the point-to-point address.
Get the name of an interface.
argp shall point to a
ifreq structure. Before calling, the
caller should fill in the ifr_ifindex
field with the number (index) of the interface, and upon return, the
ifr_name
field is set
with the interface name.
Get the network mask for the given interface.
argp shall point to a
ifreq structure. Before calling, the
caller should fill in the ifr_name
field with the interface name, and upon return, the
ifr_ifru.ifru_netmask
field is set
with the network mask.
Get the Maximum Transmission Unit (MTU) size for the given interface.
argp shall point to a
ifreq structure. Before calling, the
caller should fill in the ifr_name
field with the interface name, and upon return, the
ifr_ifru.ifru_mtu
field is set
with the MTU.
Note: The range of valid values for MTU varies for an interface
depending on the interface type.
Get the amount of queued unread data in the receive buffer. argp shall point to an integer where the result is to be placed.
Note: Some implementations may also support the use of FIONREAD on other types of file descriptor. However, the LSB only specifies its behavior for a socket related file descriptor.
On success, if request is
SIOCGIFCONF, a non-negative integer shall be returned.
If request is not SIOCGIFCONF, on success
0 is returned.
On error, -1 is returned and
the global variable errno
is set appropriately.
EBADF | sockfd is not a valid descriptor. | |
EFAULT | argp references an inaccessible memory area. | |
ENOTTY | The specified request does not apply to the kind of object that the descriptor sockfd references. | |
EINVAL | Either request or argp is invalid. | |
ENOTCONN | The operation is only defined on a connected socket, but the socket wasn't connected. |
Tty ioctl commands are a subset of the ioctl() calls, which can perform a variety of functions on tty devices. fd shall be an open file descriptor referring to a terminal device.
The following ioctl()s are provided:
TIOCGWINSZ | Get the size attributes of the terminal or pseudo-terminal identified by
fd. On entry, argp shall reference
a winsize structure.
On return, the structure will have
|
On success, 0 is returned.
On error, -1 is returned and
the global variable errno
is set appropriately.
EBADF | fd is not a valid descriptor. | |
EFAULT | argp references an inaccessible memory area. | |
EINVAL | request and argp are not valid. |
The interface jrand48_r() shall function in the same way as the interface jrand48(), except that jrand48_r() shall use the data in buffer instead of the global random number generator state.
Before it is used, buffer must be initialized, for example, by calling lcong48_r(), seed48_r(), or srand48_r(), or by filling it with zeroes.
kill() is as specified in the POSIX 1003.1-2001 (ISO/IEC 9945-2003), but with differences as listed below.
If pid is specified as -1, sig shall not be sent to the calling process. Other than this, the rules in the POSIX 1003.1-2001 (ISO/IEC 9945-2003) apply.
Rationale: This was a deliberate Linus decision after an unpopular experiment in including the calling process in the 2.5.1 kernel. See "What does it mean to signal everybody?", Linux Weekly News, 20 December 2001, http://lwn.net/2001/1220/kernel.php3
The interface lcong48_r() shall function in the same way as the interface lcong48(), except that lcong48_r() shall use the data in buffer instead of the global random number generator state.
The link() function shall behave as specified in POSIX 1003.1-2001 (ISO/IEC 9945-2003), except with differences as listed below.
POSIX 1003.1-2001 (ISO/IEC 9945-2003) specifies that pathname resolution shall follow symbolic links during pathname resolution unless the function is required to act on the symbolic link itself, or certain arguments direct that the function act on the symbolic link itself. The link() function in POSIX 1003.1-2001 (ISO/IEC 9945-2003) contains no such requirement to operate on a symbolic link. However, a conforming LSB implementation need not follow a symbolic link for the path1 argument.
The interface lrand48_r() shall function in the same way as the interface lrand48(), except that lrand48_r() shall use the data in buffer instead of the global random number generator state.
Before it is used, buffer must be initialized, for example, by calling lcong48_r(), seed48_r(), or srand48_r(), or by filling it with zeroes.
mbsnrtowcs() is like mbsrtowcs(), except that the number of bytes to be converted, starting at src, is limited to nms.
If dest is not a NULL pointer, mbsnrtowcs() converts at most nms bytes from the multibyte string src to a wide-character string starting at dest. At most, len wide characters are written to dest. The shift state ps is updated.
The conversion is effectively performed by repeatedly calling:
mbrtowc(dest, *src, n, ps) |
The conversion can stop for three reasons:
An invalid multibyte sequence has been encountered. In this case
src is left pointing to the invalid multibyte
sequence, (size_t)(-1) is returned, and errno
is
set to EILSEQ.
The nms limit forces a stop, or len non-L'\0' wide characters have been stored at dest. In this case, src is left pointing to the next multibyte sequence to be converted, and the number of wide characters written to dest is returned.
The multibyte string has been completely converted, including the terminating '\0' (which has the side effect of bringing back ps to the initial state). In this case, src is set to NULL, and the number of wide characters written to dest, excluding the terminating L'\0' character, is returned.
If dest is NULL, len is ignored, and the conversion proceeds as above, except that the converted wide characters are not written out to memory, and that no destination length limit exists.
In both of the above cases, if ps is a NULL pointer, a static anonymous state only known to mbsnrtowcs() is used instead.
The programmer shall ensure that there is room for at least len wide characters at dest.
mbsnrtowcs() returns the number of wide characters
that make up the converted part of the wide character string, not
including the terminating null wide character. If an invalid multibyte
sequence was encountered, (size_t)(-1) is returned, and the global
variable errno
is set to EILSEQ.
The behavior of mbsnrtowcs() depends on the
LC_CTYPE
category of the current locale.
Passing NULL as ps is not multi-thread safe.
memmem() finds the start of the first occurrence of the byte array referenced by needle of length needlelen in the memory area haystack of length haystacklen.
If needle is found, memmem() returns a pointer to it. If needlelen is 0, memmem returns haystack. If needle is not found in haystack, memmem() returns NULL.
Earlier versions of the C library (prior to glibc 2.1) contained a memmem() with various problems, and application developers should treat this function with care.
The memrchr() function shall locate the last occurence of c (converted to an unsigned char) in the initial n bytes (each interpreted as an unsigned char) of the object pointed to by s.
The memrchr() shall return a pointer to the located byte, or a null pointer if the byte does not occur in the object.
mkstemp64() shall generates a unique temporary file name from template. The last six characters of template shall be XXXXXX and these are replaced with a string that makes the file name unique; the file is then created and an open file descriptor returned as described for mkstemp().
mkstemp64() is a large-file version of the mkstemp() function as defined in POSIX 1003.1-2001 (ISO/IEC 9945-2003). The only difference is that the temporary file is opened with open64() instead of with open().
On success, mkstemp64() returns the file
descriptor of the temporary file. Otherwise mkstemp64()
shall return -1 and
set errno
to indicate the error.
The interface mrand48_r() shall function in the same way as the interface mrand48(), except that mrand48_r() shall use the data in buffer instead of the global random number generator state.
Before it is used, buffer must be initialized, for example, by calling lcong48_r(), seed48_r(), or srand48_r(), or by filling it with zeroes.
The mremap() function expands (or shrinks) an existing memory mapping, potentially moving it at the same time, depending on the flags argument and the available virtual address space.
old_address
is the old address of the
virtual memory block to be resized.
Note that old_address
must be page aligned.
old_size
is the old size of the virtual memory block.
new_size
is the requested size of the
virtual memory block after the resize.
In Linux the memory is divided into pages. A user process has (one or) several linear virtual memory segments. Each virtual memory segment has one or more mappings to real memory pages (in the page table). Each virtual memory segment has its own protection (access rights), which may cause a segmentation violation if the memory is accessed incorrectly (e.g., writing to a read-only segment). Accessing virtual memory outside of the segments will also cause a segmentation violation.
mremap() uses the Linux page table scheme. mremap() changes the mapping between virtual addresses and memory pages. This can be used to implement a very efficient form of realloc().
The flags bit-mask argument may be 0, or include the following flag:
MREMAP_MAYMOVE | By default, if there is not sufficient space to expand a mapping at its current location, then mremap() fails. If this flag is specified, then the kernel is permitted to relocate the mapping to a new virtual address, if necessary. If the mapping is relocated, then absolute pointers into the old mapping location become invalid (offsets relative to the starting address of the mapping should be employed). | |
MREMAP_FIXED | This flag serves a similar purpose to the |
If the memory segment specified by old_address
and old_size
is locked (using
mlock() or similar), then this lock is maintained
when the segment is resized and/or relocated. As a consequence, the
amount of memory locked by the process may change.
The mremap() function returns a pointer
to the new virtual memory area on success. On error, the value
MAP_FAILED
is returned, and errno
is set appropriately.
EAGAIN | The caller tried to expand a memory segment that is locked, but this was
not possible without exceeding the | |
EFAULT | "Segmentation fault." Some address in the range old_address to
| |
EINVAL | An invalid argument was given. Possible causes are:
| |
ENOMEM | The memory area cannot be expanded at the current virtual address,
and the |
The newlocale() function shall initialize
a locale object. If base is
NULL
, then newlocale()
shall first allocate the object; otherwise it shall use the locale
object referenced by base.
The object shall be initialized for the locale named
by locale, and for the categories selected
in category_mask. The
category_mask value is a bitwise
inclusive OR of the required
LC_name_MASK
values, or the value LC_ALL_MASK
.
On success, the newlocale() function shall return
the initialized locale object. Otherwise, it shall return
NULL
, and set errno
to indicate the error.
The newlocale() function shall fail if:
ENOMEM | Insufficient memory. | |
EINVAL | An invalid category_mask was provided, or
the locale was | |
ENOENT | For any of the categories in category_mask, the locale data is not available. |
The only portable way to allocate a locale object is to call
newlocale() with a NULL
base. The allocated object may be reinitialized
to a new locale by passing it back to newlocale().
The new object may be released by calling freelocale().
The ngettext() function shall search the currently selected message catalogs for a string matching the singular string msgid1. If a string is located, and if n is 1, that string shall be returned. If n is not 1, a pluralized version (dependent on n) of the string shall be returned.
The ngettext() function is equivalent to dcngettext(NULL, msgid1, msgid2, n, LC_MESSAGES)().
If a string is found in the currently selected message catalogs for
msgid1, then if n is
1
a pointer to the located string shall be returned.
If n is not 1
, a pointer to an
appropriately pluralized version of the string shall be returned.
If no message could be found in the currently selected mesage catalogs,
then if n is 1
,
a pointer to msgid1 shall be returned, otherwise
a pointer to msgid2 shall be returned.
Applications shall not modify the string returned by ngettext().
gettext, dgettext, ngettext, dngettext, dcgettext, dcngettext, textdomain, bindtextdomain, bind_textdomain_codeset
The interface nrand48_r() shall function in the same way as the interface nrand48(), except that nrand48_r() shall use the data in buffer instead of the global random number generator state.
Before it is used, buffer must be initialized, for example, by calling lcong48_r(), seed48_r(), or srand48_r(), or by filling it with zeroes.
openat64() shall establish a connection between a file and a file descriptor. It shall be identical open64() except in the case where path specifies a relative path. In this case, the file to be opened shall be determined relative to the directory associated with the file descriptor fd instead of the current working directory.
openat64() is a large-file version of the openat() function as defined in POSIX 1003.1-2008 (ISO/IEC 9945-2009). It differs from openat() in the same way that open64() differs from open(), that the open is done in large-file mode.
On success, openat64() returns a new
file descriptor.
Otherwise openat64()
shall return -1 and
set errno
to indicate the error.
The pmap_getport() function shall
return the port number assigned to a service registered with a
RPC Binding service running on a given target system,
using the protocol described in
RFC 1833: Binding Protocols for ONC RPC Version 2.
The pmap_getport() function shall be called given the
RPC program number program,
the program version version, and transport
protocol protocol. Conforming implementations shall
support both IPPROTO_UDP
and
IPPROTO_TCP
protocols. On entry,
address shall specify the address of the
system on which the portmapper to be
contacted resides. The value of address->sin_port
shall be ignored, and the standard
value for the portmapper port shall always be used.
Note: Security and network restrictions may prevent a conforming application from contacting a remote RPC Binding Service.
On success, the pmap_getport() function shall return
the port number in host byte order of the RPC application
registered with the remote portmapper. On failure,
if either the program was not
registered or the remote portmapper service could not be reached,
the pmap_getport() function
shall return 0. If the remote portmap service could not be reached, the status
is left in the global variable rpc_createerr
.
pmap_set() establishes a mapping between the
triple [program,version,protocol] and
port on the machine's RPC Bind
service. The value of protocol
is most likely IPPROTO_UDP
or IPPROTO_TCP
. Automatically done by svc_register().
As a user interface to the RPC Bind service,
pmap_unset() destroys all mapping between the triple
[prognum,versnum,
*] and ports
on the machine's
RPC Bind service.
The posix_fadvise64() function is a large-file version of the posix_fadvise() function defined in POSIX 1003.1-2001 (ISO/IEC 9945-2003). It shall advise the implementation on the expected behavior of the application with respect to the data in the file associated with the open file descriptor, fd, starting at offset and continuing for len bytes. The specified range need not currently exist in the file. If len is zero, all data following offset is specified. The implementation may use this information to optimize handling of the specified data. The posix_fadvise() function shall have no effect on the semantics of other operations on the specified data, although it may affect the performance of other operations.
The advice to be applied to the data is specified by the advice parameter, as specified in posix_fadvise().
On success, posix_fadvise64() shall return 0. Otherwise an error number shall be returned to indicate the error. See posix_fadvise() for possible error values.
The posix_fallocate64() function is a large file version of
posix_fallocate(). It shall behave as posix_fallocate()
in POSIX 1003.1-2001 (ISO/IEC 9945-2003), except that the offset and len
arguments are off64_t
objects rather than off_t
.
pread64() shall read count bytes into buf from the file associated with the open file descriptor fd, at the position specified by offset, without changing the file position.
pread64() is a large-file version of the pread() function as defined in POSIX 1003.1-2001 (ISO/IEC 9945-2003). It differs from pread() in that the offset parameter is an off64_t instead of an off_t
On success, pread64() shall return the number
of bytes actually read. Otherwise pread64()
shall return -1 and
set errno
to indicate the error.
The psignal() function shall
display a message on the stderr
stream.
If s is not the null pointer, and does
not point to an empty string (e.g. "\0"), the
message shall consist
of the string s, a colon, a space, and a string
describing the signal number sig; otherwise
psignal() shall display only a message describing
the signal number sig. If
sig is invalid, the message displayed shall
indicate an unknown signal.
The array sys_siglist
holds the signal description
strings indexed by signal number.
The ptrace() system call shall enable a process to observe and control the execution of another process, as well as examine and change certain attributes of that process.
This function operates via requests, which act on the traced process
using the other parameters in ways unique to each request type. The
tracing process must initiate tracing, either via
the PTRACE_TRACEME
or PTRACE_ATTACH
requests, before other requests
may be performed. Except for PTRACE_TRACEME
and PTRACE_KILL
, all requests must be performed
on a traced process that has been stopped.
All signals, except one, delivered to the traced process cau